Advertisement for orthosearch.org.uk
Results 1 - 10 of 10
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 201 - 201
1 Sep 2012
Devine D Arens D Burelli S Bloch HR Boure L
Full Access

The osteointegration of a new three-dimensional reticular titanium material, Trabecular Titanium™, was assessed using a bilateral cancellous (distal femur, proximal tibia) and cortical (tibia diaphysis) bone drill hole model in 18 sheep. TT is a novel Ti6Al4V material characterized by a high open porosity and composed of multi-planar regular hexagonal cells. Two 5.0 mm diameter, 12 mm long cylinders (TT1 & TT2) of two different porosities (TT1:650 μm, TT2:1250 μm) were tested and compared to two solid predicate 5.0 mm diameter, 12 mm long Ti cylinders (PT1 & PT2) coated with porous Ti (PT1: vacuum-plasma spray coating; PT2: inert-gas shielding arc spray coating). Each implant type was surgically implanted at 4 separate locations in each sheep (16 implants per sheep). Three timepoints of 4, 16 and 52 weeks (n=6 sheep per timepoint) were used. Bone-implant interface was analyzed ex vivo by the determination of: 1) the shear strength (SS) measured during a push out test, 2) the percentage of bone in-growth (%B) using histomorphometry, 3) the bone apposition rate using fluorochrome labelling analysis and 4) the bone-implant contact using backscattered scanning electron microscopy (SEM). An ANOVA with a Bonferroni Post hoc test were used to detect differences between tested and predicate implants. P values 0.05 were considered significant. At 4 weeks, 5 out of the 6 TT1 could be pushed out of the cortical bone (COB) samples. The remaining TT1 collapsed during testing. All TT1 could be pushed of the cancellous bone (CAB) samples. Four out of the 6 TT2 could be pushed out of CAB and of the COB samples. At 16 and 52 weeks, only one TT1 and one TT2 could be pushed out of the bone samples, the remaining implants collapsed during testing. All the PTs were successfully pushed out at all timepoints. The mean %B of PT1 and PT2 did not significantly increase over time. For both materials, the mean %B ranged between 1.7% and 4.4% at 4 weeks and between 5.7% and 6.5% at 52 weeks. The mean %B of TT1 significantly increased over time in both COB (10.2% at 4 weeks, 46.2% at 16 weeks, 50.5% at 52 weeks) and CAB (5.8%, 23.9%, 24.3%). Similarly, the mean %B of TT2 significantly increased over time in both COB (7.8%, 48.6%, 65%) and CAB (4.5%, 24.1%, 38.6%). Bone apposition rates for the TT implants remained superior to 2 μm/day for the entire duration of the study. SEM showed an intimate bone-implant contact for all implant types at all timepoints. At 16 and 52 weeks, histomorphometry revealed an extensive osteointegration of the TT specimens. Bone-implant interface strength was so high for the TT implants that they could not be pushed out of the bone samples. The results of this study would indicate that the TT implants provide a good scaffold for bone in-growth


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_8 | Pages 36 - 36
1 May 2018
Fawdington R Beaven A Fenton P Lofti N
Full Access

Background. In a systematic review of 1125 distal tibia fractures treated with an intramedullary nail, the reported incidence of malalignment was 14%. The purpose of our study is to assess whether the addition of blocking screws during intramedullary nailing of a distal tibia fracture improved radiological outcomes. As a secondary outcome, the time to radiographic union was compared to see if a more rigid bone-implant construct had an effect on healing. Methods. We searched computerised records at a UK level 1 major trauma centre. The joint alignment was measured on the immediate post-operative radiograph and compared to the most recent radiograph. We used a difference of 2 degrees to indicate a progressive deformity and a RUST score greater or equal to 10, to indicate radiographic fracture union. Results. Twenty-seven patients were included. Nineteen patients had no blocking screw and 8 patients had a blocking screw. Five patients had a difference in their coronal plane alignment of 2 degrees or more (3/5 had no blocking screw). The results were analysed and found to be not statistically significant (p=0.88). The addition of a blocking screw has also been shown not to have an effect on the time to union. Conclusion. We have changed our surgical practice. We use a 2.5mm blocking wire to aid in fracture reduction prior to reaming / nail insertion and then remove the wire when the nail has been adequately locked. Implications. This could save surgical procedure time, radiation exposure for the patient, implant costs and potential complications


Bone & Joint Open
Vol. 5, Issue 1 | Pages 37 - 45
19 Jan 2024
Alm CE Karlsten A Madsen JE Nordsletten L Brattgjerd JE Pripp AH Frihagen F Röhrl SM

Aims

Despite limited clinical scientific backing, an additional trochanteric stabilizing plate (TSP) has been advocated when treating unstable trochanteric fractures with a sliding hip screw (SHS). We aimed to explore whether the TSP would result in less post operative fracture motion, compared to SHS alone.

Methods

Overall, 31 patients with AO/OTA 31-A2 trochanteric fractures were randomized to either a SHS alone or a SHS with an additional TSP. To compare postoperative fracture motion, radiostereometric analysis (RSA) was performed before and after weightbearing, and then at four, eight, 12, 26, and 52 weeks. With the “after weightbearing” images as baseline, we calculated translations and rotations, including shortening and medialization of the femoral shaft.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 512 - 512
1 Sep 2012
Zlowodzki M Armitage B Wijdicks C Kregor P Bruce L Cole P
Full Access

Introduction. The most common treatment options for fixation of osteoporotic distal femur fractures are retrograde nails and locking plates. There are proponents of more elastic titanium plates as well as more rigid steel plates; No clear superiority of one over the other has been established. We aimed to evaluate the mechanical differences between stainless steel and titanium locking plates in the fixation of distal femur fractures in osteoporotic bone. We hypothesized that due to its higher elasticity titanium locking plates can absorb more energy and are therefore less likely to “cut” into the bone compared to stainless steel locking plates resulting in improved metaphyseal osteoporotic fracture fixation. Methods. We used eight matched pairs of osteoporotic fresh-frozen human cadaveric femurs (age >70 years, all female). Within each pair we randomized one femur to be fitted with a Less Invasive Stabilization System (LISS-Titanium locking plate) and one with a Distal Locking Condylar Plate (DLCP-Stainless steel locking plate). A fracture model simulating an AO 33-A3 fracture was created (extraarticular comminuted fracture) and specimens were subsequently subjected to step-wise cyclic axial loading to failure. We used an advanced three dimensional tracking system (Polhemus Fastrak) to monitor the movement of the distal fragment relative to the real time distal plate position allowing us to evaluate distal implant cut-out. Results. During cyclic testing, seven of the eight pairs of matched femurs, the DLCP failed before the LISS plate (p=0.03). All constructs were able to withstand cyclical loading up to 800N. The overall plastic deformation as measured by the displacement of the Instron crosshead experienced by the titanium plate constructs was significantly lower compared to the stainless steel plate construct: The plastic deformation of the LISS plates was 39% lower compared to the Locking Condylar plates after cycle testing at 400 Newtons and 70% lower at 800N. Furthermore during the 800N cycle testing the LISS plating system showed a significantly lower rate of plastic deformation not only for the entire bone-implant construct, but also between the plate and the distal fragment than the locking condylar plate (=less distal implant cut-out). Conclusions. The use of a more advanced three dimensional tracking system, fresh-frozen osteoporotic matched human specimen and the ability to test all constructs to failure allowed us a more thorough comparison of titanium versus stainless steel implants compared to previous studies. The titanium locking plates provided an overall superior fixation of osteoporotic distal femur fractures with less distal implant cut-out, a better elastic recoil, and a slower rate of residual plastic deformation


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 99 - 99
1 Sep 2012
Maempel J Coathup M Calleja N Maempel FZ Briggs T Cannon S Blunn G
Full Access

Background/Aims. The development of extendable prostheses has permitted limb salvage surgery in paediatric patients with bone tumours in proximity to the physis. Prostheses are extended to offset limb length discrepancy as the child grows. Aseptic loosening (AL) is a recognised complication. The implant stem must fit the narrow paediatric medullary canal and remain fixed while withstanding growth and increasing physical demands. Novel designs incorporate a hydroxyapatite (HA) coated collar that manufacturers claim improves bony ongrowth and stability, providing even stress distribution in stem and shoulder regions and providing a bone-implant seal, resulting in decreased AL and prolonged survival. This study aims to assess whether there is a relationship between bony ongrowth onto a HA collar and AL. Hypothesis: Bone ongrowth onto the HA collar of extendable prostheses is associated with more stable fixation and less AL despite patient growth. Methods. Retrospective review of 51 primary partial femoral extendable prostheses implanted over 12 years from 1994–2006 (followed up to death at a mean of 2.5±2.2 years or last clinical encounter at a mean of 8.6 years) and 24 subsequent revisions, to ascertain failure rate and mode, together with a cohort study reviewing bony ongrowth onto the HA coated collar in 10 loose and 13 well fixed partial femoral, humeral and tibial implants. Patient growth was measured as a change in bone:implant-width ratio. Results. 21 (41.2%) primary femoral implants failed at a mean 42.8 months, 5 through AL. 1 secondary implant was revised for AL. 2 implants displayed evidence of progressive AL but had not failed at last follow-up. 5 of 11 tibial component revisions in distal femoral replacement were due to AL. 1 major complication occurred after revision surgery for AL in a primary implant: deep infection requiring 2 stage revision. Bony collar ongrowth was significantly higher in all 4 quadrants (anterior, posterior, medial and lateral) in the well-fixed as opposed to loose group, demonstrating a strong negative relationship in each quadrant between bony ongrowth and AL (p0.001) in the presence of patient growth as shown by increased bone:implant width ratio. In both groups, collar ongrowth was greatest in the posterior quadrant. Summary and Conclusions: AL has been confirmed as a common cause of failure in massive extendable endoprostheses. Revision surgery is difficult and may cause serious complications. For the first time, a significant relationship between a well fixed implant stem and bony ongrowth onto a HA coated collar in the context of massive implants used in tumour surgery has been demonstrated. This newly-proven relationship may result in longer-term implant survival and thus a reduced need for revision surgery. It is hoped that this study will provide the basis for further study of this relationship


The Bone & Joint Journal
Vol. 101-B, Issue 3 | Pages 260 - 265
1 Mar 2019
Lee SH Han SS Yoo BM Kim JW

Aims

The aim of this study was to evaluate the clinical and radiological outcomes of locking plate fixation, with and without an associated fibular strut allograft, for the treatment of displaced proximal humeral fractures in elderly osteoporotic patients.

Patients and Methods

We undertook a retrospective comparison of two methods of fixation, using a locking plate without an associated fibular strut allograft (LP group) and with a fibular allograft (FA group) for the treatment of these fractures. The outcome was assessed for 52 patients in the LP group and 45 in the FA group, with a mean age of 74.3 years (52 to 89), at a mean follow-up of 14.2 months (12 to 19). The clinical results were evaluated using a visual analogue scale (VAS) score for pain, the Constant score, the American Shoulder and Elbow Surgeons (ASES) score, and the range of movement. Radiological results were evaluated using the neck-shaft angle (NSA) and humeral head height (HHH).


The Bone & Joint Journal
Vol. 99-B, Issue 1 | Pages 128 - 133
1 Jan 2017
Socci AR Casemyr NE Leslie MP Baumgaertner MR

Aims

The aim of this paper is to review the evidence relating to the anatomy of the proximal femur, the geometry of the fracture and the characteristics of implants and methods of fixation of intertrochanteric fractures of the hip.

Materials and Methods

Relevant papers were identified from appropriate clinical databases and a narrative review was undertaken.


Bone & Joint Research
Vol. 6, Issue 4 | Pages 216 - 223
1 Apr 2017
Ang BFH Chen JY Yew AKS Chua SK Chou SM Chia SL Koh JSB Howe TS

Objectives

External fixators are the traditional fixation method of choice for contaminated open fractures. However, patient acceptance is low due to the high profile and therefore physical burden of the constructs. An externalised locking compression plate is a low profile alternative. However, the biomechanical differences have not been assessed. The objective of this study was to evaluate the axial and torsional stiffness of the externalised titanium locking compression plate (ET-LCP), the externalised stainless steel locking compression plate (ESS-LCP) and the unilateral external fixator (UEF).

Methods

A fracture gap model was created to simulate comminuted mid-shaft tibia fractures using synthetic composite bones. Fifteen constructs were stabilised with ET-LCP, ESS-LCP or UEF (five constructs each). The constructs were loaded under both axial and torsional directions to determine construct stiffness.


Bone & Joint Research
Vol. 2, Issue 5 | Pages 79 - 83
1 May 2013
Goffin JM Pankaj P Simpson AHRW Seil R Gerich TG

Objectives

Because of the contradictory body of evidence related to the potential benefits of helical blades in trochanteric fracture fixation, we studied the effect of bone compaction resulting from the insertion of a proximal femoral nail anti-rotation (PFNA).

Methods

We developed a subject-specific computational model of a trochanteric fracture (31-A2 in the AO classification) with lack of medial support and varied the bone density to account for variability in bone properties among hip fracture patients.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 9 | Pages 1259 - 1264
1 Sep 2011
Wähnert D Windolf M Brianza S Rothstock S Radtke R Brighenti V Schwieger K

We investigated the static and cyclical strength of parallel and angulated locking plate screws using rigid polyurethane foam (0.32 g/cm3) and bovine cancellous bone blocks. Custom-made stainless steel plates with two conically threaded screw holes with different angulations (parallel, 10° and 20° divergent) and 5 mm self-tapping locking screws underwent pull-out and cyclical pull and bending tests. The bovine cancellous blocks were only subjected to static pull-out testing. We also performed finite element analysis for the static pull-out test of the parallel and 20° configurations. In both the foam model and the bovine cancellous bone we found the significantly highest pull-out force for the parallel constructs. In the finite element analysis there was a 47% more damage in the 20° divergent constructs than in the parallel configuration. Under cyclical loading, the mean number of cycles to failure was significantly higher for the parallel group, followed by the 10° and 20° divergent configurations.

In our laboratory setting we clearly showed the biomechanical disadvantage of a diverging locking screw angle under static and cyclical loading.