Advertisement for orthosearch.org.uk
Results 1 - 20 of 204
Results per page:
Bone & Joint Research
Vol. 6, Issue 11 | Pages 623 - 630
1 Nov 2017
Suh D Kang K Son J Kwon O Baek C Koh Y

Objectives. Malalignment of the tibial component could influence the long-term survival of a total knee arthroplasty (TKA). The object of this study was to investigate the biomechanical effect of varus and valgus malalignment on the tibial component under stance-phase gait cycle loading conditions. Methods. Validated finite element models for varus and valgus malalignment by 3° and 5° were developed to evaluate the effect of malalignment on the tibial component in TKA. Maximum contact stress and contact area on a polyethylene insert, maximum contact stress on patellar button and the collateral ligament force were investigated. Results. There was greater total contact stress in the varus alignment than in the valgus, with more marked difference on the medial side. An increase in ligament force was clearly demonstrated, especially in the valgus alignment and force exerted on the medial collateral ligament also increased. Conclusion. These results highlight the importance of accurate surgical reconstruction of the coronal tibial alignment of the knee joint. Varus and valgus alignments will influence wear and ligament stability, respectively in TKA. Cite this article: D-S. Suh, K-T. Kang, J. Son, O-R. Kwon, C. Baek, Y-G. Koh. Computational study on the effect of malalignment of the tibial component on the biomechanics of total knee arthroplasty: A Finite Element Analysis. Bone Joint Res 2017;6:623–630. DOI: 10.1302/2046-3758.611.BJR-2016-0088.R2


Objectives. Posterior condylar offset (PCO) and posterior tibial slope (PTS) are critical factors in total knee arthroplasty (TKA). A computational simulation was performed to evaluate the biomechanical effect of PCO and PTS on cruciate retaining TKA. Methods. We generated a subject-specific computational model followed by the development of ± 1 mm, ± 2 mm and ± 3 mm PCO models in the posterior direction, and -3°, 0°, 3° and 6° PTS models with each of the PCO models. Using a validated finite element (FE) model, we investigated the influence of the changes in PCO and PTS on the contact stress in the patellar button and the forces on the posterior cruciate ligament (PCL), patellar tendon and quadriceps muscles under the deep knee-bend loading conditions. Results. Contact stress on the patellar button increased and decreased as PCO translated to the anterior and posterior directions, respectively. In addition, contact stress on the patellar button decreased as PTS increased. These trends were consistent in the FE models with altered PCO. Higher quadriceps muscle and patellar tendon force are required as PCO translated in the anterior direction with an equivalent flexion angle. However, as PTS increased, quadriceps muscle and patellar tendon force reduced in each PCO condition. The forces exerted on the PCL increased as PCO translated to the posterior direction and decreased as PTS increased. Conclusion. The change in PCO alternatively provided positive and negative biomechanical effects, but it led to a reduction in a negative biomechanical effect as PTS increased. Cite this article: K-T. Kang, Y-G. Koh, J. Son, O-R. Kwon, J-S. Lee, S. K. Kwon. A computational simulation study to determine the biomechanical influence of posterior condylar offset and tibial slope in cruciate retaining total knee arthroplasty. Bone Joint Res 2018;7:69–78. DOI: 10.1302/2046-3758.71.BJR-2017-0143.R1


The Bone & Joint Journal
Vol. 102-B, Issue 4 | Pages 442 - 448
1 Apr 2020
Kayani B Konan S Ahmed SS Chang JS Ayuob A Haddad FS

Aims

The objectives of this study were to assess the effect of anterior cruciate ligament (ACL) resection on flexion-extension gaps, mediolateral soft tissue laxity, maximum knee extension, and limb alignment during primary total knee arthroplasty (TKA).

Methods

This prospective study included 140 patients with symptomatic knee osteoarthritis undergoing primary robotic-arm assisted TKA. All operative procedures were performed by a single surgeon using a standard medial parapatellar approach. Optical motion capture technology with fixed femoral and tibial registration pins was used to assess study outcomes pre- and post-ACL resection with knee extension and 90° knee flexion. This study included 76 males (54.3%) and 64 females (45.7%) with a mean age of 64.1 years (SD 6.8) at time of surgery. Mean preoperative hip-knee-ankle deformity was 6.1° varus (SD 4.6° varus).


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 3 | Pages 344 - 350
1 Mar 2009
Luyckx T Didden K Vandenneucker H Labey L Innocenti B Bellemans J

The purpose of this study was to test the hypothesis that patella alta leads to a less favourable situation in terms of patellofemoral contact force, contact area and contact pressure than the normal patellar position, and thereby gives rise to anterior knee pain. A dynamic knee simulator system based on the Oxford rig and allowing six degrees of freedom was adapted in order to simulate and record the dynamic loads during a knee squat from 30° to 120° flexion under physiological conditions. Five different configurations were studied, with variable predetermined patellar heights. The patellofemoral contact force increased with increasing knee flexion until contact occurred between the quadriceps tendon and the femoral trochlea, inducing load sharing. Patella alta caused a delay of this contact until deeper flexion. As a consequence, the maximal patellofemoral contact force and contact pressure increased significantly with increasing patellar height (p < 0.01). Patella alta was associated with the highest maximal patellofemoral contact force and contact pressure. When averaged across all flexion angles, a normal patellar position was associated with the lowest contact pressures. Our results indicate that there is a biomechanical reason for anterior knee pain in patients with patella alta


Bone & Joint Research
Vol. 5, Issue 11 | Pages 552 - 559
1 Nov 2016
Kang K Koh Y Son J Kwon O Baek C Jung SH Park KK

Objectives. Malrotation of the femoral component can result in post-operative complications in total knee arthroplasty (TKA), including patellar maltracking. Therefore, we used computational simulation to investigate the influence of femoral malrotation on contact stresses on the polyethylene (PE) insert and on the patellar button as well as on the forces on the collateral ligaments. Materials and Methods. Validated finite element (FE) models, for internal and external malrotations from 0° to 10° with regard to the neutral position, were developed to evaluate the effect of malrotation on the femoral component in TKA. Femoral malrotation in TKA on the knee joint was simulated in walking stance-phase gait and squat loading conditions. Results. Contact stress on the medial side of the PE insert increased with internal femoral malrotation and decreased with external femoral malrotation in both stance-phase gait and squat loading conditions. There was an opposite trend in the lateral side of the PE insert case. Contact stress on the patellar button increased with internal femoral malrotation and decreased with external femoral malrotation in both stance-phase gait and squat loading conditions. In particular, contact stress on the patellar button increased by 98% with internal malrotation of 10° in the squat loading condition. The force on the medial collateral ligament (MCL) and the lateral collateral ligament (LCL) increased with internal and external femoral malrotations, respectively. Conclusions. These findings provide support for orthopaedic surgeons to determine a more accurate femoral component alignment in order to reduce post-operative PE problems. Cite this article: K-T. Kang, Y-G. Koh, J. Son, O-R. Kwon, C. Baek, S. H. Jung, K. K. Park. Measuring the effect of femoral malrotation on knee joint biomechanics for total knee arthroplasty using computational simulation. Bone Joint Res 2016;5:552–559. DOI: 10.1302/2046-3758.511.BJR-2016-0107.R1


Aims

The aim of this study was to compare any differences in the primary outcome (biphasic flexion knee moment during gait) of robotic arm-assisted bi-unicompartmental knee arthroplasty (bi-UKA) with conventional mechanically aligned total knee arthroplasty (TKA) at one year post-surgery.

Methods

A total of 76 patients (34 bi-UKA and 42 TKA patients) were analyzed in a prospective, single-centre, randomized controlled trial. Flat ground shod gait analysis was performed preoperatively and one year postoperatively. Knee flexion moment was calculated from motion capture markers and force plates. The same setup determined proprioception outcomes during a joint position sense test and one-leg standing. Surgery allocation, surgeon, and secondary outcomes were analyzed for prediction of the primary outcome from a binary regression model.


The Bone & Joint Journal
Vol. 97-B, Issue 12 | Pages 1628 - 1633
1 Dec 2015
Elmadag M Uzer G Yildiz F Erden T Bilsel K Büyükpinarbasili N Üsümez A Bozdag E Sen C

This animal study compares different methods of performing an osteotomy, including using an Erbium-doped Yttrium Aluminum Garnet laser, histologically, radiologically and biomechanically. A total of 24 New Zealand rabbits were divided into four groups (Group I: multihole-drilling; Group II: Gigli saw; Group III: electrical saw blade and Group IV: laser). A proximal transverse diaphyseal osteotomy was performed on the right tibias of the rabbits after the application of a circular external fixator. The rabbits were killed six weeks after the procedure, the operated tibias were resected and radiographs taken. . The specimens were tested biomechanically using three-point bending forces, and four tibias from each group were examined histologically. Outcome parameters were the biomechanical stability of the tibias as assessed by the failure to load and radiographic and histological examination of the osteotomy site. . The osteotomies healed in all specimens both radiographically and histologically. The differences in the mean radiographic (p = 0.568) and histological (p = 0.71) scores, and in the mean failure loads (p = 0.180) were not statistically significant between the groups. . Different methods of performing an osteotomy give similar quality of union. The laser osteotomy, which is not widely used in orthopaedics is an alternative to the current methods. Cite this article: Bone Joint J 2015;97-B:1628–33


The Bone & Joint Journal
Vol. 95-B, Issue 3 | Pages 348 - 353
1 Mar 2013
Metcalfe AJ Stewart C Postans N Dodds AL Holt CA Roberts AP

The aim of this study was to examine the loading of the other joints of the lower limb in patients with unilateral osteoarthritis (OA) of the knee. We recruited 20 patients with no other symptoms or deformity in the lower limbs from a consecutive cohort of patients awaiting knee replacement. Gait analysis and electromyographic recordings were performed to determine moments at both knees and hips, and contraction patterns in the medial and lateral quadriceps and hamstrings bilaterally. The speed of gait was reduced in the group with OA compared with the controls, but there were only minor differences in stance times between the limbs. Patients with OA of the knee had significant increases in adduction moment impulse at both knees and the contralateral hip (adjusted p-values: affected knee: p < 0.01, unaffected knee p = 0.048, contralateral hip p = 0.03), and significantly increased muscular co-contraction bilaterally compared with controls (all comparisons for co-contraction, p < 0.01).

The other major weight-bearing joints are at risk from abnormal biomechanics in patients with unilateral OA of the knee.

Cite this article: Bone Joint J 2013;95-B:348–53.


The Bone & Joint Journal
Vol. 97-B, Issue 5 | Pages 642 - 648
1 May 2015
Hunt NC Ghosh KM Blain AP Rushton SP Longstaff LM Deehan DJ

The aim of this study was to compare the maximum laxity conferred by the cruciate-retaining (CR) and posterior-stabilised (PS) Triathlon single-radius total knee arthroplasty (TKA) for anterior drawer, varus–valgus opening and rotation in eight cadaver knees through a defined arc of flexion (0º to 110º). The null hypothesis was that the limits of laxity of CR- and PS-TKAs are not significantly different.

The investigation was undertaken in eight loaded cadaver knees undergoing subjective stress testing using a measurement rig. Firstly the native knee was tested prior to preparation for CR-TKA and subsequently for PS-TKA implantation. Surgical navigation was used to track maximal displacements/rotations at 0º, 30º, 60º, 90º and 110° of flexion. Mixed-effects modelling was used to define the behaviour of the TKAs.

The laxity measured for the CR- and PS-TKAs revealed no statistically significant differences over the studied flexion arc for the two versions of TKA. Compared with the native knee both TKAs exhibited slightly increased anterior drawer and decreased varus-valgus and internal-external roational laxities. We believe further study is required to define the clinical states for which the additional constraint offered by a PS-TKA implant may be beneficial.

Cite this article: Bone Joint J 2015; 97-B:642–8.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 7 | Pages 905 - 908
1 Jul 2006
Hetsroni I Finestone A Milgrom C Sira DB Nyska M Radeva-Petrova D Ayalon M

Excessive foot pronation has been considered to be related to anterior knee pain. We undertook a prospective study to test the hypothesis that exertional anterior knee pain is related to the static and dynamic parameters of foot pronation. Two weeks before beginning basic training lasting for 14 weeks, 473 infantry recruits were enrolled into the study and underwent two-dimensional measurement of their subtalar joint displacement angle during walking on a treadmill.

Of the 405 soldiers who finished the training 61 (15%) developed exertional anterior knee pain. No consistent association was found between the incidence of anterior knee pain and any of the parameters of foot pronation. While a statistically significant association was found between anterior knee pain and pronation velocity (left foot, p = 0.05; right foot, p = 0.007), the relationship was contradictory for the right and left foot. Our study does not support the hypothesis that anterior knee pain is related to excessive foot pronation.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1231 - 1239
1 Nov 2024
Tzanetis P Fluit R de Souza K Robertson S Koopman B Verdonschot N

Aims. The surgical target for optimal implant positioning in robotic-assisted total knee arthroplasty remains the subject of ongoing discussion. One of the proposed targets is to recreate the knee’s functional behaviour as per its pre-diseased state. The aim of this study was to optimize implant positioning, starting from mechanical alignment (MA), toward restoring the pre-diseased status, including ligament strain and kinematic patterns, in a patient population. Methods. We used an active appearance model-based approach to segment the preoperative CT of 21 osteoarthritic patients, which identified the osteophyte-free surfaces and estimated cartilage from the segmented bones; these geometries were used to construct patient-specific musculoskeletal models of the pre-diseased knee. Subsequently, implantations were simulated using the MA method, and a previously developed optimization technique was employed to find the optimal implant position that minimized the root mean square deviation between pre-diseased and postoperative ligament strains and kinematics. Results. There were evident biomechanical differences between the simulated patient models, but also trends that appeared reproducible at the population level. Optimizing the implant position significantly reduced the maximum observed strain root mean square deviations within the cohort from 36.5% to below 5.3% for all but the anterolateral ligament; and concomitantly reduced the kinematic deviations from 3.8 mm (SD 1.7) and 4.7° (SD 1.9°) with MA to 2.7 mm (SD 1.4) and 3.7° (SD 1.9°) relative to the pre-diseased state. To achieve this, the femoral component consistently required translational adjustments in the anterior, lateral, and proximal directions, while the tibial component required a more posterior slope and varus rotation in most cases. Conclusion. These findings confirm that MA-induced biomechanical alterations relative to the pre-diseased state can be reduced by optimizing the implant position, and may have implications to further advance pre-planning in robotic-assisted surgery in order to restore pre-diseased knee function. Cite this article: Bone Joint J 2024;106-B(11):1231–1239


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_7 | Pages 83 - 83
1 Jul 2022
Dandridge O Garner A Amis A Cobb J Arkel RV
Full Access

Abstract. Patellofemoral Arthroplasty (PFA) is an alternative to TKA for patellofemoral osteoarthritis that preserves tibiofemoral compartments. It is unknown how implant positioning affects biomechanics, especially regarding the patella. This study analysed biomechanical effects of femoral and patellar component position, hypothesising femoral positioning is more important. Nine cadaveric knees were studied using a repeated-measures protocol. Knees were tested intact, then after PFA implanted in various positions: neutral (as-planned), patellar over/understuffing (±2mm), patellar tilt, patellar flexion, femoral rotation, and femoral tilt (all ±6°). Arthroplasties were implemented with CT-designed patient-specific instrumentation. Anterior femoral cuts referenced Whiteside's line and all femoral positions ensured smooth condyle-to-component transition. Knee extension moments, medial patellofemoral ligament (MPFL) length-change, and tibiofemoral and patellofemoral kinematics were measured under physiological muscle loading. Data were analysed with one-dimensional statistical parametric mapping (Bonferroni-Holm corrected). PFA changed knee function, altering extension moments (p<0.001) and patellofemoral kinematics (p<0.05), but not tibiofemoral kinematics. Patellar component positioning affected patellofemoral kinematics: over/understuffing influenced patellar anterior translation and the patellar tendon moment arm (p<0.001). Medially tilted patellar cuts produced lateral patellar tilt (p<0.001) and vice versa. A similar inverse effect occurred with extended/flexed patellar cuts, causing patellar flexion and extension (p<0.001), respectively. Of all variants, only extending the patellar cut produced near-native extension moments throughout. Conversely, the only femoral effect was MPFL length change between medially/laterally rotated components. PFA can restore native knee biomechanics. Provided anterior femoral cuts are controlled and smooth condyle-to-component transition assured, patellar position affects biomechanics more than femoral, contradicting the hypothesis


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 64 - 64
7 Aug 2023
Tawy G McNicholas M Biant L
Full Access

Abstract. Introduction. This study compared biomechanical and functional parameters of a total knee arthroplasty (TKA) implant (Cemented Zimmer Hi-Flex) against healthy older adults to determine whether knee biomechanics was restored in this patient population. Methodology. Patients with a primary TKA and healthy adults >55 years old with no musculoskeletal deficits or arthritis participated. Bilateral knee range of motion (RoM) was assessed with a goniometer, then gait patterns were analysed with a 3D motion-capture system. An arthrometer then quantified anterior-posterior laxity of each knee. Statistical analyses were performed in SPSS (α=0.05; required sample size: n=21 per group). Results. 25 knees were replaced in 21 patients. Nine presented with fixed flexion deformities (FFD) (13.3±5.6°). FFDs were abolished intraoperatively, and the average flexion increased from 124.8±9.1° to 130.9±5.8°. At 9.6±3.2 years postoperatively, the patients achieved poorer RoM than healthy controls (n=23); p<0.0001. These differences were due to limited flexion in the knee. Patients also failed to achieve the same degree of flexion as controls bilaterally during gait. No differences were observed during mid-flexion; a state that has been associated with instability (p=0.614). There were no differences between groups in knee laxity. Conclusion. Patients in this study had similar gait patterns to healthy older adults during mid-flexion, and were no more likely to exhibit anterior-posterior translation of the knee >7mm; a known risk factor of instability. However, the flexion range was poorer. This led to bilateral pathological knee flexion patterns during gait. Further research should identify the cause of these limitations


Bone & Joint Open
Vol. 6, Issue 2 | Pages 178 - 185
11 Feb 2025
Gallant A Vandekerckhove P Beckers L De Smet A Depuydt C Victor J Hardeman F

Aims. Valgus subsidence of uncemented tibial components following medial unicompartmental knee arthroplasty (UKA) poses a challenge in the early postoperative phase, necessitating a comprehensive understanding of its prevalence, risk factors, and impact on patient outcomes. Methods. This prospective multicentre study analyzed 97 knees from 90 patients undergoing UKA across four participating hospitals. A standardized surgical technique was employed uniformly by all participating surgeons. Postoperative evaluations were conducted preoperatively, and one day, four weeks, three months, and one year postoperative, encompassing weightbearing radiographs, bone mineral density assessments, and clinical outcome reports using the Forgotten Joint Score and Oxford Knee Score. Statistical analyses, including non-parametric correlation analysis using the Kendall correlation coefficient and Mann-Whitney U test, were performed to explore associations between subsidence and various patient-related or radiological parameters. Results. A total of eight patients showed more than 2° valgus subsidence (8.2%), higher than previously reported rates. There were significant correlations between subsidence and higher preoperative varus alignment of the tibia, larger adaptation of the preoperative varus to a postoperative neutral or valgus alignment, mediolateral undersizing of the tibial component, excessive lateral load of tibial component by more lateral position of femoral component relative to tibial component, a lower T-score, and female sex. Our study found no significant difference in pain scores between subsidence and non-subsidence groups at various postoperative milestones. Conclusion. These findings corroborate earlier suggested risk factors based on biomechanical models. Further research might provide the opportunity to identify high-risk groups preoperatively and adapt treatment strategies for these patients. Cite this article: Bone Jt Open 2025;6(2):178–185


Bone & Joint Research
Vol. 12, Issue 1 | Pages 58 - 71
17 Jan 2023
Dagneaux L Limberg AK Owen AR Bettencourt JW Dudakovic A Bayram B Gades NM Sanchez-Sotelo J Berry DJ van Wijnen A Morrey ME Abdel MP

Aims. As has been shown in larger animal models, knee immobilization can lead to arthrofibrotic phenotypes. Our study included 168 C57BL/6J female mice, with 24 serving as controls, and 144 undergoing a knee procedure to induce a contracture without osteoarthritis (OA). Methods. Experimental knees were immobilized for either four weeks (72 mice) or eight weeks (72 mice), followed by a remobilization period of zero weeks (24 mice), two weeks (24 mice), or four weeks (24 mice) after suture removal. Half of the experimental knees also received an intra-articular injury. Biomechanical data were collected to measure passive extension angle (PEA). Histological data measuring area and thickness of posterior and anterior knee capsules were collected from knee sections. Results. Experimental knees immobilized for four weeks demonstrated mean PEAs of 141°, 72°, and 79° after zero, two, and four weeks of remobilization (n = 6 per group), respectively. Experimental knees demonstrated reduced PEAs after two weeks (p < 0.001) and four weeks (p < 0.0001) of remobilization compared to controls. Following eight weeks of immobilization, experimental knees exhibited mean PEAs of 82°, 73°, and 72° after zero, two, and four weeks of remobilization, respectively. Histological analysis demonstrated no cartilage degeneration. Similar trends in biomechanical and histological properties were observed when intra-articular violation was introduced. Conclusion. This study established a novel mouse model of robust knee contracture without evidence of OA. This was appreciated consistently after eight weeks of immobilization and was irrespective of length of remobilization. As such, this arthrofibrotic model provides opportunities to investigate molecular pathways and therapeutic strategies. Cite this article: Bone Joint Res 2023;12(1):58–71


Bone & Joint Research
Vol. 13, Issue 6 | Pages 279 - 293
7 Jun 2024
Morris JL Letson HL McEwen PC Dobson GP

Aims. Adenosine, lidocaine, and Mg. 2+. (ALM) therapy exerts differential immuno-inflammatory responses in males and females early after anterior cruciate ligament (ACL) reconstruction (ACLR). Our aim was to investigate sex-specific effects of ALM therapy on joint tissue repair and recovery 28 days after surgery. Methods. Male (n = 21) and female (n = 21) adult Sprague-Dawley rats were randomly divided into ALM or Saline control treatment groups. Three days after ACL rupture, animals underwent ACLR. An ALM or saline intravenous infusion was commenced prior to skin incision, and continued for one hour. An intra-articular bolus of ALM or saline was also administered prior to skin closure. Animals were monitored to 28 days, and joint function, pain, inflammatory markers, histopathology, and tissue repair markers were assessed. Results. Despite comparable knee function, ALM-treated males had reduced systemic inflammation, synovial fluid angiogenic and pro-inflammatory mediators, synovitis, and fat pad fibrotic changes, compared to controls. Within the ACL graft, ALM-treated males had increased expression of tissue repair markers, decreased inflammation, increased collagen organization, and improved graft-bone healing. In contrast to males, females had no evidence of persistent systemic inflammation. Compared to controls, ALM-treated females had improved knee extension, gait biomechanics, and elevated synovial macrophage inflammatory protein-1 alpha (MIP-1α). Within the ACL graft, ALM-treated females had decreased inflammation, increased collagen organization, and improved graft-bone healing. In articular cartilage of ALM-treated animals, matrix metalloproteinase (MMP)-13 expression was blunted in males, while in females repair markers were increased. Conclusion. At 28 days, ALM therapy reduces inflammation, augments tissue repair patterns, and improves joint function in a sex-specific manner. The study supports transition to human safety trials. Cite this article: Bone Joint Res 2024;13(6):279–293


Bone & Joint Research
Vol. 11, Issue 7 | Pages 494 - 502
20 Jul 2022
Kwon HM Lee J Koh Y Park KK Kang K

Aims. A functional anterior cruciate ligament (ACL) or posterior cruciate ligament (PCL) has been assumed to be required for patients undergoing unicompartmental knee arthroplasty (UKA). However, this assumption has not been thoroughly tested. Therefore, this study aimed to assess the biomechanical effects exerted by cruciate ligament-deficient knees with medial UKAs regarding different posterior tibial slopes. Methods. ACL- or PCL-deficient models with posterior tibial slopes of 1°, 3°, 5°, 7°, and 9° were developed and compared to intact models. The kinematics and contact stresses on the tibiofemoral joint were evaluated under gait cycle loading conditions. Results. Anterior translation increased in ACL-deficient UKA cases compared with intact models. In contrast, posterior translation increased in PCL-deficient UKA cases compared with intact models. As the posterior tibial slope increased, anterior translation of ACL-deficient UKA increased significantly in the stance phase, and posterior translation of PCL-deficient UKA increased significantly in the swing phase. Furthermore, as the posterior tibial slope increased, contact stress on the other compartment increased in cruciate ligament-deficient UKAs compared with intact UKAs. Conclusion. Fixed-bearing medial UKA is a viable treatment option for patients with cruciate ligament deficiency, providing a less invasive procedure and allowing patient-specific kinematics to adjust posterior tibial slope. Patient selection is important, and while AP kinematics can be compensated for by posterior tibial slope adjustment, rotational stability is a prerequisite for this approach. ACL- or PCL-deficient UKA that adjusts the posterior tibial slope might be an alternative treatment option for a skilled surgeon. Cite this article: Bone Joint Res 2022;11(7):494–502


Bone & Joint Open
Vol. 2, Issue 6 | Pages 397 - 404
1 Jun 2021
Begum FA Kayani B Magan AA Chang JS Haddad FS

Limb alignment in total knee arthroplasty (TKA) influences periarticular soft-tissue tension, biomechanics through knee flexion, and implant survival. Despite this, there is no uniform consensus on the optimal alignment technique for TKA. Neutral mechanical alignment facilitates knee flexion and symmetrical component wear but forces the limb into an unnatural position that alters native knee kinematics through the arc of knee flexion. Kinematic alignment aims to restore native limb alignment, but the safe ranges with this technique remain uncertain and the effects of this alignment technique on component survivorship remain unknown. Anatomical alignment aims to restore predisease limb alignment and knee geometry, but existing studies using this technique are based on cadaveric specimens or clinical trials with limited follow-up times. Functional alignment aims to restore the native plane and obliquity of the joint by manipulating implant positioning while limiting soft tissue releases, but the results of high-quality studies with long-term outcomes are still awaited. The drawbacks of existing studies on alignment include the use of surgical techniques with limited accuracy and reproducibility of achieving the planned alignment, poor correlation of intraoperative data to long-term functional outcomes and implant survivorship, and a paucity of studies on the safe ranges of limb alignment. Further studies on alignment in TKA should use surgical adjuncts (e.g. robotic technology) to help execute the planned alignment with improved accuracy, include intraoperative assessments of knee biomechanics and periarticular soft-tissue tension, and correlate alignment to long-term functional outcomes and survivorship


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 76 - 76
7 Aug 2023
Borque K Han S Gold J Sij E Laughlin M Amis A Williams A Noble P Lowe W
Full Access

Abstract. Introduction. Persistent medial laxity increases the risk of failure for ACL reconstruction. To address this, multiple reconstruction techniques have been created. To date, no single strand reconstruction constructs have been able to restore both valgus and rotational stability. In response to this, a novel single strand Short Isometric Construct (SIC) MCL reconstruction was developed. Methods. Eight fresh-frozen cadaveric specimens were tested in three states: 1) intact 2) after sMCL and dMCL transection, and 3) after SIC MCL reconstruction. In each state, four loading conditions were applied at varying flexion angles: 90N anterior drawer, 5Nm tibial external rotation torque, 8Nm valgus torque, and combined 90N anterior drawer plus 5Nm tibial external rotation torque. Results. Transection of the sMCL and dMCL resulted in increased laxity with external rotation torque, valgus torque, and combined anterior drawer plus external rotation. SIC MCL reconstruction restored external rotation and valgus stability to intact levels throughout all degrees of flexion. In the combined test SIC MCL reconstruction also restored stability to intact levels for both anterior distraction and external rotation throughout the range of motion. No significant differences were noted between intact and SIC reconstruction. Conclusion. The single-limb short isometric construct (SIC) MCL reconstruction restored native valgus and rotatory stability to a sMCL- and dMCL-deficient knee in biomechanical testing


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 56 - 56
7 Aug 2023
Nicholls K Wilcocks K Shean K Anderson J Matthews A Vachtsevanos L
Full Access

Abstract. Introduction. Compared to the standard Tomofix plate, the anatomical Tomofix medial high tibial (MHT) plate has been shown to improve anatomical fit and post correction tibial contour, following high tibial osteotomy (HTO). Clinical data on surgical complications, osteotomy union rates and survivorship with the anatomical Tomofix MHT plate however remain limited. This study reports mid-term results of HTO surgery, using the anatomical Tomofix MHT plate. Methods. All patients undergoing HTO surgery using the anatomical Tomofix MHT plate between 2017 and 2022 were included in the study. Data on complications, osteotomy union rates and survivorship were collected prospectively and retrospectively analysed. Results. 78 HTO procedures were performed using the anatomical Tomofix plate in 68 patients. Follow-up ranged between 6 weeks and 5 years. Postoperative complications included 5 hinge fractures that united without further intervention, 1 deep vein thrombus and 1 subclinical pulmonary embolism. There were no wound problems and no returns to theatre, other than for planned removal of metalwork at 1 year. All osteotomies united with no loss of correction. Only 1 HTO was successfully revised to a partial medial knee replacement 2.5 years following osteotomy. The 5-year survivorship was 98.7%. Conclusion. The anatomical Tomofix MHT plate achieves excellent biomechanical stability and union rates in HTO surgery, with minimal complications and excellent mid-term HTO survivorship