Introduction. In total knee arthroplasty (TKA) the knee may be found to be too stiff in extension, causing a flexion contracture. One proposed surgical technique to correct this extension deficit is to recut the distal femur, but that may lead to excessively raising the joint line. Alternatively, full extension may be gained by stripping the posterior
Purpose. While changes in lower limb alignment and pelvic inclination after total hip arthroplasty (THA) using certain surgical approaches have been studied, the effect of preserving the joint
Purpose. Recent work has shown that joint contracture severity can be decreased with the mast cell stabilizer ketotifen in association with decreased numbers of myofibroblasts and mast cells in the joint
Quantitative knowledge on the anatomy of the medial collateral ligament (MCL) is important for preventing MCL damage during unicompartmental knee arthroplasty (UKA). The objective of this study was to quantitatively determine the morphology of the medial
The technique involves inserting the femoral and acetabular components anterior to the posterior
Introduction. Regional anesthesia is commonly utilized to minimize postoperative pain, improve function, and allow earlier rehabilitation following Total Knee Arthroplasty (TKA). The adductor canal block (ACB) provides effective analgesia of the anterior knee. However, patients will often experience posterior pain not covered by the ACB requiring supplemental opioid medications. A technique involving infiltration of local anesthetic between the popliteal artery and
Hip arthroscopy rates continue to increase. As a result, there is growing interest in capsular management techniques. Without careful preservation and surgical techniques, failure of the repair result in capsular deficiency, contributing to iatrogenic instability and persistent post-operative pain. In this setting, capsular reconstruction may be indicated, however there is a paucity of objective evidence comparing surgical techniques to identify the optimal method. Therefore, the objective of this study was to evaluate the biomechanical effect of capsulectomy and two different capsular reconstruction techniques (iliotibial band [ITB] autograft and Achilles tendon allograft) on hip joint kinematics in both rotation and abduction/adduction. Eight paired fresh-frozen hemi-pelvises were dissected of all overlying soft tissue, with the exception of the hip joint
Prosthetic joint infection (PJI) is a complex disease that causes significant damage to the peri-implant tissue. Developing an animal model that is clinically relevant in depicting this disease process is an important step towards developing novel successful therapies. In this study, we have performed a thorough histologic analysis of peri-implant tissue harvested post Staphylococcus aureus (S. aureus) infection of a cemented 3D-printed titanium hip implant in rats. Sprague-Dawley rats underwent left hip cemented 3D-printed titanium hemiarthroplasty via posterior approach under general anesthesia. Four surgeries were performed for the control group and another four for the infected group. The hip joint was inoculated with 5×10. 9. CFU/mL of S. aureus Xen36 prior to
Abstract. Objectives. To determine the effectiveness of LIA compared to ACB in providing pain relief and reducing opiates usage in hamstring graft ACL reconstructions. Materials and Methods. In a consecutive series of hamstring graft ACL reconstructions, patients received three different regional and/or anaesthetic techniques for pain relief. Three groups were studied: group 1: general anaesthetic (GA)+ ACB (n=38); group 2: GA + ACB + LIA (n=31) and group 3: GA+LIA (n=36). ACB was given under ultrasound guidance. LIA involved infiltration at skin incision site,
The diagnosis of infection following shoulder arthroplasty is notoriously difficult. The prevalence of prosthetic shoulder infection after arthroplasty ranges from 3.9 – 15.4% and the most common infective organism is Cutibacterium acnes. Current preoperative diagnostic tests fail to provide a reliable means of diagnosis including WBC, ESR, CRP and joint aspiration. Fluoroscopic-guided percutaneous synovial biopsy (PSB) has previously been reported in the context of a pilot study and demonstrated promising results. The purpose of this study was to determine the diagnostic accuracy of percutaneous synovial biopsy compared with open culture results (gold standard). This was a multicenter prospective cohort study involving four sites and 98 patients who underwent revision shoulder arthroplasty. The cohort was 60% female with a mean age was 65 years (range 36-83 years). Enrollment occurred between June 2014 and November 2021. Pre-operative fluoroscopy-guided synovial biopsies were carried out by musculoskeletal radiologists prior to revision surgery. A minimum of five synovial capsular tissue biopsies were obtained from five separate regions in the shoulder. Revision shoulder arthroplasty was performed by fellowship-trained shoulder surgeons. Intraoperative tissue samples were taken from five regions of the joint
Femoroacetabular impingement (FAI) – enlarged, aspherical femoral head deformity (cam-type) or retroversion/overcoverage of the acetabulum (pincer-type) – is a leading cause for early hip osteoarthritis. Although anteverting/reverse periacetabular osteotomy (PAO) to address FAI aims to preserve the native hip and restore joint function, it is still unclear how it affects joint mobility and stability. This in vitro cadaveric study examined the effects of surgical anteverting PAO on range of motion and capsular mechanics in hips with acetabular retroversion. Twelve cadaveric hips (n = 12, m:f = 9:3; age = 41 ± 9 years; BMI = 23 ± 4 kg/m2) were included in this study. Each hip was CT imaged and indicated acetabular retroversion (i.e., crossover sign, posterior wall sign, ischial wall sign, retroversion index > 20%, axial plane acetabular version < 15°); and showed no other abnormalities on CT data. Each hip was denuded to the bone-and-capsule and mounted onto a 6-DOF robot tester (TX90, Stäubli), equipped with a universal force-torque sensor (Omega85, ATI). The robot positioned each hip in five sagittal angles: Extension, Neutral 0°, Flexion 30°, Flexion 60°, Flexion 90°; and performed hip internal-external rotations and abduction-adduction motions to 5 Nm in each position. After the intact stage was tested, each hip underwent an anteverting PAO, anteverting the acetabulum and securing the fragment with long bone screws. The capsular ligaments were preserved during the surgery and each hip was retested postoperatively in the robot. Postoperative CT imaging confirmed that the acetabular fragment was properly positioned with adequate version and head coverage. Paired sample t-tests compared the differences in range of motion before and after PAO (CI = 95%; SPSS v.24, IBM). Preoperatively, the intact hips with acetabular retroversion demonstrated constrained internal-external rotations and abduction-adduction motions. The PAO reoriented the acetabular fragment and medialized the hip joint centre, which tightened the iliofemoral ligament and slackenend the pubofemoral ligament. Postoperatively, internal rotation increased in the deep hip flexion positions of Flexion 60° (∆IR = +7°, p = 0.001) and Flexion 90° (∆IR = +8°, p = 0.001); while also demonstrating marginal decreases in external rotation in all positions. In addition, adduction increased in the deep flexion positions of Flexion 60° (∆ADD = +11°, p = 0.002) and Flexion 90° (∆ADD = +12°, p = 0.001); but also showed marginal increases in abduction in all positions. The anteverting PAO restored anterosuperior acetabular clearance and increased internal rotation (28–33%) and adduction motions (29–31%) in deep hip flexion. Restricted movements and positive impingement tests typically experienced in these positions with acetabular retroversion are associated with clinical symptoms of FAI (i.e., FADIR). However, PAO altered capsular tensions by further tightening the anterolateral hip
Background. The hip joint capsular ligaments passively restrain extreme range of motion (ROM), protecting the native hip against impingement, subluxation, edge loading and dislocation. This passive protection against instability would be beneficial following total hip arthroplasty (THA), however the reduced femoral head diameter postoperatively may prevent a wrapping mechanism that is essential to capsular ligament function in the native hip. Therefore we hypothesized that, post-THA, the reduced femoral head size would prevent the capsular ligaments protective biomechanical function. Methods. In vitro, THA was performed through the acetabular medial wall preserving the entire
Hip impingement causes clinical problems for both the native hip, where labral or chondral damage can cause severe pain, and in the replaced hip, where subluxation can cause squeaking/metallosis through edge loading, or can cause dislocation. There is much research into bony/prosthetic hard impingements showing that anatomical variation/component mal-positioning can increase the risk of impingement. However, there is a lack of basic science describing the role of the hip
While hip arthroscopy utilization continues to increase, capsular management remains a controversial topic. Therefore the purpose of this research was to investigate the biomechanical effect of capsulotomy and capsular repair techniques on hip joint kinematics in varying combinations of sagittal and coronal joint positions. Eight fresh-frozen hemipelvises (4 left, 6 male) were dissected of all overlying soft tissue, with the exception of the hip joint
Glenoid exposure is the name of the game in total shoulder arthroplasty. I can honestly say that it took me more than 5 years but less than 10 to feel confident exposing any glenoid, regardless of the degree of bone deformity and the severity of soft-tissue contracture. This lecture represents the synthesis of my experience exposing some of the most difficult glenoids. The basic principles are performing extensive soft-tissue release, minimizing the anteroposterior dimension of the humerus by osteophyte excision, making an accurate humeral neck cut, having a plethora of glenoid retractors, and knowing where to place them. The ten tips, in reverse order of importance are: 10.) Tilt the table away from operative side—this helps face the surface of the glenoid, especially in cases of posterior wear, toward the surgeon. 9.) Have multiple glenoid retractors—these include a large Darrach, a reverse double-pronged Bankart, one or two blunt Homans, small and large Fukudas. 8.) Remove all humeral osteophytes before attempting to retract the humerus posteriorly to expose the glenoid—this helps to decrease the overall anteroposterior dimension of the humerus and allows for maximum posterior displacement of the humerus. 7.) Make an accurate humeral neck cut—even 5mm of extra humeral bone will make glenoid exposure difficult. 6.) Optimal humeral position—it has been taught that abduction, external rotation, and extension is the optimal position. It may vary with each case. Therefore, experiment with humeral rotation to find the position that allows maximum visualization. This is often the position that makes the cut surface of the humerus parallel to the surface of the glenoid. 5.) Optimal retractor placement—my typical retractor placement is a Fukuda on the posterior lip of the glenoid, a reverse double-pronged Bankart on the anterior neck of the scapula, and a blunt Homan posterosuperiorly. Occasionally, a second blunt Homan anteroinferiorly is helpful, particularly in muscular males with a large pectoralis major. 4.) Laminar spreader for lateral humeral displacement—this can be helpful for posterior capsulorrhaphy or for posterior glenoid bone grafting. 3.) Maximal humeral capsular release—the release of the anterior
Periprosthetic joint infection (PJI) is one of the most feared complications following total knee arthroplasty (TKA). Despite improved peri-operative antibiotic management and local antibiotic-loaded bone cement PJI is reported in about 0.5–1.9 % of primary knee replacement. In case of revision knee arthroplasty the infection rate even occurs at about 8–10 %. Depending on an acute or late PJI several surgical methods are used to treat the infection. However, suffering of a late PJI, the only surgical procedure remains the exchange of the TKA in combination with a radical debridement and removal of all foreign material. In order to achieve complete debridement of the joint, the soft tissue must be radically excised. Frequently, the debridement of the posterior
Lunate or perilunate dislocations are common carpal injuries. Current treatment of these injuries by repair or reconstruction of intra-carpal ligaments is largely based on Mayfield's description of sequential failure of these ligaments. We do treat significant number of these injuries. We have observed that dorsal wrist
When dealing with a flexion contracture, a surgeon first should consider all potential causes, specifically ligament contracture and osteophytes. Then consider the size of the femoral component and its position proximal to distal and also the posterior slope of the tibial component. Most knee flexion contractures are caused by osteophytes and tight ligaments, and once these problems are corrected, no further work needs to be done on the knee. So when the bone surface cuts are made, in general, little compensation is done in terms of positioning the femoral component proximal or distal, or in terms of sloping the tibial component (beyond the normal 3–4 degrees posterior slope), before the ligaments or osteophytes are managed. If the deep medial collateral ligament (MCL) and posterior portion of the superficial MCL are tight, a flexion contracture will almost always be present after the bone surfaces are finished. Once this is corrected with proper ligament releases and removal of osteophytes, then ligament balance and flexion contracture should be reassessed. In the very few cases that still have a flexion contracture, posterior
INTRODUCTION. Interest in tissue-preserving or minimally invasive total hip arthroplasty (THA) is increasing with focus toward decreased hospital stay, enhanced rehabilitation, and quicker recovery for patients. Two tissue-preserving techniques, the anterior and superior approaches to THA, have excellent clinical results, but little is known about their relative impact on soft tissue. The purpose of this study was to evaluate the type and extent of tissue damage after THA with each approach, focusing on abductors, short external rotators, and the hip
The Superior Hip Approach allows for safe reconstruction of the hip while maximizing preservation of the surrounding soft tissues. The procedure involves an incision in the hip joint