Advertisement for orthosearch.org.uk
Results 1 - 20 of 36
Results per page:

Purpose. The purpose of this study is to compare using a novel cementing technique with hydroxyapatite granules at bone-cement interface with using the 3. rd. cementing technique on the acetabular component. Patients and Methods. Between 2005 and 2007, we performed 54 primary cemented THAs using the 3. rd. generation cementing technique with hydroxyapatite granules at bone-cement interface (Group A: 21 hips) or without them (Group B: 33 hips) in 49 patients with dysplastic hip (6 males, 43 female; mean age at operation, 67 years; age range, 48–84 years). Mean follow up was 5.3 years (range, 2.3–7.1 years), with none of the patients lost to follow up. According to Crowe's classification, subluxation was Group I in 31 hips, group II in 11 hips, group III in 8 hips, and group IV in 4 hips. We used Exeter flanged cup, Exeter stem with a 22-mm diameter metal head (Stryker, Benoist Girard, France) and Simplex-P bone cement (Stryker, Limerick, Ireland) in all hips. A posterolateral approach was performed for all patients. Bone graft was performed 25 hips (block bone graft: 11 hips; impaction bone grafting with a metal mesh: 13 hips) from autogeneic femoral head. Our 3. rd. cementing technique is to make multiple 6-mm anchor holes, to clean the the host acetabular bed with pulse lavage, to dry it with hydrogen peroxide and to use Exeter balloon pressurizer and Exeter flanged cup. Results. The outcomes showed no aseptic loosening and radiological loosening at final follow up. Radiolucent line around the acetabular component was present 14% in Group A and 42% in Group B at 4 years after operation. Kaplan-Meier survivorship analysis of appearance of a radioluent line around the acetabuler component as the end point was 85.7% on group A was significant higher than 57.6% on group B at 4 years. Conclusion. Radiolucent line around cemented acetabular component in total hip arthroplasty using the 3. rd. cementing technique with hydroxyapatite granules at bone-cement interface was significant higher survivorship than them of the 3. rd. cementing technique at 4 years after operation. We suggest that improved novel cementing technique will lead to greater long-term success outcomes of the acetabular component


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 42 - 42
1 May 2019
Jones R
Full Access

The development of more wear resistant biomaterials and better locking mechanisms for the polyethylene into the tibial base has significantly reduced polyethylene wear as a reason for revision TKA. Aseptic loosening is now the primary cause for revision TKA. Loosening can be caused by multifactorial operative issues: 1] patient selection, 2] implant alignment, 3] cementing technique. Furthermore, aseptic loosening occurs at a consistent rate over time. Increased cement penetration is important to counter bone resorption. Increasing penetration also improves cement mantle toughness leading to better mechanical integrity of the bone-cement interface and reduces bone-cement interface stress. It is important to recognise that a cleaner and drier interface does improve bone-cement penetration. Techniques to improve the process include better cement formulations, drilling sclerotic bone, devices and implant features to increase pressurization, using negative pressure suction ports in the tibia. We have extensive experience with CarboJet, a method of CO. 2. gas jet cleaning and drying. This experience was developed during 20 years of performing TKA with NO tourniquet. Schnetler et al found that the “use of a tourniquet in TKA causes a paradoxical increase in total blood loss”. So, NO tourniquet TKA is becoming the new paradigm for knee arthroplasty in reconstructive orthopaedics. Goldstein reported that pressurised carbon dioxide jet lavage resulted in a 35% increase in cement penetration depth when used vs. use of pulsatile saline lavage alone. Meneghini used this pressurised carbon dioxide system to study the influence of NO tourniquet use in TKA. He found a significant lowering of opioid consumption postoperatively. Another important factor in increasing the cement interdigitation is the influence of lipids which significantly weakens the bond at the interfaces. If motion is allowed during cementation there is additional loss of penetration and therefore fixation. The pressurised carbon dioxide delivered by the CarboJet system actually pushes the lipid, fatty marrow up and out of the bone allowing it to be suctioned or lap dried from the interface surface. The NO tourniquet technique and the use of carbon dioxide jet gas delivery to improve the bone-cement interface in TKA will be demonstrated


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 124 - 124
1 Jun 2018
Jones R
Full Access

The development of more wear resistant biomaterials and better locking mechanisms for the polyethylene into the tibial base has significantly reduced polyethylene wear as a reason for revision TKA. Aseptic loosening is now the primary cause for revision TKA. Loosening can be caused by multifactorial operative issues: 1] patient selection, 2] implant alignment, 3] cementing technique. Furthermore, aseptic loosening occurs at a consistent rate over time. Increased cement penetration is important to counter bone resorption. Increasing penetration also improves cement mantle toughness leading to better mechanical integrity of the bone-cement interface and reduces bone-cement interface stress. It is important to recognise that a cleaner and drier interface does improve bone-cement penetration. Techniques to improve the process include better cement formulations, drilling sclerotic bone, devices and implant features to increase pressurization, using negative pressure suction ports in the tibia. We have extensive experience with CarboJet, a method of CO2 gas jet cleaning and drying. This experience was developed during 20 years of performing TKA with NO tourniquet. Schnetler et al found that the “use of a tourniquet in TKA causes a paradoxical increase in total blood loss”. So, NO tourniquet TKA is becoming the new paradigm for knee arthroplasty in reconstructive orthopaedics. Goldstein reported that pressurised carbon dioxide jet lavage resulted in a 35% increase in cement penetration depth when used versus use of pulsatile saline lavage alone. Another important factor in increasing the cement interdigitation is the influence of lipids which significantly weakens the bond at the interfaces. If motion is allowed during cementation there is additional loss of penetration and therefore fixation. The pressurised carbon dioxide delivered by the CarboJet system actually pushes the lipid, fatty marrow up and out of the bone allowing it to be suctioned or lap dried from the interface surface. The NO tourniquet technique and the use of carbon dioxide jet gas delivery to improve the bone-cement interface in TKA will be demonstrated


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 47 - 47
1 Oct 2022
Meo FD Cacciola G Bruschetta A Cavaliere P
Full Access

Aim. The aim of this study is to evaluate if the gentamycin elution from bone cement is influenced by the timing of application of the antibiotic powder. Method. This was an experimental in vitro study that compared the elution properties of different formulation of gentamycin from a commercially available hip, knee and shoulder cement spacers. Four different experimental models were prepared. Five different spacers were prepared for each experimental mode and for each joint. We compared four different formulation of cement spacers: spacer #1, in which the spacer was prepared with a premixed bone-cement antibiotic mixture; spacer #2, in which the spacer was prepared by adding antibiotic powder to the bone cement at the time of spacer preparation; spacer #3, in which the spacer was prepared as spacer #2 but was stored for two months before starting the experiment; spacer #4, in addition to the gentamycin, other two antibiotics (tobramycin and vancomycin) were added to the bone cement. Gentamycin concentration was documented at seven intervals of time: T0 = 0h, T1 = 1h, T2 = 24h, T3 = 1W, T4 = 2W, T5 = 1M, T6 = 3M and T7 = 6M. The gentamycin elution at each interval of time was evaluated by using a T-student test. Results. Spacer #2, in which the gentamycin powder was added to the bone cement at the time of spacer preparation showed the higher gentamycin elution at each interval of time observed. In addition, Spacer #1, in which gentamycin powder was premixed with the bone cement showed a higher gentamycin elution when compared with spacer #3, in which the spacers were stored for two months to simulate the preformed spacers. Lastly, the addition of different antibiotic to the bone cement increases the gentamycin elution from the spacers (as demonstrated by spacer #4 model). Conclusions. a higher gentamycin elution was observed if spacer was prepared at the time of surgery when compared with preformed spacer. Lastly, our study confirmed the synergistic effect of adding one or more antibiotics with the aims to increase gentamycin elution


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 85 - 85
1 Jan 2016
Goh S Chua K Chong D Yew A Lo NN
Full Access

Introduction. Total hip replacement is an established surgical procedure done to alleviate hip pain due to joint diseases. However, this procedure is avoided in yonger patients with higher functional demands due to the potential for early failure. An ideal prosthesis will have have a high endurance against impact loading, with minimal micromotion at the bone cement interface, and a reduced risk of fatigue failure, with a favourable stress distribution pattern in the femur. We study the effect of varying the material properties and design element in a standard cemented total hip using Finite Element Analysis. Methods. A patient-specific 3D model of femur will be constructed from CT scan data, while a Summit® Cemented Hip System (DePuy Orthopedic) will be used to as a control for comparative evaluation. We vary the material stiffness of different parts of the prosthesis(see Fig.1) to formulate a design concept for a new total hip prosthesis design; and use Finite Element Method to predict the micromotion of the hip prosthesis at the bone cement interface, as well as the stress distribution in the the femur. Result. Validation of computational protocol was being done by comparing the principal maximum strain of the femoral cortex along the diaphysis, and the amount of deflection, with published literature, similarly, contact modelling validation was also done. Model 1–4 induced lower peak Von Mises stress in the cement, which takes a much lower value than any of the cement mechanical limits postulated. Therefore, the risk of cement failure is greatly reduced in Model 1–4. However, the effect of varying stiffness in different regions is not significant in terms of load transmission to the cement. Micromotion at the bone-cement interface was studied via two approaches: Peak micromotion at the bone cement interface; and the micromotion data at 12 Regions of Interest (ROI)s. Both results showed that model 2 and 3 are capable of reducing micromotion at bone-cement interface, in comparison with the Summit® Cemented Hip System. By comparing the Von Mises Stress distribution in the proximal femur; model 1 is found to result in a significantly reduced stress shielding effect, while model 2–4 are also favourable in comparison to the standard Summit® prosthesis in terms of stress distribution in the femur. Figure 2 shows the effects of the performance of model 1–4, presented as percentage difference from the Summit® prosthesis. Model 1 is unfavourable, despite its favourable stress distribution, because its peak and overall micromotion at the bone-cement interface is greatly increased. Conclusion. Model 2 and 3 have favourable design elements. They both have reduced micromotion at the bone-cement interface; and a favourable stress distribution in the femur. Further refining and testing of model 2 and 3 should done, as these models may provide information which may be useful in improving the performance of the current range of total hip replacement prostheses


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 27 - 27
1 May 2019
Gustke K
Full Access

Total knee replacements are being more commonly performed in active younger and obese patients. Fifteen-year survivorship studies demonstrate that cemented total knee replacements have excellent survivorship, with reports of 85 to 97%. Cemented knee arthroplasties are doomed to failure due to loss of cement-bone interlock over time. Inferior survivorship occurs in younger patients and obese patients who would be expected to place increased stress on the bone-cement interfaces. Roentgen stereophotogrammetric analysis (RSA) studies have indicated that cementless fixation should perform better than cemented fixation. However, cementless fixation for total knee replacement has not gained widespread utilization due to the plethora of poor results reported in early series. The poor initial results with cementless total knee replacement have occurred due to poor implant designs such as cobalt chrome porous interfaces, poor initial tibial component stability, lack of continuous porous coating, poor polyethylene, and use of metal-backed patellae. I have used cementless fixation for total knee replacements for young, active, and heavy patients since 1986 when durability over 20 years is desirable. My series of over 1,300 cementless TKAs represents about 20% of the 6,500 total knees I have performed from 1986 to 2017. I have seen initial failures in my series due to the use of metal-backed patellae with thin polyethylene, older generation polyethylene, and use of screws with the tibial components which provide access to the metaphyseal bone for polyethylene wear debris. Overall implant fixation failures were still significantly low due to the use of a highly porous titanium surface on both the tibial and femoral components. With the advent of utilizing implants with continuous porous surfaces and highly crosslinked polyethylene, and elimination of use of metal-backed patellae and tibial screws, I have only had one revision due to aseptic loosening or osteolysis in the last 1,071 cases performed since 2002. Almost 50% of total knees are now performed on patients under the age of 65. A 55-year-old patient has a 30 year life expectancy. Modern total knee replacement design has made biological fixation predictable for young and heavy patients. Because it is a biological interface, it should respond better than cement to the increased stresses that will be applied over many years by our younger, more active and heavier total knee population


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 194 - 194
1 Sep 2012
Tong J
Full Access

Introduction. Damage development in cemented acetabular replacements has been studied in bovine pelvic bones under long-term physiological. 1. loading, albeit dry, conditions, using a specially designed hip simulator. 2. In this work we report further experimental results from testing in wet condition in a new custom designed environmental chamber. Damage was detected and monitored using mCT scanning at regular intervals of the experiments. Two dimensional projections in the axial, sagittal and coronal planes were extracted from the 3D data for fatigue damage identification. The simulated mechanical and biological effects on the initiation and evolution of the damage of cemented acetabular reconstructs were examined and compared with those under dry condition. Materials and methods. Bovine bones were treated and reamed to receive a cemented polyethylene cup (Charnley ogee, Depuy Int) in the standard position. Standard cementing technique was utilised to apply the cement (CMW1, DePuy CMW) into the socket, with an average cement mantle thickness of 2–3 mm. The combined loading block included four routine activities, as measured by Bergmann et al. 1. , was programmed into a specially designed 4-station hip simulator for endurance testing of cement fixation. 2. A body weight of 125 kg was assumed to represent an upper bound load case and to accelerate the tests. A custom made environmental chamber (Fig. 1) was designed and built to accommodate saline solution (0.9% NaCl), where the temperature was kept constantly at 37°C. The implanted bone samples were removed from the test rig at regular intervals (100,000 and 200,000 cycles) and examined using a mCT scanner. Results and discussion. For the tests under dry condition. 2. , μCT images showed progressive development of radiolucent lines, usually in the superior-posterior quadrant near the dome region which led to gross failure; and the number of cycles to failure seems to be related to the type of physiological loadings in that the worst case was found to be descending stairs, followed by combined loading and normal walking. For the tests conducted under wet condition, debonding was detected at the bone-cement interface along the rim of the acetabulum (Fig. 2), as opposed to near the dome in the cases under dry condition. Under the same load magnitude, the survival life in cycles under wet condition is also drastically reduced (∼200,000) compared to ∼ 2,000,000 in dry condition. Conclusion. Preliminary endurance testing in physiological wet condition seems to suggest that interfacial debonding at the bone-cement interface near the rim is responsible for earlier crack initiation and failure of the acetabular fixation, as opposed to debonding near the dome region in dry condition


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 113 - 113
1 Aug 2017
Maloney W
Full Access

In North America, cementless femoral replacement has all but replaced cementing and cement technique is at risk for becoming a lost art. Published results of cemented femoral components with a well-designed femoral component and good surgical technique are excellent and equivalent to cementless technology. With an increasing focus on cost as part of value-based care, consideration for returning to cement for a select population is appropriate. Furthermore, there are patient populations that may benefit from a cemented femur with registries demonstrating superior short term outcomes. These include the elderly and patients with osteoporotic femurs. The goal of femoral cementing is to maximise the interdigitation of bone cement with metaphyseal trabecular bone and the irregular surface of the endosteum while at the same time minimizing the risk of embolization. The steps for femoral cementing include:cFemoral broaching – understand the relationship between the broach and stem as it relates to cement mantle thickness; Canal preparation; Gentle curetting to remove loose cancellous bone; Pressurised lavage to remove fat and marrow elements – this decreases the risk of embolization and enhances the strength of the bone-cement interface; Dry the canal – suction, adrenaline soaked sponge – this minimises bleeding and enhances the strength of the bone cement interface; Cement preparation – vacuum mix or centrifuge the bone cement – this minimise large voids that weaken the bone cement; Cement insertion – insert in a retrograde fashion and pressurise the cement – this optimises the cement column and the bone cement interface; Stem insertion – insert slowly with a system that centralises the stem – this prevents mantle defects that have been associated with stem loosening


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 68 - 68
1 Dec 2016
Scott R
Full Access

After over 4 decades of experience with total knee arthroplasty, many lessons have been learned regarding surgical technique. These include exposure issues, alignment methods, bone preparation, correction of deformity, implantation techniques and wound closure. Where is the proper placement of the skin incision relative to the tibial tubercle? How does one safely evert the patella in the obese or ankylosed knee? Can a tibial tubercle osteotomy be avoided in the ankylosed knee? How does one protect the patellar tendon insertion from avulsing? How do you protect the soft tissues from debris and contamination and minimise the potential for infection? Can exposure be maintained if there are few surgical assistants? How do you find the lateral inferior genicular vessels and minimise postoperative bleeding? How do you know where to enter the intramedullary femoral canal for placement of the distal femoral alignment device? How can you avoid notching the anterior femoral cortex when in-between sizes or there is a pre-existing dysplastic trochlea? How can you correct a varus deformity without performing a formal MCL release? An inverted cruciform lateral retinacular release effectively corrects a severe valgus deformity and avoids the need for an LCL release. Trimming the posterior femoral condyles and removing posterior osteophytes is best accomplished using a trial femoral component as a template. Zone 4 femoral bone-cement radiolucencies can be minimised using the “smear” technique. The best indicator of potential postoperative flexion is not preoperative flexion but is intraoperative flexion against gravity measured after capsular closure


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 64 - 64
1 Jun 2018
Padgett D
Full Access

The interest in osteolysis has waned largely due to the impact of crosslinked polyethylene and the “rarity” of this phenomenon. However, the basic process still remains: particles, motion observed with unstable implants and host specific factors all play a role in bone loss around implants. There are 2 predominant patterns of lysis: Linear versus Expansile. Linear Lysis: is focal bone loss at the interface as seen in the bone cement interface in when using acrylic or at the implant-host interface with porous ingrowth/ongrowth implants. Expansile Lysis: is observed in less contained regions such as the retro- and supra-acetabular regions around the socket. These lesions can also be quite extensive yet may be subtle in appearance. Imaging is essential in identifying the extent and magnitude of osteolysis. Available modalities include plain radiographs although they can be of limited value in that even with oblique views, they often underestimate the degree of bone loss. CT scans are useful but can be limited by artifact. Several centers have explored the role of MRI in assessing lysis. It can be useful for bone loss and provides excellent assessment for soft tissue: abductors, neurovascular structures. Metal artifact reduction sequencing is required to maximise information obtainable. Management of osteolysis: Identification and monitoring periprosthetic osteolysis is a crucial element of patient care. Progressive bone loss leading to loss of fixation and the potential risk for periprosthetic fracture is a real possibility and early recognition and intervention is a priority. The basic Guiding Principles of management are centered around several key elements including the source of osteolysis and degree, the fixation of implant, the location of lysis, the track record of implant system, the presence of patient symptoms (if any), and finally the patient age, activity level, and general health. Specifics of treatment of osteolysis around the acetabulum: With cemented sockets, lysis is typically seen late and frequently at the bone-cement interface. It is often associated with a loose implant and the prime indication for surgery may be pain. Treatment involves implant removal and revision with an uncemented cup and bone grafting or augmentation as needed. With uncemented sockets in the setting of osteolysis, there are several factors to consider. These have been stratified by Rubash, Maloney, and Paprosky. The treatment of these sockets has been summarised as follows: for Type I and Type II with limited lysis, lesional treatment such as debridement and bone grafting with head and polyethylene exchange has been suggested. WATCH for impingement!!!! Graft defects via trap-doors can be performed but make the door big enough to graft. Small doors and grafting through screw holes is at best marginal. In instances of compromised locking mechanisms, consider cementing the liner into the shell. For Type II and Type III implants, revision of the component is recommended. With the currently available cementless cup extraction tools, I rarely hesitate to remove a cup with moderate lysis and a broken locking mechanism: better access to lytic areas, better grafting achieved. CAVEAT #1: the disadvantage of implant removal is that it is clearly a bigger procedure and fixation of the new implant may be more difficult. Risks vs. rewards. CAVEAT #2: Socket revision in the setting of failed MOM implants has some unique “issues”. In the Vancouver series, almost 25% of the revision cups failed to achieve biologic fixation. As such, recommendation for using “enhanced” porous implants during revision seems prudent. Additionally, despite the use of larger diameter heads, instability rates remain high


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 81 - 81
1 Apr 2018
Sabesan V Whaley J Lima D Villa J Pathak V Zhang L
Full Access

Introduction. Varying degrees of posterior glenoid bone loss occurs in patients with end stage osteoarthritis and can result in increased glenoid retroversion. The excessive retroversion can affect implant stability, eccentric glenoid loading, and fixation stresses. Ultimately, the goal is to correct retroversion to restore normal biomechanics of the glenohumeral joint. The objective of this study was to identify the optimal augmented glenoid design based on finite element analysis (FEA) modeling which will provide key insights into implant loosening mechanisms and stability. Materials and Methods. Two different augmented glenoid designs, posterior wedge and posterior step- were created as a computer model by a computer aided design software (CAD). These implant CAD models were created per precise manufacturers dimensions and sizes of the augmented implant designs. These implants were virtually implanted to correct 20° glenoid retroversion and the different mechanical parameters were calculated including: the glenohumeral subluxation force, relative micromotion at the bone-cement interface the glenoid, implant and cement mantle stress levels. The FEA model was then utilized to make measurements while the simulating abduction with the different implant designs. The biomechanical response parameters were compared between the models at comparable retroversion correction. Results. The model prediction of force ratio for the augmented wedge design was 0.56 and for the augmented step design was 0.87. The step design had higher force ratio than the wedge one at similar conformity settings. Micromotion was defined as a combination of three components based on different directions. The distraction measured for the wedge design was 0.05 mm and for the step component, 0.14 mm. Both implants showed a similar pattern translation wise. The greatest difference between the two implants was from the compression standpoint, where the step component showed almost three times more movement than the wedge design implant. Overall, the step design registered greater micromotion than the wedge one during abduction physiologic loading. The level of stress generated during abduction on the glenoid vault was 1.65 MPa for the wedge design and 3.78 MPa for the step one. All stress levels were found below the determined bone failure limit for the bone and polyethylene (10–20 MPa). Concerning implant stress, the results measured on the backside of the wedge and step components were 6.62 MPa and 13.25 MPa, respectively. Both components showed high level of stress level measured on the cement mantle, which exceeded the endurance limit for cement fracture (4 MPa). Discussion. The augmented glenoid is a novel surgical implant for use in with severe glenohumeral osteoarthritis. Unlike standard glenoid prosthetics, the augmented glenoid is better suited for correcting moderate to severe retroversion. Whereas a step design might provide higher glenohumeral stability, the tradeoff is higher glenoid vault, implant and cement mantle stress levels, and micromotion, indicating higher risks of implant loosening, failure or fracture over time, leading to poorer clinical outcomes and higher revision rates


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 67 - 67
1 Apr 2017
Whiteside L
Full Access

Critical review of the literature fails to make a convincing case for use of cement in TKA. Many studies demonstrate clinical, mechanical, and biological failure when cement is used for fixation. Work by Ryd et al. has shown that initial migration within the first few months diminished rapidly after the first 6 months with virtually no additional movement for years after. They also suggested that cemented components do not remain rigidly fixed to bone long-term, but loosen enough to move 0.2 to 1 mm at the bone-cement interface with provocative testing. Although bone-ingrowth tibial components migrate slightly more initially than cemented ones do, they stabilise and do not sink progressively. Screw fixation adds rigidity, but does not seem to improve results. Rigidity of initial fixation is the most important feature after alignment to ensure pain-free function after arthroplasty, and can be achieved with press-fit techniques in TKA. Several early reports of bone-ingrowth TKA had inferior results because the tibial component had no stem, peg, or screw fixation, leading to implant migration and loosening. An effective stem has been shown to greatly improve tibial component fixation. The cut upper surface of the prepared tibia has areas that are too weak to withstand the forces that are applied to the surface, and failure in compression is likely unless fixation is augmented. An effective stem also reduces the shear and tensile loads at the bone-prosthesis interface. The effectiveness of compression or compaction of the tibial cancellous bone with an appropriately sized tibial metaphyseal stem has been shown, and probably was a major factor in the long-term success of fixation in our series. Clinical results of TKA with osteointegration techniques for fixation of the femoral and tibial components in our series are comparable with the best series reported with cemented fixation. Many recent studies show significant advantages of osteointegration over cement fixation in TKA. Fixation of implants with PMMA pressed into cancellous bone eventually loosens, and fixation of a metal component to bone cement also is tenuous in most cases. Cement is disappearing rapidly from use in total hip, ankle, and shoulder arthroplasty, and soon will be replaced with osteointegration technique in the knee. Perhaps the most appealing aspect of bone-ingrowth TKA is bone preservation. The ease of revisability because of good bone was encouraging in the components that wore, loosened, or became infected in the current series of TKA. These knees are functioning as well as knees with primary TKA. Should these knees develop additional problems, progressive destruction of bone is unlikely to occur, even if repeated revision is necessary


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 14 - 14
1 Feb 2017
Higa M Manabe T Nakamura Y Tanino H
Full Access

Introduction. Although total hip arthroplasty (THA) has been one of the most successful, reliable and common prosthetic techniques since the introduction of cemented low-friction arthroplasty by Charnley in the early 1960s, aseptic loosening due to stem-cement and cement-bone interface failures as well as cement fractures have been known to occur. To overcome this loosening, the stem should be mechanically retentive and stable for long term repetitive loading. Migration studies have shown that all stems migrate within their cement mantle, sometimes leading to the stem being debonded from the cement [1]. If we adopt the hypothesis that the stems debond from the cement mantle, the stem surface should be polished. For the polished stem, the concept of a double taper design, which is tapered in the anteroposterior (AP) and mediolateral (ML) planes, and a triple-tapered design, which has trapezoidal cross-section with the double tapered, have been popularized. Both concepts performed equally well clinically [2]. In this study, we aimed to analyze stress patterns for both models in detail using the finite element (FE) method. Methods. An ideal cemented stem with bone was made using three dimensional FE analyses (ANSYS 13). The cortical bone was 105 mm long and 7 mm thick and the PMMA cement mantle was 5 mm in thickness surrounding the stem. Young's modulus was set at 200 GPa for the bone and 2.2 GPa for the cement. Poisson's ratio was 0.3 for both materials. The bone-cement interface was completely bonded and cement-stem interface was not bonded in cases where a polished stem surface was used. The two types of stems were compared. One being the double tapered (Fig 1 left) and the other the triple tapered (Fig 1 right). The coefficient of friction (μ) at the stem-cement interface was set at 0 for both models. The distal ends of the stems were not capsulated by the PMMA and therefore the stems were free to subside. All materials were assumed to be linearly isotropic and homogeneous. The distal ends of the bone were completely constrained against any movements and rotations. An axial load of 1200 N and a transverse load of 600 N were applied at the same time simulating the bending condition [3]. Results. Although the stress distribution differences between the designs were minor, the positions where higher stresses and absolute values in the cement were observed varied. For double tapered model, the highest maximum principal stress was 1.98 MPa observed around the corner of the stem at the proximal region. For the triple tapered model, the highest maximum principal stress was 1.67 MPa observed at more medial side than the double tapered model


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_7 | Pages 17 - 17
1 May 2015
Mathews J Whitehouse M Baker R
Full Access

Cement-induced thermal osteonecrosis is well documented, as is the potential for nerve injury from thermal energy. Cement is often used to augment fixation following excision of humeral metastases. Porcine femurs were used as a model. We sought to find out the maximum temperatures that would be reached in various parts of the bone during the cement setting process, to explore what negative effects this might have on neighbouring bone and nerve. A 12mm by 12mm window was cut from 12 porcine femoral shafts, and Palacos R+D cement injected into the defect. As cement set, bone surface temperature was measured using infra-red thermal imaging and thermocouples used to measure temperatures at the bone-cement interface, 5mm from the cement bolus, 10mm from cement bolus and an area running around the shaft replicating radial nerve. Bone surface temperature rose to a maximum of 34.0 C (on average), and 32.9 C in the ‘radial nerve’ thermocouple. Notably, in two bones there were fractures during specimen preparation, and maximum temperatures in these two areas exceeded 41 degrees C. Average maximum temperatures were 58.1 C, 36.5 C and 30.1 C at the bone cement interface, 5mm and 10mm from the cement bolus respectively


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 144 - 144
1 May 2016
Galasso O Balato G Catania M Gasparini G Mariconda M
Full Access

Introduction. The use of antibiotic-loaded polymethylmethacrylate bone-cement spacers during two-stage exchange procedures is the standard in the treatment of patients with delayed prosthetic joint infection. The real antimicrobial activity of these spacers is unclear because the adherence of bacteria to cement might result in clinical recurrence of infection. The purpose of the study is to evaluate the in vitro formation of Pseudomonas Aeruginosa (PA) and Staphylococcus spp. biofilm on antibiotic-loaded bone cement. Materials and methods. Cement disks (diameter = 6 mm) impregnated with gentamicin and colistin were submerged in bacterial suspensions of Methicillin-resistant Staphylococcus Aureus(MRSA), Staphylococcus epidermidis (SE), and PA. Negative controls (specimen disks without antibiotic) were similarly prepared. Biofilm formation was visualized by confocal scanning laser microscopy (CSLM), after staining the discs with the live/dead BacLight viability stain containing SYTO 9 dye and propidium iodide. Images from five randomly selected areas were acquired for each disc. Sequential optical sections of 2 µm were collected in sequence along the z-axis over the complete thickness of the sample. The resulting stacks of images were analyzed, quantified and rendered into three-dimensional (3D). The biofilm thickness on antibiotic bone cement compared with the controls was automatically evaluated. Results. CSLM showed living bacteria and bacterial biofilm on the surface of all cement disks, either antibiotic-loaded or controls. Mean biofilm thickness on the controls was 29.6 µm for MRSA, 32.3 µm for SE, and 59.7 µm for PA. The 3D rendering showed decrease in the biofilm thickness for all bacterial strains on gentamicin- and colistin-impragnated cement disks as compared with the controls. The incorporation of gentamicin into cement resulted in a 54%, 74%, and 45% reduction in the bacterial biofilm thickness for MRSA, PA and SE, respectively. The use of colistin leaded to a 51 % reduction in the PA biofilm thickness. Conclusion. The bacterial viability and biofilm formation are reduced by adding antibiotics to bone cement but antibiotic-loaded bone cement does not completely inhibit the formation of an infectious biofilm in vitro


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 99 - 99
1 Dec 2016
Berend K
Full Access

For as long as surgeons have been performing total and partial knee arthroplasty, surgeons have debated the efficacy, safety, and requirement of a pneumatic tourniquet. Advocates claim that blood loss is less, visualization is improved, and the cement technique is better with the use of a tourniquet. Others would argue that the use of the tourniquet or limited tourniquet use is safer, does not increase blood loss, and does not compromise visualization and cementing technique. Multiple meta-analyses have been performed that provide very little true evidence of superiority. One such study from Yi et al, concludes that the use of the tourniquet reduces surgical time, intraoperative and total blood loss, but increases postoperative total blood loss. They also conclude that DVT and SSI are “relatively augmented” with use. There may be issues with the timing of tourniquet release in these pooled studies, with others stating that releasing the tourniquet prior to wound closure, supposedly for hemostasis, significantly increases the total and calculated blood loss. Huang et al report that with proper control in the amount of pressure, a debatable topic in and of itself, and shorter duration of inflation, release after closure can reduce blood loss without increased complications. One additional issue is patellar tracking, and the need to lateral release. The tourniquet significantly affects assessment of tracking and the need for lateral release, potentially causing the surgeon to unnecessarily perform a lateral release with the tourniquet inflated. Lastly, research has suggested that using a tourniquet may affect recovery of lower extremity strength and function. Dennis et al compared quadriceps strength and found that use of the tourniquet resulted in “slightly” lower strength postoperatively out to 3 months. The fatal flaw in this study and others is that there is no accepted minimal clinically important difference for quad function, and thus they powered their study to detect a difference of 12 Nm, and the actual difference, while statistically significant, did not even meet their arbitrary power set point. Thus, while strength may be slightly impaired by the use of a tourniquet, it was not different enough to meet their criteria. Additionally, in their study, 64% of the “no-tourniquet” knees actually had a tourniquet used for cementation to “minimise blood at the bone-cement interface and maximise fixation”. Clearly, even these authors are concerned with the results of not using a tourniquet. These authors utilise a pneumatic tourniquet in all cases of primary TKA and release the tourniquet prior to closure to ensure hemostasis and accurately assess patellar tracking. In doing so, we use the methodology of limb occlusion pressure to minimise the pressure to that necessary for ensuring a clear field. Additionally, these authors emphasise the ultimate in surgical efficiency allowing for extremely short tourniquet times, even in the most difficult cases. As an example, in 1300 consecutive obese patients with BMI equal or greater than 35, the average tourniquet time for primary TKA was 49 minutes. These short times, with the minimum pressure allow for the best of both worlds and little to no downside


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 120 - 120
1 Nov 2015
Paprosky W
Full Access

Over a four year period of time, 142 consecutive hip revisions were performed with the use of an extended proximal femoral osteotomy. Twenty patients had insufficient follow-up or were followed elsewhere and were excluded from the review. The remaining 122 revisions included 83 women and 39 men. Average age at time of revision was 63.8 (26–84) years. Indications for revision were aseptic loosening (114), component failure (4), recurrent dislocation (2), femoral fracture (1) and second stage re-implantation for infection (1). The extended proximal femoral osteotomy gave easy access to the distal bone-cement or bone prosthesis interface in all cases. It allowed neutral reaming of the femoral canal and implantation of the revision component in proper alignment. Varus remodeling of the proximal femur secondary to loosening was handled with relative ease implementing the osteotomy. Average time from the beginning of the osteotomy procedure to the complete removal of prosthesis and cement was 35 minutes. There were no non-unions of the osteotomised fragments at an average post-operative follow-up of 2.6 years with no cases of proximal migration of the greater trochanteric fragment greater than 2 mm, there was evidence of radiographic union of the osteotomy site in all cases by 3 months. Stem fixation with bone ingrowth was noted in 112 (92%) of 122 hips, stable fibrous fixation was seen in 9 (7%) and 1 stem was unstable and was subsequently revised. However, there was an incidence of 7% perforation rate of the femoral canal distal to the osteotomy site during cement removal. This was most prevalent where there was greater than 2 cm of cement plug present which was well bonded. When OSCAR was used instead of hand tools or power reamers, there were no perforations in 51 cases. There has been no failure of fixation with fully porous coated stems inserted in the canals where OSCAR had removed cement. Also, the use of OSCAR has allowed us to shorten the osteotomy, thus allowing a longer, intact isthmus to remain so that shorter stems can be used. We highly recommend the use of OSCAR in conjunction with the extended osteotomy for removal of well-fixed distal cement beyond the extended osteotomy site


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_8 | Pages 102 - 102
1 May 2014
Gehrke T
Full Access

The use of stems in revision TKA enhances implant stability and thus improves the survival rate. Stemmed components obtain initial mechanical stability when there is deficient metaphyseal bone. However the optimal method of stem fixation remains controversial, which includes selection of stem size, length or the use of cemented vs. cementless stems. Although postulated by many surgeons, there is no sufficient evidence, that cementless or hybrid fixation does perform better in the long term outcome, than cemented stems. In addition a number of studies, even from the U.S., suggested that there might be a benefit for the long term survival for cemented stems in revision TKA. Obviously cemented stems have some few advantages in revision set up as: topic antibiotic delivery and initial strong fixation. While main disadvantages arise during limited/poor bone quality for initial cancellous bone-cement fixation; revision with removal of a long cement mantle and re-cementing into a previously cemented canal. Furthermore removing a fully cemented implant can be much more time consuming. The Endo Klinik has currently over 30 years of experience utilising cemented stems in combination with a rotating hinge implant in revision TKA, including satisfactory long-term results. However we are aware of this technique associated limitations, including aseptic loosening and further conversion to a re-revision with necessary impaction bone grafting. Generally it has to be mentioned, that type of stem and reconstruction type if often driven by surgeons own and institutional preference


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 7 - 7
1 Feb 2017
Haider H Weisenburger J Garvin K
Full Access

Wear testing of THR has chaperoned generations of improved UHMWPE bearings into wide clinical use. However, previous in vitro testing failed to screen many metal-on-metal hips which failed. This talk tours hip wear testing and associated standards, giving an assortment of THR wear test results from the author's laboratory as examples. Two international hip wear-simulator standards are used: ISO-14242-1 (anatomic configuration) and ISO-14242-3 (orbital-bearing). Both prescribe 5 million (MC) force-motion cycles involving cross-shear synchronized with compression simulating walking gate of ideally aligned THRs. ISO-14242-1 imposes flexion (flex), abduction-adduction (ad-ab) and internal-external (IE) rotations independently and simultaneously. An orbital-bearing simulator more simply rotates either a tilted femoral head or acetabular component, switching from flexion-dominated to ad-ab-dominated phases in each cycle with some IE. In the latter, the acetabular component is typically placed below the femoral head to accentuate abrasive conditions, trapping third-body-wear debris. Wear is measured (ISO-14242-2) gravimetrically (or volumetrically in some hard-on-hard bearings). Wear-rate ranges from negligible to >80mg/MC beyond what causes osteolysis. This mode-1 adhesive wear can therefore “discriminate” to screen hip designs-materials in average conditions. Stair-climbing, sitting, squatting and other activities may cause THR edge-loading and even impingement with smaller head-to-neck ratios or coverage angle, naturally worse in metal-on metal hips. Deformation of thin acetabular components during surgical impaction may cause elevated friction or metal-metal contact, shedding more metal-ions and accelerating failure. Surgical misalignments in inclination angle, version and tilt can make this worse, even during modest activities in hard-on-hard bearings. Abrasive particulate debris from bone or bone-cement, hydroxyapatite, neck-impingement, normal wear, or corrosion can compound the above. Such debris can scratch the femoral head surface, or embed in the UHMWPE liner compromising the wear of even metal-on-plastic hips. Much of the belated standardization activity for higher demand hip testing is in response to the metal-metal failures. ASTM F3047M is a recent non-prescriptive guide for what more rigorous testing can generally be done. Third-body particulate can be intentionally introduced or random scratching of the femoral component surface in extra abrasion testing. Also, the compressive load can be increased, more frequent start-stops to disrupt lubrication, and steepening acetabular shell-liner angles to reduce contact area and cause edge-loading, made harsher when combined with version misalignment. Transient separation can occur between head and liner during the swing phase in a lax THR joint with low coverage angle and misalignments; the separated head impacts the liner rim when reseating. An edge-loading ISO test is currently being discussed where (so-called) “microseparation” to a known distance is directly imposed by a lateral spring force in a hip simulator. Friction testing of a THR in a pendulum-like setup undergoing flexion or abduction swings is being discussed in the ASTM, and so have multi-dimensional THR friction measurements during a long-term wear test simultaneously measuring and separating friction of three rotational (flex, ad-ab, and IE) axes. THR wear test methods continue to evolve to address more challenges such as novel duo-mobility THR designs, where UHMWPE bearings cannot be removed for gravimetric wear measurements


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_26 | Pages 13 - 13
1 Jun 2013
Spurrier E Latimer M
Full Access

Bone cement reaches high temperatures while polymerising. Bone has been shown to be sensitive to thermal injury with osteonecrosis reported after one minute at 47°C. Necrosis during cementing might compromise the bone-cement interface. Some surgeons fill the joint cavity with irrigation fluid to provide a heatsink during cementing, but this has not been supported by research. We used a model acetabulum in a bovine humerus to allow measurement of bone temperatures in cementing. Models were prepared with a 50mm diameter acetabulum and three temperature probe holes. Four warmed models were cemented with Palacos RG using a standard mixing system and a 10mm UMHWPE disc to represent an acetabular component. Two of the acetabular models were filled with room temperature water to provide a heatsink. An electronic probe measured temperature at 5 second intervals from the moment of cementing. In the models with no heatsink, peak temperature was 40.3°C. The highest temperature rise was 7.5°C. In the models with a heatsink, there was a mean fall of 4.4°C. These results suggest that using a heatsink while cementing prostheses may reduce the peak bone temperature