Locking plates are widely used in clinical practice for the surgical treatment of complex proximal humerus fractures, especially in osteoporotic bone. The aim of this study is to assess the biomechanical influence of the infero-medial locking screws on maintaining reduction of the fragments in a proximal humerus fracture. A standard 3-part proximal humerus fracture was created in fourth generation humerus saw bones. Each specimen was anatomically reduced and secured with a PHILOS locking plate. Eleven of the specimens had infero-medial locking screws inserted, and 11 specimens did not. Each humerus sawbone underwent cyclical loading at 532N, as previous studies showed this was the maximum force at the glenohumeral joint. The absolute inter-fragmentary motion was recorded using an infra-red motion analysis device. Each specimen was then loaded to failure.Purpose
Materials & Methods
Lag screw cut-out following fixation of unstable intertrochanteric fractures in osteoporotic bone remains an unsolved challenge. A novel new device is the X-Bolt which is an expanding type bolt that may offer superior fixation in osteoporotic bone compared to the standard DHS screw type device. The aim of this study was to test if there was a difference in cut-out using the X-Bolt implant compared with the standard DHS systemIntroduction
Aims
The two most common complications of femoral impaction bone grafting are femoral fracture and massive implant subsidence. We investigated fracture forces and implant subsidence rates in embalmed human femurs undergoing impaction grafting. The study consisted of two arms, the first examining the force at which femoral fracture occurs in the embalmed human femur, and the second examining whether significant graft implant/subsidence occurs following impaction at a set force at two different impaction frequencies. Using a standardized impaction grafting technique with modifications, an initial group of 17 femurs underwent complete destructive impaction testing, allowing sequentially increased, controlled impaction forces to be applied until femoral fracture occurred. A second group of 8 femurs underwent impaction bone grafting at constant force, at an impaction frequency of 1 Hz or 10 Hz. An Exeter stem was cemented into the neomedullary canals. These constructs underwent subsidence testing simulating the first 2 months of postoperative weight bearing.Background and purpose
Methods
The purpose of this study was to develop a quality appraisal tool for the assessment of laboratory basic science
The Adams-Berger reconstruction is an effective technique for treating distal radioulnar joint (DRUJ) instability. Graft preparation techniques vary amongst surgeons with insufficient evidence to support one technique over another. Our study evaluated the biomechanical properties of four graft preparation techniques. Extensor tendons were harvested from fresh frozen porcine trotters obtained from a local butcher shop and prepared in one of three configurations (n=5 per group): tendon only; tendon prepared with non-locking, running suture (2-0 FiberLoop, Arthrex, Naples, FL) spaced at 6 mm intervals; and tendon prepared with suture spaced at 12 mm intervals. A fourth configuration of suture alone was also tested. Tendons were allocated in a manner to ensure comparable average diameters amongst groups. Biomechanical testing occurred using custom jigs simulating radial and ulnar tunnels attached to a Bose Electroforce 3510 mechanical testing machine (TA Instruments). After being woven through the jigs, all tendons were sutured end-to-end with 2-0 PROLENE suture (Ethicon). Tendons then underwent a staircase cyclic loading protocol (5-25 Newtons [N] at 1 hertz [Hz] for 1000 cycles, then 5-50 N at 1 Hz for 1000 cycles, then 5-75 N at 1 Hz for 1000 cycles) until graft failure; if samples did not fail during the protocol, they were then loaded to failure. Samples were visually inspected for mode of failure after the protocol. A one-way analysis of variance was used to compare average tendon diameter; post-hac Tuhey tests were used to compare elongation and elongation rate. Survival to cyclic loading was analyzed using Kaplan-Meier survival curves with log rank. Statistical significance was set at a = 0.05. The average tendon diameter of each group was not statistically different [4.17 mm (tendon only), 4.33 mm (FiberLoop spaced 6 mm), and 4.30 mm (FiberLoop spaced 12 mm)]. The average survival of tendon augmented with FiberLoop was significantly higher than tendon only, and all groups had significantly improved survival compared to suture only. There was no difference in survival between FiberLoop spaced 6 mm and 12 mm. Elongation was significantly lower with suture compared to tendon augmented with FiberLoop spaced 6 mm. Elongation rate was significantly lower with suture compared to all groups. Modes of failure included rupture of the tendon, suture, or both at the simulated bone and suture and/or tendon interface, and elongation of the entire construct without rupture. In this
Introduction. Distal femur fracture fixation in elderly presents significant challenges due to osteoporosis and associated comorbidities. There has been an evolution in the management of these fractures with a description of various surgical techniques and fixation methods; however, currently, there is no consensus on the standard of care. Non-union rates of up to 19% and mortality rates of up to 26 % at one year have been reported in the literature. Delay in surgery and delay in mobilisation post-operatively have been identified as two main factors for high rate of mortality. As
Previous
The clinical diagnosis of distal radioulnar joint (DRUJ) instability remains challenging. The current diagnostic gold standard is a dynamic computerized topography (CT) scan. This investigation compares the affected and normal wrists in multiple static positions of forearm rotation.. However, its accuracy has been questioned, as the wrist is unloaded and not placed under stress. This may fail to capture DRUJ instability that does not result in static malalignment between the ulnar head and sigmoid notch. The purpose of this
To assess the current literature on suture anchor placement for the purpose of identifying factors that lead to suture anchor perforation and techniques that reduce the likelihood of complications. Three databases (PubMed, Ovid MEDLINE, EMBASE) were searched, and two reviewers independently screened the resulting literature. Methodological quality of all included papers was assessed using Methodological Index for Non-Randomized Studies criteria and the Cochrane Risk of Bias Assessment tool. Results are presented in a narrative summary fashion using descriptive statistics. Fourteen studies were included in this review. Four case series (491 patients, 56.6% female, mean age 33.9 years), nine controlled cadaveric/laboratory studies (111 cadaveric hips and 12 sawbones, 42.2% female, mean age 60.0 years), and one randomized controlled trial (37 hips, 55.6% female, mean age 34.2 years) were included. Anterior cortical perforation by suture anchors led to pain and impingement of pelvic neurovascular structures. The anterior acetabular positions (three to four o'clock) had the thinnest bone, smallest rim angles, and highest incidence of articular perforation. Drilling angles from 10° to 20° measured off the coronal plane were acceptable. The mid-anterior (MA) and distal anterolateral (DALA) portals were used successfully, with some studies reporting difficulty placing anchors at anterior locations via the DALA portal. Small-diameter (< 1 .8-mm) suture anchors had a lower in vivo incidence of articular perforation with similar stability and pull-out strength in
Hinged elbow orthoses (HEO) are often used to allow protected motion of the unstable elbow. However,
Surgeries for reverse total shoulder arthroplasty (RTSA) significantly increased in the last ten years. Initially developed to treat patients with cuff tear arthropathy (CTA) and pseudoparalysis, wider indications for RTSA were described, especially complex proximal humerus fractures. We previously demonstrated in patients with CTA a different sequence of muscular activation than in normal shoulder, with a decrease in deltoid activation, a significant increase of upper trapezius activation and slight utility of the latissimus dorsi. There is no
Proximal humeral fractures occur frequently, with fixed angle locking plates often being used for their treatment. However, the failure rate of this fixation is high, ranging between 10 and 35%. Numerous variables are thought to affect the performance of the fixation used, including the length and configuration of screws used and the plate position. However, there is currently limited quantitative evidence to support concepts for optimal fixation. The variations in surgical techniques and human anatomy make biomechanical testing prohibitive for such investigations. Therefore, a finite element osteosynthesis test kit has been developed and validated - SystemFix. The aim of this study was to quantify the effect of variations in screw length, configuration and plate position on predicted failure risk of PHILOS plate fixation for unstable proximal humerus fractures using the test kit. Twenty-six low-density humerus models were selected and osteotomized to create a malreduced unstable three-part fracture AO/OTA 11-B3.2 with medial comminution which was virtually fixed with the PHILOS plate. In turn, four different screw lengths, twelve different screw configurations and five plate positions were simulated. Each time, three physiological loading cases were modelled, with an established finite element analysis methodology utilized to evaluate average peri-screw bone strain, this measure has been previously demonstrated to predict experimental fatigue fixation failure. All three core variables lead to significant differences in peri-screw strain magnitudes, i.e. predicted failure risk. With screw length, shortening of 4 mm in all screw lengths (the distance of the screw tips to the joint surface increasing from 4 mm to 8 mm) significantly (p < 0 .001) increased the risk of failure. In the lowest density bone, every additional screw reduced failure risk compared to the four-screw construct, whereas in more dense bone, once the sixth screw was inserted, no further significant benefit was seen (p=0.40). Screw configurations not including calcar screws, also demonstrated significant (p < 0 .001) increased risk of failure. Finally, more proximal plate positioning, compared to the suggested operative technique, was associated with reduced the predicted failure risk, especially in constructs using calcar screws, and distal positioning increased failure risk. Optimal fixation constructs were found when placing screws 4 mm from the joint surface, in configurations including calcar screws, in plates located more proximally, as these factors were associated with the greatest reduction in predicted fixation failure in 3-part unstable proximal humeral fractures. These results may help to provide practical recommendations on the implant usage for improved primary implant stability and may lead to better healing outcomes for osteoporotic proximal fracture patients. Whilst prospective clinical confirmation is required, using this validated computational tool kit enables the discovery of findings otherwise hidden by the variation and prohibitive costs of appropriately powered
The role of anconeus in elbow stability has been a long-standing debate. Anatomical and electromyographic studies have suggested a potential role as a stabilizer. However, to our knowledge, no clinical or
Rotator cuff tears are the most common cause of shoulder disability, affecting 10% of the population under 60 and 40% of those aged 70 and above. Massive irreparable rotator cuff tears account for 30% of all tears and their management continues to be an orthopaedic challenge. Traditional surgical techniques, that is, tendon transfers are performed to restore shoulder motion, however, they result in varying outcomes of stability and complications. Superior capsular reconstruction (SCR) is a novel technique that has shown promise in restoring shoulder function, albeit in limited studies. To date, there has been no biomechanical comparison between these techniques. This study aims to compare three surgical techniques (SCR, latissimus dorsi tendon transfer and lower trapezius tendon transfer) for irreparable rotator cuff tears with respect to intact cuff control using a clinically relevant biomechanical outcome of rotational motion. Eight fresh-frozen shoulder specimens with intact rotator cuffs were tested. After dissection of subcutaneous tissue and muscles, each specimen was mounted on a custom shoulder testing apparatus and physiologic loads were applied using a pulley setup. Under 2.2 Nm torque loading maximum internal and external rotation was measured at 0 and 60 degrees of glenohumeral abduction. Repeat testing was conducted after the creation of the cuff tear and subsequent to the three repair techniques. Repeated measures analysis with paired t-test comparisons using Sidak correction was performed to compare the rotational range of motion following each repair technique with respect to each specimen's intact control. P-values of 0.05 were considered significant. At 0° abduction, internal rotation increased after the tear (intact: 39.6 ± 13.6° vs. tear: 80.5 ± 47.7°, p=0.019). Internal rotation was higher following SCR (52.7 ± 12.9°, intact - SCR 95% CI: −25.28°,-0.95°, p=0.034), trapezius transfer (74.2 ± 25.3°, intact – trapezius transfer: 95% CI: −71.1°, 1.81°, p=0.064), and latissimus transfer (83.5 ± 52.1°, intact – latissimus transfer: 95% CI: −118.3°, 30.5°, p=0.400) than in intact controls. However, internal rotation post SCR yielded the narrowest estimate range close to intact controls. At 60° abduction, internal rotation increased after the tear (intact: 38.7 ± 14.4° vs. tear: 49.5 ± 13°, p=0.005). Internal rotation post SCR did not differ significantly from intact controls (SCR: 49.3 ± 10.1°, intact – SCR: 95% CI: −28°, 6.91°, p=0.38). Trapezius transfer showed a trend toward significantly higher internal rotation (65.7 ± 21.1°, intact – trapezius transfer: 95% CI: −55.7°, 1.7°, p=0.067), while latissimus transfer yielded widely variable rotation angle (65.7 ± 38°, intact – latissimus transfer: 95% CI: −85.9°, 31.9°, p=0.68). There were no significant differences in external rotation for any technique at 0° or 60° abduction. Preliminary evaluation in this cadaveric
Introduction. Revision of total knee endoprostheses (TKA) is increasing in number and causes rising healthcare costs. For constrained prostheses, the use of intramedullar femoral stems is standard. However, there is a big variety of available stem types with regard to length, type of fixation (cemented vs. hybrid) and fixation area (diaphyseal vs. metaphyseal). The aim of this
Introduction and Aims. There are many variables that can affect the occurrence and severity of edge loading in hip replacement. A translational mismatch between the centres of rotation of the head and cup may lead to dynamic separation, causing edge loading and increased wear. Combining a steep inclination angle with such translational mismatch in the medial-lateral axis caused a larger magnitude of separation and increased severity of edge loading. Previous studies have shown variation in the hip Swing Phase Load (SPL) during gait between different patients. The aim of this study was to apply a translational mismatch and determine the effect of varying the SPL on the occurrence and severity of edge loading under different cup inclination angles in a hip joint simulator. Methods. The Leeds II hip joint simulator with a standard gait cycle and 36mm diameter ceramic-on-ceramic bearings (BIOLOX. ®. delta) were used in this study. The study was in two stages; [1] a
Subscapularis tenotomy (SST) has been the preferred approach for shoulder arthroplasty for decades but recent controversy has propelled lesser tuberosity osteotomy (LTO) as a potential alternative. Early work by Gerber suggested improved healing and better outcomes with LTO although subscapularis muscular atrophy occurred in this group as well with unknown long-term implications. However, we previously performed a
Cadaveric specimens that have been fresh-frozen and then thawed for use have historically been considered to be the gold standard for
Introduction and Aims. Clinically many factors such as variations in surgical positioning, and patients' anatomy and biomechanics can affect the occurrence and severity of edge loading which may have detrimental effect on the wear and durability of the implant. Assessing wear of hundreds of combinations of conditions would be impractical, so a preclinical testing approach was followed where the occurrence and severity of edge loading can be determined using short biomechanical tests. Then, selected conditions can be chosen under which the wear can be determined. If a wear correlation with the magnitude of dynamic separation or the severity of edge loading can be shown, then an informed decision can be made based upon the biomechanical results to only select important variables under which the tribological performance of the implant can be assessed. The aim of this study was to determine the relationship between the wear of ceramic-on-ceramic bearings and the (1) magnitude of dynamic separation, (2) the maximum force reached during edge loading and (3) the severity of edge loading resulting from component translational mismatch between the head and cup centres. Methods. The Leeds II hip joint simulator with a standard walking cycle and 36mm diameter ceramic-on-ceramic bearings (BIOLOX. ®. delta, DePuy Synthes Joint Reconstruction, Leeds, UK.) were used. The study was in two parts. Part one: a
Introduction. Reverse Shoulder Arthroplasty (RSA) is recognized to be an effective solution for rotator cuff deficient arthritic shoulders, but there are still concerns about impingement and range of motion (ROM). Several RSA