Advertisement for orthosearch.org.uk
Results 1 - 20 of 73
Results per page:
The Bone & Joint Journal
Vol. 105-B, Issue 12 | Pages 1327 - 1332
1 Dec 2023
Morris WZ Kak A Mayfield LM Kang MS Jo C Kim HKW

Aims

Abduction bracing is commonly used to treat developmental dysplasia of the hip (DDH) following closed reduction and spica casting, with little evidence to support or refute this practice. The purpose of this study was to determine the efficacy of abduction bracing after closed reduction in improving acetabular index (AI) and reducing secondary surgery for residual hip dysplasia.

Methods

We performed a retrospective review of patients treated with closed reduction for DDH at a single tertiary referral centre. Demographic data were obtained including severity of dislocation based on the International Hip Dysplasia Institute (IHDI) classification, age at reduction, and casting duration. Patients were prescribed no abduction bracing, part-time, or full-time wear post-reduction and casting. AI measurements were obtained immediately upon cast removal and from two- and four-year follow-up radiographs.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 54 - 54
1 Dec 2022
Pereira Duarte M Joncas J Parent S Duval M Chemaly O Brassard F Mac-Thiong J Barchi S Labelle H
Full Access

There is a significant positive association between hours of brace wear and rate of success in the treatment of Adolescent Idiopathic Scoliosis (AIS). The abandon rate reported in the literature averages 18%. In a recent randomized trial conducted at our center; the abandon rate was 4%. We aim to document the abandon rate towards brace treatment during the COVID-19 pandemic and its impact on AIS progression. We reviewed a database of AIS patients recruited between March and September 2020. Inclusion criteria were patients with AIS under brace treatment according to SRS criteria. The patients were divided in 2 cohorts: those with a self-reported good adherence to treatment and those who voluntarily abandoned treatment during follow-up. Patients with irregular adherence were excluded. Data analysis included age, gender, Risser stage, type of brace, Cobb angles at first visit and last follow-up (mean 11 months) and % of progression. Unpaired student tests were used for comparison. 154 patients met inclusion criteria. 20 patients were excluded due to irregular adherence. 89 patients (age: 12.1 y.o. ±1.4) reported good adherence to treatment, while 45 patients (age: 12.6 y.o. ±1.5) abandoned treatment, an abandon rate of 29%. The cohort of compliant patients started treatment with a mean main thoracic (MT) curve of 26° and finished with 27°. The mean difference between measurements was +0.65°±7.5; mean progression rate was −4.6%. However, patients who abandoned treatment started with a mean MT curve of 28° and finished with 33°, with a mean increase of +5°±8 and a mean progression rate of −11%. The differences between the 2 cohorts were statistically significant (p=0.002). Five (5) patients from the abandon group were offered for surgery because of curve progression. The abandon rate of brace treatment in AIS significantly increased during the first wave of COVID-19 pandemic. Patients who voluntarily discontinued treatment had significant increases in curve progression and surgical indication rates


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 11 - 11
1 Dec 2022
Upasani V Bomar J Fitzgerald R Schupper A Kelley S
Full Access

The Pavlik harness (PH) is commonly used to treat infantile dislocated hips. Variability exists in the duration of brace treatment after successful reduction of the dislocated hip. In this study we evaluate the effect of prescribed time in brace on acetabular index (AI) at two years of age using a prospective, international, multicenter database. We retrospectively studied prospectively enrolled infants with at least one dislocated hip that were initially treated with a PH and had a recorded AI at two-year follow-up. Subjects were treated at one of two institutions. Institution 1 used the PH until they observed normal radiographic acetabular development. Institution 2 followed a structured 12-week brace treatment protocol. Hip dislocation was defined as less than 30% femoral head coverage at rest on the pre-treatment ultrasound or IHDI grade III or IV on the pre-treatment radiograph. Fifty-three hips met our inclusion criteria. Hips from Institution 1 were treated with a brace 3x longer than hips from institution 2 (adjusted mean 8.9±1.3 months vs 2.6±0.2 months)(p < 0 .001). Institution 1 had an 88% success rate and institution 2 had an 85% success rate at achieving hip reduction (p=0.735). At 2-year follow-up, we observed no significant difference in AI between Institution 1 (adjusted mean 25.6±0.9˚) compared to Institution 2 (adjusted mean 23.5±0.8˚) (p=0.1). However, 19% of patients from Institution 1 and 44% of patients from Institution 2 were at or below the 50th percentile of previously published age- and sex- matched AI normal data (p=0.049). Also, 27% (7/26) of hips from Institution 1 had significant acetabular dysplasia, compared to a 22% (6/27) from Institution 2 (p=0.691). We found no correlation between age at initiation of bracing and AI at 2-year follow-up (p=0.071). Our findings suggest that prolonged brace treatment does not result in improved acetabular index at age two years. Hips treated at Institution 1 had the same AI at age two years as hips treated at Institution 2, while spending about 1/3 the amount of time in a brace. We recommend close follow-up for all children treated for dislocated hips, as ~1/4 of infants had acetabular index measurements at or above the 90th percentile of normal. Continued follow-up of this prospective cohort will be critical to determine how many children require acetabular procedures during childhood. The PH brace can successfully treat dislocated infant hips, however, prolonged brace treatment was not found to result in improved acetabular development at two-year follow-up


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXI | Pages 28 - 28
1 Jul 2012
Yrjönen T Österman H Laine T Lund T Kinnunen R Schlenzka D
Full Access

Background. Improvement of Scheuermann's thoracic kyphosis in the growing spine with Milwaukee brace treatment has been reported. However, the role of brace treatment in Mb. Scheuermann is controversial. We report results of brace treatment by low profile scoliosis module with sternal shield. Indication. Thoracic kyphosis >55° or back pain and kyphosis >50°. Material. 21 consecutive patients (17 boys, 4 girls) referred to the Orton Orthopaedic Hospital between 2000-2007. One boy interrupted treatment and the follow-up of two boys was carried out at another hospital. The data of 18 patients are reported. Results. The mean age of patients at the beginning of treatment was 14 years (11-17) and the average thoracic kyphosis was 71° (50-94). On extension radiographs, the kyphosis decreased to 43°(16-66) with a mean correction of 38%. The average time of brace treatment was 2,5 (1-7) years. The final follow- up visit was at the age of 19 (15-21) years. At the final follow-up, the mean thoracic kyphosis was 59° (30-78). Permanent correction of thoracic kyphosis was achieved in 15 patients (83%) with a mean correction of 15 degrees. In two patients no correction was achieved and in one patient the kyphosis increased 9°. No patient required operative treatment. Discussion and conclusion. The efficiency of brace treatment is difficult to prove because natural history of Scheuermann's kyphosis is not fully known. Our material is too small for any final conclusions. However, treatment of the growing spine with modified low profile brace seem to decrease progression of kyphosis in most cases and operative treatment may be avoided


The Bone & Joint Journal
Vol. 106-B, Issue 7 | Pages 744 - 750
1 Jul 2024
Saeed A Bradley CS Verma Y Kelley SP

Aims. Radiological residual acetabular dysplasia (RAD) has been reported in up to 30% of children who had successful brace treatment of infant developmental dysplasia of the hip (DDH). Predicting those who will resolve and those who may need corrective surgery is important to optimize follow-up protocols. In this study we have aimed to identify the prevalence and predictors of RAD at two years and five years post-bracing. Methods. This was a single-centre, prospective longitudinal cohort study of infants with DDH managed using a published, standardized Pavlik harness protocol between January 2012 and December 2016. RAD was measured at two years’ mean follow-up using acetabular index-lateral edge (AI-L) and acetabular index-sourcil (AI-S), and at five years using AI-L, AI-S, centre-edge angle (CEA), and acetabular depth ratio (ADR). Each hip was classified based on published normative values for normal, borderline (1 to 2 standard deviations (SDs)), or dysplastic (> 2 SDs) based on sex, age, and laterality. Results. Of 202 infants who completed the protocol, 181 (90%) had two and five years’ follow-up radiographs. At two years, in 304 initially pathological hips, the prevalence of RAD (dysplastic) was 10% and RAD (borderline) was 30%. At five years, RAD (dysplastic) decreased to 1% to 3% and RAD (borderline) decreased to < 1% to 2%. On logistic regression, no variables were predictive of RAD at two years. Only AI-L at two years was predictive of RAD at five years (p < 0.001). If both hips were normal at two years’ follow-up (n = 96), all remained normal at five years. In those with bilateral borderline hips at two years (n = 21), only two were borderline at five years, none were dysplastic. In those with either borderline-dysplastic or bilateral dysplasia at two years (n = 26), three (12%) were dysplastic at five years. Conclusion. The majority of patients with RAD at two years post-brace treatment, spontaneously resolved by five years. Therefore, children with normal radiographs at two years post-brace treatment can be discharged. Targeted follow-up for those with abnormal AI-L at two years will identify the few who may benefit from surgical correction at five years’ follow-up. Cite this article: Bone Joint J 2024;106-B(7):744–750


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXI | Pages 21 - 21
1 Jul 2012
Lange J Steen H Gunderson R Brox J
Full Access

Purpose. To evaluate outcome in patients with late onset juvenile scoliosis or adolescent idiopathic scoliosis 15 years or more after Boston brace treatment. Methods. 281 of 369 patients (22 men) with late onset juvenile (n=67) or adolescent (n=214) braced at mean 24.7 (range 16-32) years previously, responded to follow-up. Patients answered a standardized questionnaire including demographics, work status, Oswestry Disability Index (ODI) (100 - worst possible), EuroQol (EQ-5D) (1 – best possible), and Scoliosis Research Society - 22 (SRS - 22) (5 - best possible), and had radiological examination. Results. The mean age at follow-up was 40.4 (31-48) years. The prebrace major curve was in average 33.2 (20–57)°. At weaning and at the last follow-up the corresponding values were 28.3 (1 -58)° and 32.5 (7–80)°, respectively. Curve progression was similar in patients with early onset juvenile and adolescent start. Those who did not attend follow-up (n=88) had lower mean curve at weaning: 25.4 (6-53)°. Twenty-six patients had surgery. Sixty-eight percent had an increase < 6° from prebrace major curve. Work status was: full time 75%, part-time 10%, sick-leave 2%, disability pension 9%, student 4%. 87% had delivered a baby, 51% had pain in pregnancy. The mean (SD) ODI was 8.4 (11.0), EQ-5D 0.82 (0.2), SRS-22: pain 4.1 (0.8), mental health 4.1 (0.6), self-image 3.7 (0.7), function 4.0 (0.6), satisfaction with treatment 3.7 (1.0). Patients who had surgery reported significantly worse scores except for satisfaction. Conclusion. Long-term results were satisfactory in most braced patients


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 585 - 585
1 Nov 2011
Hill DL Parent EC Lou E Moreau MJ Mahood JK Hedden DM
Full Access

Purpose: Rigid full-time braces are the most common non-surgical treatment for adolescents with moderate severity of scoliosis and demonstrated growth remaining. The Scoliosis Research Society (SRS) has established guidelines on which patients with adolescent idiopathic scoliosis (AIS) should be offered brace treatment. This study surveyed Canadian surgeons on the demographics of patients with scoliosis attending specialty clinics and for their protocols for prescribing braces. Method: An on-line survey of 41 questions was developed to document patient profiles and surgeon protocols for prescribing braces. Surgeons also selected whether they would recommend a brace in females with AIS based on a combination of three levels of maturity, with six levels of curve severity, and whether or not the curve was progressive. The survey was administered between July and November 2008 to the 30 paediatric spine surgeon members of the Canadian Paediatric Spinal Deformities Study Group. After one reminder, the response rate was 70% (21/30), representing 12 Canadian spine centres. Results: The average age of referral to the scoliosis clinic was 11–12 years (10 of 20 respondents) and 13–14 years (nine of 20 respondents). Most (81%) of the centers required radiographs prior to the first clinic visit. All surgeons recommended bracing, but there was broad variation on who they considered should be braced, with three to twenty six of the 36 potential scenarios defined by maturity, progression, and curve severity variables selected. This high variability was also observed among surgeons in the same spine centre. All considered parental or family issues and patient acceptance when recommending a brace. Age and curve severity were criteria for bracing; skeletal maturity was the primary criteria for discontinuing bracing. The majority (81%) of braces prescribed were rigid full-time braces followed by rigid night-time braces (14%). Weaning was common (76%), but protocols varied. Detection of curve progression increased the likelihood of bracing for curves 80% agreement on bracing. Braces were not recommended by > 50% of respondents for females with less than 1 year growth remaining regardless of progression or curve size. Conclusion: In spite of SRS guidelines and general agreement that braces are effective, there is little agreement among surgeons on which females with AIS should receive brace treatment. The likelihood that a female with AIS will be prescribed brace treatment primarily depends on surgeon brace prescription patterns, rather than actual curvature of the spine


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_III | Pages 255 - 255
1 Mar 2003
Danielsson A Nachemson A
Full Access

INTRODUCTION: A consecutive series of patients with adolescent idiopathic scoliosis (AIS), treated between 1968 and 1977 before 21 years of age, with brace (BT, n=127; 122 females and 5 males) were followed at least twenty years after completion of the treatment. Methods: One hundred and nine patients were reexamined as part of an unbiased personal follow-up, including a clinical examination, radiographs, validated questionnaires in terms of general and disease-specific quality of life aspects as well as present back and pain symptoms. An age- and sex-matched control group (CTR) of 100 persons was randomly selected and subjected to the same examinations. Results: Curve size (major curve) was mean 38 degrees with a mean increase of 8 degrees from end of treatment to present follow-up. Significantly more patients complained of back pain (77%) in comparison to the control group (58%, p=0.0012), more often lumbar or thoracic pain. Significant but numerically small differences could be found for Oswestry Disability Index and other scores reflecting general back funtion and more patients had been on sick-leave due to the back (38% vs 19%). No differences were found in sociodemographic variables or in general quality of life (SF-36) between the groups. No correlation could be found between pain and its localization and curve size, increase since end of treatment or curve type. Conclusion: Patients with brace treatment for adolescent idiopathic scoliosis were found to have approximately the same back function as the general population. A few were physically severely disabled due to the back


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 596 - 596
1 Oct 2010
Landauer F Hofstädter T Lair J
Full Access

Objective: The aim of the study is to get information about compliance as input of the patient and brace-correction as input of the technician for a successful treatment of Adolescent idiopathic scoliosis (AIS) with TLSO.

Study design: 234 patients with an idiopathic scoliosis (Cobb angle 20°–50°) were evaluated. Measurements were taken on standing radiographs (ap) before therapy, six months later and at least one year after weaning of the brace. Compliance was judged with compliance score into two groups with good and bad compliance. Also two groups with good (> 40% correction) and bad initial correction were formed.

Results: In patient with good compliance (n-188) and also good initial correction (n-136), a continuous correction of about 7°±4° Cobb angle was evident. Patient with good compliance but bad initial correction (n-45) can only expect a stop of progression. Patient with bad compliance (n-47) but good initial correction have shown progression of curvature with high variation (32°±6° to 37°±9°). Initial correction is low in cases with Cobb angle > 40° or > Risser II (n-21).

Conclusion: The result depends on the Cobb angle at the begin of therapy, brace correction and compliance. Initial correction gets worse in severe cases and cannot be compensated by compliance (Fulltime bracing).

The criteria of bracing have to be questioned: “In some cases we are to late”. In our recommendation we have to start earlier and a parttime-bracing has to be discussed in cases with Cobb angle < 30°


The Bone & Joint Journal
Vol. 105-B, Issue 2 | Pages 166 - 171
1 Feb 2023
Ragborg LC Dragsted C Ohrt-Nissen S Andersen T Gehrchen M Dahl B

Aims

Only a few studies have investigated the long-term health-related quality of life (HRQoL) in patients with an idiopathic scoliosis. The aim of this study was to investigate the overall HRQoL and employment status of patients with an idiopathic scoliosis 40 years after diagnosis, to compare it with that of the normal population, and to identify possible predictors for a better long-term HRQoL.

Methods

We reviewed the full medical records and radiological reports of patients referred to our hospital with a scoliosis of childhood between April 1972 and April 1982. Of 129 eligible patients with a juvenile or adolescent idiopathic scoliosis, 91 took part in the study (71%). They were evaluated with full-spine radiographs and HRQoL questionnaires and compared with normative data. We compared the HRQoL between observation (n = 27), bracing (n = 46), and surgical treatment (n = 18), and between thoracic and thoracolumbar/lumbar (TL/L) curves.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 477 - 477
1 Aug 2008
Hassan K
Full Access

Introduction. The aim of this study was to retrospectively evaluate the efficacy of the SpineCor bracing treatment in all forms of scoliosis, between 2000–2006.

Methods. Over the past 6 years 56 skeletally immature and 1 skeletally mature patients with progressive scoliosis have been treated with the Spine-Cor bracing system. They were divided into the following groups; infantile 3; juvenile 19; adolescent 29; adult 1; “other” 5.

Results. 20 were deemed to have achieved a correc-tion, 24 stabilised 3 worsened and the progression of 4 patients was not recorded. To date 11 patients have gone on to surgery.

Discussion. Various bracing systems utilised in the past have shown what appeared to be a lasting degree of protection for scoliosis but subsequent long term follow ups have demonstrated progression of curves. The newer SpineCor system may offer a good short term outcome.

Conclusion. Early diagnosis and rapid treatment at a young skeletal age may offer an alternative to surgery with this relatively new bracing system. A further prospective study continues at S.C.H. and will be ready to present in 2011. Far longer term follow up will be required to validate apparent successes in the short term.


The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 935 - 942
1 Aug 2023
Bradley CS Verma Y Maddock CL Wedge JH Gargan MF Kelley SP

Aims. Brace treatment is the cornerstone of managing developmental dysplasia of the hip (DDH), yet there is a lack of evidence-based treatment protocols, which results in wide variations in practice. To resolve this, we have developed a comprehensive nonoperative treatment protocol conforming to published consensus principles, with well-defined a priori criteria for inclusion and successful treatment. Methods. This was a single-centre, prospective, longitudinal cohort study of a consecutive series of infants with ultrasound-confirmed DDH who underwent a comprehensive nonoperative brace management protocol in a unified multidisciplinary clinic between January 2012 and December 2016 with five-year follow-up radiographs. The radiological outcomes were acetabular index-lateral edge (AI-L), acetabular index-sourcil (AI-S), centre-edge angle (CEA), acetabular depth ratio (ADR), International Hip Dysplasia Institute (IHDI) grade, and evidence of avascular necrosis (AVN). At five years, each hip was classified as normal (< 1 SD), borderline dysplastic (1 to 2 SDs), or dysplastic (> 2 SDs) based on validated radiological norm-referenced values. Results. Of 993 infants assessed clinically and sonographically, 21% (212 infants, 354 abnormal hips) had DDH and were included. Of these, 95% (202 infants, 335 hips) successfully completed bracing, and 5% (ten infants, 19 hips) failed bracing due to irreducible hip(s). The success rate of bracing for unilateral dislocations was 88% (45/51 infants) and for bilateral dislocations 83% (20/24 infants). The femoral nerve palsy rate was 1% (2/212 infants). At five-year follow-up (mean 63 months (SD 5.9; 49 to 83)) the prevalence of residual dysplasia after successful brace treatment was 1.6% (5/312 hips). All hips were IHDI grade I and none had AVN. Four children (4/186; 2%) subsequently underwent surgery for residual dysplasia. Conclusion. Our comprehensive protocol for nonoperative treatment of infant DDH has shown high rates of success and extremely low rates of residual dysplasia at a mean age of five years. Cite this article: Bone Joint J 2023;105-B(8):935–942


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_12 | Pages 9 - 9
1 Oct 2021
Scott-Watson M Adams S Dixon M Garcia-Martinez S Johnston M Adams C
Full Access

Success treating AIS with bracing is related to time worn and scoliosis severity. Temperature monitoring can help patients comply with their orthotic prescription. Routinely collected temperature data from the start of first brace treatment was reviewed for 14 patients. All were female with an average age of 12.4 years (range 10.3–14.6) and average 49o Cobb angle (30–64). Our current service recommendation is brace wear for 20 hours a day. Patients complied with this prescription 38.0% of the time, with four patients averaging this or more. Average brace wear was 16.3 hours per day (3.5–22.2). There were 13 patients who had completed brace treatment. The majority had surgery (7/13; 54%) or were considering surgery (1/13; 8%). There were 5 who did not wish surgery at discharge (5/13; 38%); 1 achieved a 40o Cobb angle, with 4 larger (53o;53o;54o;68o). The Bracing in AIS Trial (BrAIST) study measured “success” as less than a 50o Cobb angle, so using this metric our cohort has had a single “success”. Temperature monitors allowed an analysis of when patients were achieving their brace wear. When comparing daywear (8am-8pm) to nightwear (8pm-8am), patients wore their brace an average of 7.6 hours a day (2.5–11.2) and 8.7 hours a night (0.4–11.5). We conclude the minority of our patients comply with our current 20 hour orthotic prescription. The “success” of brace treatment is lower than comparison studies despite higher average compliance but starting with a larger scoliosis. Brace wear is achieved during both the day and night


Bone & Joint 360
Vol. 13, Issue 1 | Pages 38 - 41
1 Feb 2024

The February 2024 Children’s orthopaedics Roundup. 360. looks at: Hip impingement after in situ pinning causes decreased flexion and forced external rotation in flexion on 3D-CT; Triplane ankle fracture patterns in paediatric patients; Improved forearm rotation even after early conversion to below-elbow; Selective dorsal rhizotomy and cerebral palsy (CP) hip displacement; Abduction bracing following anterior open reduction for developmental dysplasia of the hip does not improve residual dysplasia or reduce secondary surgery; 40% risk of later total hip arthroplasty for in situ slipped capital femoral epiphysis (SCFE) pinning; Does brace treatment following closed reduction of developmental dysplasia of the hip improve acetabular coverage?; Waterproof hip spica casts for paediatric femur fractures


The Bone & Joint Journal
Vol. 106-B, Issue 3 | Pages 286 - 292
1 Mar 2024
Tang S Cheung JPY Cheung PWH

Aims. To systematically evaluate whether bracing can effectively achieve curve regression in patients with adolescent idiopathic scoliosis (AIS), and to identify any predictors of curve regression after bracing. Methods. Two independent reviewers performed a comprehensive literature search in PubMed, Ovid, Web of Science, Scopus, and Cochrane Library to obtain all published information about the effectiveness of bracing in achieving curve regression in AIS patients. Search terms included “brace treatment” or “bracing,” “idiopathic scoliosis,” and “curve regression” or “curve reduction.” Inclusion criteria were studies recruiting patients with AIS undergoing brace treatment and one of the study outcomes must be curve regression or reduction, defined as > 5° reduction in coronal Cobb angle of a major curve upon bracing completion. Exclusion criteria were studies including non-AIS patients, studies not reporting p-value or confidence interval, animal studies, case reports, case series, and systematic reviews. The GRADE approach to assessing quality of evidence was used to evaluate each publication. Results. After abstract and full-text screening, 205 out of 216 articles were excluded. The 11 included studies all reported occurrence of curve regression among AIS patients who were braced. Regression rate ranged from 16.7% to 100%. We found evidence that bracing is effective in achieving curve regression among compliant AIS patients eligible for bracing, i.e. curves of 25° to 40°. A similar effect was also found in patients with major curve sizes ranging from 40° to 60° when combined with scoliosis-specific exercises. There was also evidence showing that a low apical vertebral body height ratio, in-brace correction, smaller pre-brace Cobb angle, and daily pattern of brace-wear compliance predict curve regression after bracing. Conclusion. Bracing provides a corrective effect on scoliotic curves of AIS patients to achieve curve regression, given there is high compliance rate and the incorporation of exercises. Cite this article: Bone Joint J 2024;106-B(3):286–292


Bone & Joint 360
Vol. 13, Issue 5 | Pages 44 - 47
1 Oct 2024

The October 2024 Children’s orthopaedics Roundup. 360. looks at: Cost-effectiveness analysis of soft bandage and immediate discharge versus rigid immobilization in children with distal radius torus fractures: the FORCE trial; Percutaneous Achilles tendon tenotomy in clubfoot with a blade or a needle: a single-centre randomized controlled noninferiority trial; Treatment of hip displacement in children with cerebral palsy: a five-year comparison of proximal femoral osteotomy and combined femoral-pelvic osteotomy in 163 children; The Core outcome Clubfoot (CoCo) study: relapse, with poorer clinical and quality of life outcomes, affects 37% of idiopathic clubfoot patients; Retention versus removal of epiphyseal screws in paediatric distal tibial fractures: no significant impact on outcomes; Predicting the resolution of residual acetabular dysplasia after brace treatment in infant DDH; Low prevalence of acetabular dysplasia following treatment for neonatal hip instability: a long-term study; How best to distract the patient?


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 373 - 381
1 Feb 2021
Strube P Gunold M Müller T Leimert M Sachse A Pumberger M Putzier M Zippelius T

Aims. The aim of the present study was to answer the question whether curve morphology and location have an influence on rigid conservative treatment in patients with adolescent idiopathic scoliosis (AIS). Methods. We retrospectively analyzed AIS in 127 patients with single and double curves who had been treated with a Chêneau brace and physiotherapeutic specific exercises (B-PSE). The inclusion criteria were the presence of structural major curves ≥ 20° and < 50° (Risser stage 0 to 2) at the time when B-PSE was initiated. The patients were divided into two groups according to the outcome of treatment: failure (curve progression to ≥ 45° or surgery) and success (curve progression < 45° and no surgery). The main curve type (MCT), curve magnitude, and length (overall, above and below the apex), apical rotation, initial curve correction, flexibility, and derotation by the brace were compared between the two groups. Results. In univariate analysis treatment failure depended significantly on: 1) MCT (p = 0.008); 2) the apical rotation of the major curve before (p = 0.007) and during brace treatment (p < 0.001); 3) the initial and in-brace Cobb angles of the major (p = 0.001 and p < 0.001, respectively) and minor curves (p = 0.015 and p = 0.002); 4) major curve flexibility (p = 0.005) and the in-brace curve correction rates (major p = 0.008, minor p = 0.034); and 5) the length of the major curve (LoC) above (p < 0.001) and below (p = 0.002) the apex. Furthermore, MCT (p = 0.043, p = 0.129, and p = 0.017 in MCT comparisons), LoC (upper length p = 0.003, lower length p = 0.005), and in-brace Cobb angles (major p = 0.002, minor p = 0.027) were significant in binary logistic regression analysis. Conclusion. Curve size, location, and morphology were found to influence the outcome of rigid conservative treatment of AIS. These findings may improve future brace design and patient selection for conservative treatment. Cite this article: Bone Joint J 2021;103-B(2):373–381


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 21 - 21
1 Dec 2022
Kim D Dermott J Lebel D Howard AW
Full Access

Primary care physicians rely on radiology reports to confirm a scoliosis diagnosis and inform the need for spine specialist referral. In turn, spine specialists use these reports for triage decisions and planning of care. To be a valid predictor of disease and management, radiographic evaluation should include frontal and lateral views of the spine and a complete view of the pelvis, leading to accurate Cobb angle measurements and Risser staging. The study objectives were to determine 1) the adequacy of index images to inform treatment decisions at initial consultation by generating a score and 2) the utility of index radiology reports for appropriate triage decisions, by comparing reports to corresponding images. We conducted a retrospective chart and radiographic review including all idiopathic scoliosis patients seen for initial consultation, aged three to 18 years, between January 1-April 30, 2021. A score was generated based on the adequacy of index images to provide accurate Cobb angle measurements and determine skeletal maturity (view of full spine, coronal=two, lateral=one, pelvis=one, ribcage=one). Index images were considered inadequate if repeat imaging was necessary. Comparisons were made between index radiology report, associated imaging, and new imaging if obtained at initial consultation. Major discrepancies were defined by inter-reader difference >15°, discordant Risser staging, or inaccuracies that led to inappropriate triage decisions. Location of index imaging, hospital versus community-based private clinic, was evaluated as a risk factor for inadequate or discrepant imaging. There were 94 patients reviewed with 79% (n=74) requiring repeat imaging at initial consultation, of which 74% (n=55) were due to insufficient quality and/or visualization of the sagittal profile, pelvis or ribcage. Of index images available for review at initial consult (n=80), 41.2% scored five out of five and 32.5% scored two or below. New imaging showed that 50.0% of those patients had not been triaged appropriately, compared to 18.2% of patients with a full score. Comparing index radiology reports to initial visit evaluation with <60 days between imaging (n=49), discrepancies in Cobb angle were found in 24.5% (95% CI 14.6, 38.1) of patients, with 18.4% (95% CI 10.0, 31.4) categorized as major discrepancies. Risser stage was reported in only 14% of index radiology reports. In 13.8% (n=13) of the total cohort, surgical or brace treatment was recommended when not predicted based on index radiology report. Repeat radiograph (p=0.001, OR=8.38) and discrepancies (p=0.02, OR=7.96) were increased when index imaging was obtained at community-based private clinic compared to at a hospital. Re-evaluation of available index imaging demonstrated that 24.6% (95% CI 15.2, 37.1) of Cobb angles were mis-reported by six to 21 degrees. Most pre-referral paediatric spine radiographs are inadequate for idiopathic scoliosis evaluation. Standardization of spine imaging and reporting should improve measurement accuracy, facilitate triage and decrease unnecessary radiation exposure


The Bone & Joint Journal
Vol. 102-B, Issue 2 | Pages 254 - 260
1 Feb 2020
Cheung JPY Cheung PWH

Aims. The aim of this study was to assess whether supine flexibility predicts the likelihood of curve progression in patients with adolescent idiopathic scoliosis (AIS) undergoing brace treatment. Methods. This was a retrospective analysis of patients with AIS prescribed with an underarm brace between September 2008 to April 2013 and followed up until 18 years of age or required surgery. Patients with structural proximal curves that preclude underarm bracing, those who were lost to follow-up, and those who had poor compliance to bracing (<16 hours a day) were excluded. The major curve Cobb angle, curve type, and location were measured on the pre-brace standing posteroanterior (PA) radiograph, supine whole spine radiograph, initial in-brace standing PA radiograph, and the post-brace weaning standing PA radiograph. Validation of the previous in-brace Cobb angle regression model was performed. The outcome of curve progression post-bracing was tested using a logistic regression model. The supine flexibility cut-off for curve progression was analyzed with receiver operating characteristic curve. Results. A total of 586 patients with mean age of 12.6 years (SD 1.2) remained for analysis after exclusion. The baseline Cobb angle was similar for thoracic major curves (31.6° (SD 3.8°)) and lumbar major curves (30.3° (SD 3.7°)). Curve progression was more common in the thoracic curves than lumbar curves with mean final Cobb angles of 40.5° (SD 12.5°) and 31.8° (SD 9.8°) respectively. This dataset matched the prediction model for in-brace Cobb angle with less mean absolute error in thoracic curves (0.61) as compared to lumbar curves (1.04). Reduced age and Risser stage, thoracic curves, increased pre-brace Cobb angle, and reduced correction and flexibility rates predicted increased likelihood of curve progression. Flexibility rate of more than 28% has likelihood of preventing curve progression with bracing. Conclusion. Supine radiographs provide satisfactory prediction for in-brace correction and post-bracing curve magnitude. The flexibility of the curve is a guide to determine the likelihood for brace success. Cite this article: Bone Joint J 2020;102-B(2):254–260


The Bone & Joint Journal
Vol. 101-B, Issue 10 | Pages 1370 - 1378
1 Oct 2019
Cheung JPY Chong CHW Cheung PWH

Aims. The aim of this study was to determine the influence of pelvic parameters on the tendency of patients with adolescent idiopathic scoliosis (AIS) to develop flatback deformity (thoracic hypokyphosis and lumbar hypolordosis) and its effect on quality-of-life outcomes. Patients and Methods. This was a radiological study of 265 patients recruited for Boston bracing between December 2008 and December 2013. Posteroanterior and lateral radiographs were obtained before, immediately after, and two-years after completion of bracing. Measurements of coronal and sagittal Cobb angles, coronal balance, sagittal vertical axis, and pelvic parameters were made. The refined 22-item Scoliosis Research Society (SRS-22r) questionnaire was recorded. Association between independent factors and outcomes of postbracing ≥ 6° kyphotic changes in the thoracic spine and ≥ 6° lordotic changes in the lumbar spine were tested using likelihood ratio chi-squared test and univariable logistic regression. Multivariable logistic regression models were then generated for both outcomes with odds ratios (ORs), and with SRS-22r scores. Results. Reduced T5-12 kyphosis (mean -4.3° (. sd. 8.2); p < 0.001), maximum thoracic kyphosis (mean -4.3° (. sd. 9.3); p < 0.001), and lumbar lordosis (mean -5.6° (. sd. 12.0); p < 0.001) were observed after bracing treatment. Increasing prebrace maximum kyphosis (OR 1.133) and lumbar lordosis (OR 0.92) was associated with postbracing hypokyphotic change. Prebrace sagittal vertical axis (OR 0.975), prebrace sacral slope (OR 1.127), prebrace pelvic tilt (OR 0.940), and change in maximum thoracic kyphosis (OR 0.878) were predictors for lumbar hypolordotic changes. There were no relationships between coronal deformity, thoracic kyphosis, or lumbar lordosis with SRS-22r scores. Conclusion. Brace treatment leads to flatback deformity with thoracic hypokyphosis and lumbar hypolordosis. Changes in the thoracic spine are associated with similar changes in the lumbar spine. Increased sacral slope, reduced pelvic tilt, and pelvic incidence are associated with reduced lordosis in the lumbar spine after bracing. Nevertheless, these sagittal parameter changes do not appear to be associated with worse quality of life. Cite this article: Bone Joint J 2019;101-B:1370–1378