Advertisement for orthosearch.org.uk
Results 1 - 9 of 9
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_5 | Pages 38 - 38
1 Apr 2022
Gangadharan S Giles S Fernandes J
Full Access

Introduction. Fibula contributes to weight bearing and serves as a lateral buttress to the talus. Fibular shortening leads to ankle valgus, distal tibial epiphyseal wedging and ankle instability. Trauma, infection and skeletal dyplasias are the common causes of fibular shortening in children. Aim was to review this cohort who underwent fibular lengthening and ankle reconstruction. Materials and Methods. Retrospective review from a prospective database of clinical and radiographic data of all children who underwent fibular lengthening for correction of ankle valgus. Distraction osteogenesis with external fixator was performed for all cases. Results. Eight children with 10 fibulae (average age: 10 years) were followed up for an average of 75.6 months. In older children, corrective tibial osteotomy was performed in addition to fibular lengthening. TSF frame mounted with mini-rail fixator was used in seven children who required adjuvant tibial correction and mini-rail was used for bilateral fibular lengthening in one. Remodelling of the wedged distal tibial epiphysis was noted in 75%. Talar tilt and mLDTA improved in 66.7% and fibular station in 85.7% limbs. Seven year old girl required re-lengthening. Two children developed fibular non-union. Proximal fibular migration was observed in one child, in whom the tibial wire did not engage the fibula. Conclusions. Restoration of tibial mechanical axis and lateral talar buttress is necessary to correct ankle valgus. Stabilisation of fibula to the tibia is prudent during distraction. Younger children may require re-lengthening. Remodelling of the triangular tibial epiphysis can be achieved when done early


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_1 | Pages 161 - 161
1 Jan 2013
Purushothaman B Rankin K Bansal P Murty A
Full Access

Aim. To review the results of patients who underwent fixation of complex proximal femur fractures using the Proximal Femur Locking Plates (PFP) and analyse causes of failure of PFP. Methods. Retrospective review of radiographs and case notes of PFP fixations in two hospitals between February 2008 and June 2011. Primary outcome was union at six months. Secondary outcome included post-operative complications, and need for further surgical intervention. Results. There were a total of 32 patients who underwent 34 operations. Two patient had fracture of both the proximal femur requiring bilateral PFP fixation. Mean age of the patients was 68.4 years (range 17–96 years). There were twelve males and twenty female patients. 26 (81%) of the operations were done as primary surgery for fixation of the complex proximal femur fractures. According to the AO/OTA fracture classification, there were four cases of 31-A2.2, seven cases of 31-A2.3, two cases of 31-A3.1 one case each of 31-A3.2 and 32-B1.1 and ten cases of 31 A3.3 fractures. At least six months of follow up was achieved for 30 cases. Union was achieved in 20 fixations (62%) primarily; two more cases needed bone grafting at three months which went on to union improving the total union rate to 70% at 6 months. There was failure of fixation in eight cases requiring further surgery. Varus fixation, loss of posteromedial buttress and loss of protected weight bearing were associated with fixation failure. Conclusion. Contrary to the reported literature, (1) our results are better. Analysis of the failure cases emphasises the importance of postero medial buttress restoration, avoidance of varus fixation, and protection of weight bearing till fracture unites to achieve good outcome


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 62 - 62
1 Jan 2016
Burns S Soler JA Cuffolo G Sharma A Kalairajah Y
Full Access

Introduction. Acetabular revision for cavitary defects in failed total hip replacement remains a challenge for the orthopaedic surgeon. Bone graft with cemented or uncemented revision is the primary solution; however, there are cases where structural defects are too large. Cup cage constructs have been successful in treating these defects but they do have their problems with early loosening and metalwork failure. Recently, highly porous cups that incorporate metal augments have been developed to achieve greater intra-operative stability showing encouraging results. Methods. Retrospective analysis of twenty-six consecutive acetabular revisions with Trabecular Titanium cups. Inclusion criteria included aseptic cases, adult patients, end-stage disease with signs of loosening, no trauma nor peri-prosthetic fractures. Data was obtained for patient demographics, Paprosky classification, use of bone graft, use of acetabular augment, and Moore index of osseointegration. Results. Twenty-six subjects were included in the study. Four patients were lost to follow up due to death. The average age was 73 (range 50–91) with 16 females and 10 males. The Paprosky classification was as follows: type I=7 (26.9%), type IIa=7 (26.9%), type IIb=4 (15.4%), type IIc=2 (7.7%), type IIIa=6 (23%). The Moore index at 6 months was as follows: type I=2 (7.7%), type II=4 (15.4%), type III=8 (30.1%), type IV= 6 (23%), type V=3 (11.5%), no data =3 (11.5). At 12 months: type I=0, type II=2 (7.7%), type III=5 (19.2%), type IV=7 (26.9%), type V=4 (15.4%), no data = 8 (4 no radiographs and 4 deceased). Augments were used in 8 patients. All cups implanted had supplemented screw fixation. Discussion. Revision acetabular surgery for aseptic loosening remains a challenge, particularly with cavitary defects. Success of surgery depends on solid fixation at the time of implantation and good, rapid osseointegration. With cavitary defects, stability of the implant becomes an issue, needing implants capable of filling the defects, with good porosity and enough surface roughness to achieve early stability. We found the Trabecular Titanium cup to have very high porosity and surface roughness allowing very good and stable fixation. The use of augments did not affect the initial stability of the implant. The Moore index of osseointegration reliably detects bony ingrowth of the cup of radiographic analysis by assessing (1) absence of radiolucent lines; (2) presence of a superolateral buttress; (3) medial stress-shielding; (4) radial trabeculae; and (5) an inferomedial buttress. Each sign had a high PPV for the presence of bone ingrowth. Ninety-seven percent of cups with three to five signs were ingrown, whereas 83% of cups with one or no signs were unstable. With three or more signs present, the PPV was 96.9%, the sensitivity was 89.6%, and specificity was 76.9%. In our study, 61.5% of patients had 3 signs or more and 69.2% of patients had 2 signs or more at 12 months. Conclusion. The Trabecular Titanium. TM. cup demonstrates good initial stability at implantation, and at twelve-months excellent osseointegration. These results are comparable to published results for similar trabecular cup designs. Further long-term studies are welcome and we continue to monitor this group of patients


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 22 - 22
1 Apr 2019
Massari L Bistolfi A Grillo PP Causero A
Full Access

Introduction. Trabecular Titanium is a biomaterial characterized by a regular three-dimensional hexagonal cell structure imitating trabecular bone morphology. Components are built via Electron Beam Melting technology in aone- step additive manufacturing process. This biomaterial combines the proven mechanical properties of Titanium with the elastic modulus provided by its cellular solid structure (Regis 2015 MRS Bulletin). Several in vitro studies reported promising outcomes on its osteoinductive and osteoconductive properties: Trabecular Titanium showed to significantly affect osteoblast attachment and proliferation while inhibiting osteoclastogenesis (Gastaldi 2010 J Biomed Mater Res A, Sollazzo 2011 ISRN Mater Sci); human adipose stem cells were able to adhere, proliferate and differentiate into an osteoblast-like phenotype in absence of osteogenic factors (Benazzo 2014 J Biomed Mater Res A). Furthermore, in vivo histological and histomorphometric analysis in a sheep model indicated that it provided bone in-growth in cancellous (+68%) and cortical bone (+87%) (Devine 2012 JBJS). A multicentre prospective study was performed to assess mid-term outcomes of acetabular cups in Trabecular Titanium after Total Hip Arthroplasty (THA). Methods. 89 patients (91 hips) underwent primary cementless THA. There were 46 (52%) men and 43 (48%) women, with a median (IQR) age and BMI of 67 (57–70) years and 26 (24–29) kg/m2, respectively. Diagnosis was mostly primary osteoarthritis in 80 (88%) cases. Radiographic and clinical evaluations (Harris Hip Score [HHS], SF-36) were performed preoperatively and at 7 days, 3, 6, 12, 24 and 60 months. Bone Mineral Density (BMD) was determined by dual-emission X-ray absorptiometry (DEXA) according to DeLee &Charnley 3 Regions of Interest (ROI) postoperatively at the same time-points using as baseline the measureat 1 week. Statistical analysis was carried out using Wilcoxon test. Results. Median (IQR) HHS and SF-36 improved significantly from 48 (39–61) and 49 (37–62) preoperatively to 99 (96–100) and 76 (60–85) at 60 mo. (p≤0.0001). Radiographic analysis showed evident signs of bone remodelling and biological fixation, with presence of superolateral and inferomedial bone buttress, and radial trabeculae in ROI I/II. All cups resulted radiographically stable without any radiolucent lines. The macro-porous structure of this biomaterial generates a high coefficient of friction (Marin 2012 Hip Int), promoting a firm mechanical interlocking at the implant-bone interface which could be already observed in the operating room. BMD initially declined from baseline at 7 days to 6 months. Then, BMD slightly increased or stabilized in all ROIs up to 24 months, while showing evidence of partial decline over time with increasing patient' age at 60 months, although without any clinical significance in terms of patients health status or implant stability. Statistical significant correlations in terms of bone remodeling were observed between groups of patients on the basis of gender and age (p≤0.05). No revision or implant failure was reported. Conclusions. All patients reported significant improvements in quality of life, pain relief and functional recovery. Radiographic evaluation confirmed good implant stability at 60 months. These outcomes corroborate the evidence reported on these cups by orthopaedic registries and literature (Perticarini 2015 BMC Musculoskelet Disord; Bistolfi 2014 Min Ortop)


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 101 - 101
1 Nov 2016
Gehrke T
Full Access

Revision of total hip arthroplasty (THA) is being performed with increasing frequency. However, outcomes of repeated revisions have been rarely reported in the literature, especially for severe defects. Cup revision can be a highly complex operation depending on the bone defect. In acetabular defects like Paprosky types 1 and 2 porous cementless cups fixed with screws give good results. Modern trabecular metal designs improve these good results. Allografts are useful for filling cavitary defects. In acetabular defects Paprosky types 3A and 3B, especially the use of trabecular metal cups, wedges, buttresses and cup-cage systems can produce good results. Difficult cases in combination with pelvic discontinuity require reconstruction of the acetabulum with acetabular plates or large cup-cages to solve these difficult problems. However, there is still no consensus regarding the best option for reconstructing hips with bone loss. Although the introduction of ultraporous metals has significantly increased the surgeon's ability to reconstruct severely compromised hips, there remain some that cannot be managed readily using cups, augments, or cages. In such situations custom acetabular components may be required. Individual implants represent yet another tool for the reconstructive surgeon. These devices can be helpful in situations of catastrophic bone loss. Ensuring long-term outcome, mechanical stability has a greater impact than restoring an ideal center of rotation. However, despite our consecutive case series there are no mid- to long-term results available so far. Re-revision for failed revision THA acetabular components is a technically very challenging condition


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_10 | Pages 2 - 2
1 Jul 2014
Hughes A Soden P Abdulkarim A McMahon C Hurson C
Full Access

Revision hip arthroplasty requires a comprehensive appreciation of abnormal bony anatomy. Advances in radiology and manufacturing technology have made three-dimensional representation of actual osseous anatomy obtainable. These models provide a visual and tactile reproduction of the bony abnormality in question. Life size three dimensional models were manufactured from CT scans of two patients. The first had multiple previous hip arthroplasties and bilateral hip infections. There was a pelvic discontinuity on the right and a severe postero-superior deficiency on the left. The second patient had a first stage revision for infection and recurrent dislocations. Specific metal reduction protocols were used to reduce artefact. The dicom images were imported into Mimics, medical imaging processing software. The models were manufactured using the rapid prototyping process, Selective Laser Sintering (SLS). The models allowed accurate templating using the actual prosthesis templates prior to surgery. Acetabular cup size, augment and buttress sizes, as well as cage dimensions were selected, adjusted and re-sterilised in advance. This reduced operative time, blood loss and improved surgical decision making. Screw trajectory simulation was also carried out on the models, thus reducing the chance of neurovascular injury. With 3D printing technology, complex pelvic deformities can be better evaluated and can be treated with improved precision. The life size models allow accurate surgical simulation, thus improving anatomical appreciation and pre-operative planning. The accuracy and cost-effectiveness of the technique were impressive and its use should prove invaluable as a tool to aid clinical practice


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 76 - 76
1 Sep 2012
Lidder S Heidari N Grechenig W Clements H Tesch N Weinberg A
Full Access

Introduction. Posterolateral tibial plateau fractures account for 7 % of all proximal tibial fractures. Their fixation often requires posterolateral buttress plating. Approaches for the posterolateral corner are not extensile beyond the perforation of the anterior tibial artery through the interosseous membrane. This study aims to provide accurate data about the inferior limit of dissection by providing measurements of the anterior tibial artery from the lateral joint line as it pierces the interosseous membrane. Materials and Methods. Forty unpaired adult lower limbs cadavers were used. The posterolateral approach to the proximal tibia was performed as described by Frosch et al. Perpendicular measurements were made from the posterior limit of the articular surface of the lateral tibial plateau and fibula head to the perforation of the anterior tibial artery through the interosseous membrane. Results. The anterior tibial artery coursed through the interosseous membrane at 46.3 +/− 9.0 mm (range 27–62 mm) distal to the lateral tibial plateau and 35.7 +/− 9.0 mm (range 17–50 mm) distal to the fibula head. There was no significant difference between right or left sided knees. Discussion. This cadaveric study demonstrates the safe zone (min 27 mm, mean 45mm) up to which distal exposure can be performed for fracture manipulation and safe application of a buttress plate for displaced posterorlateral tibial plateau fractures. Evidence demonstrates quality of reduction correlates with clinical outcome and the surgeon can expect to be able to use a small fragment buttress plate of up to 45mm as this is the mean


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_1 | Pages 155 - 155
1 Jan 2013
Berber R Lewis C Forward D Moran C
Full Access

Hypothesis. This study demonstrates the utility of a modified postero-medial surgical approach to the knee in treating a series of patients with complex tibial plateau injuries with associated postero-medial shear fractures. Postero-medial shear fractures are under-appreciated and their clinical relevance have recently been characterised. Less invasive surgery and indirect reduction techniques are inadequate for treating these postero-medial coronal plane fractures. Methods. The approach includes an inverted ‘L’ shaped incision and reflection of the medial head of gastrocnemius, while protecting the neurovascular structures. This is a more extensile exposure than described by Trickey (1968). Our case series includes 8 females and 8 males. The average age is 53.1 years. The mechanism of injury included 7 RTAs, 5 fall from height, 1 industrial accident and 3 valgus injuries. All patients' schatzker grade 4, or above, fractures with a posteromedial split depression. Two were open, two had vascular compromise and one had neurological injury. Results. Average time to surgery was 6.4 days (range 0–12), operative time 142 mins (range 76–300), and length of stay 17.3 days (range 7–46). 11 patients were treated using the posrtero-medial approach alone and 5 were combined with an anterior approach. 2 patients suffered reduced range of movement requiring manipulation and physiotherapy, and 3 patients had a 5 degree fixed flexion deformity. 2 patients developed superficial wound infections treated with antibiotics alone. Anatomical reduction and fracture union was achieved in 13 patients; of the remaining 3 patients, 2 had unavoidable articular surface comminution, and 1 suffered antero-medial collapse and varus deformity. Conclusions. These are complex fractures to treat and this posterior surgical approach allows direct reduction and optimal positioning of plates to act as buttress devices. It can be extended across the midline to the postero-lateral corner and also allows excellent exposure of the popliteal vessels should concurrent vascular repair be required


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 416 - 416
1 Dec 2013
Massari L Causero A Rossi P Grillo PP Bistolfi A Gigliofiorito G Pari C Francescotto A Tosco P Deledda D Carli G Burelli S
Full Access

Introduction. Trabecular Titanium™ is a highly porous biomaterial with a regular hexagonal cell structure, which has shown excellent mechanical properties. Several in vitro studies reported promising data on its osteoinductive and osteoconductive properties. Furthermore, it has demonstrated in vivo to enhance bone in-growth. Aim of this multicentre prospective study was to assess Trabecular Titanium™ osseointegration by measuring change in bone mineral density (BMD) around a cementless DELTA-TT cup with dual-emission X-ray absorptiometry (DXA). Methods. 89 patients (91 hips) underwent primary THA with DELTA-TT cups (Lima Corporate) between 2009 and 2010. There were 46 (52%) men and 43 (48%) women, with a median (IQR) age of 67 (57–70) years and a median (IQR) BMI of 26 (24–29) kg/m. 2. Right side and left side were affected in 44 (48%) and 47 (52%) cases, respectively. Underlying pathology was primary osteoarthritis in 80 (88%) cases, osteonecrosis in 5 (6%), post-traumatic osteoarthritis in 3 (3%), developmental dysplasia of the hip in 2 (2%) and oligoarthritis in 1 (1%). BMD was determined by DXA using DeLee and Charnley 3 Regions of Interest (ROI) at 7 days, 3, 6, 12 and 24 months. Clinical evaluation (Harris Hip Score, HHS), patient health status survey (SF-36) and radiographic assessment were performed preoperatively and at the same time-points. Data were analyzed using non-parametric tests (Mann-Whitney, Wilcoxon signed-rank) and a p < 0.05 as threshold for statistical significance. Results. Excellent results were observed in terms of pain relief and functional recovery. Median (IQR) HHS improved from 48 (39–62) before surgery, to 99 (96–100) at 24 months, with a statistical significant increase of 96% (p < 0.05, Wilcoxon signed-rank). Median (IQR) SF-36 improved from 49 (37–62) preoperatively to 86 (79–92) at 24 months, with a statistical significant increase of 95% (p < 0.05, Wilcoxon signed-rank), indicating a considerable improvement in patients' quality of life. After an initial decrease of BMD values from baseline at 7 days (median [IQR] ROI I: 1.44 [1.21–1.67]; ROI II: 1.23 [0.99–1.49]; ROI III: 1.11 [0.85–1.48] g/cm. 2. ) to 6 months (ROI I: 1.27 [1.08–1.52]; ROI II: 1.14 [0.89–1.37]; ROI III: 1.05 [0.73–1.35] g/cm. 2. ), BMD slightly increased in ROI I, the most loaded area, and stabilized in ROI III. BMD in ROI II increased after 12 months and stabilized at 24 months (ROI I: 1.30 [1.11–1.55]; ROI II: 1.12 [0.96–1.36]; ROI III: 1.04 [0.80–1.25] g/cm. 2. ). Radiographic analysis showed evident signs of bone remodeling and osseointegration, with presence of supero-lateral and infero-medial bone buttress and of radial trabeculae perpendicular to the cup surface in ROI I/II. No radiolucent lines, loosening or osteolysis were observed. All cups were stable and no revision was carried out. Conclusion. BMD patterns and radiographic evaluation showed signs of an effective osseointegration around DELTA-TT cups at 24 months. Although clinical outcomes, functional recovery and stability are very satisfactory, longer follow-ups are necessary to assess survivorship