Advertisement for orthosearch.org.uk
Results 1 - 20 of 57
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 120 - 120
1 Sep 2012
Burke N Kennedy J Fitzpatrick D Mullett H
Full Access

Purpose

Locking plates are widely used in clinical practice for the surgical treatment of complex proximal humerus fractures, especially in osteoporotic bone. The aim of this study is to assess the biomechanical influence of the infero-medial locking screws on maintaining reduction of the fragments in a proximal humerus fracture.

Materials & Methods

A standard 3-part proximal humerus fracture was created in fourth generation humerus saw bones. Each specimen was anatomically reduced and secured with a PHILOS locking plate. Eleven of the specimens had infero-medial locking screws inserted, and 11 specimens did not. Each humerus sawbone underwent cyclical loading at 532N, as previous studies showed this was the maximum force at the glenohumeral joint. The absolute inter-fragmentary motion was recorded using an infra-red motion analysis device. Each specimen was then loaded to failure.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 164 - 164
1 Sep 2012
Gibson D Keogh C Morris S
Full Access

Introduction

Lag screw cut-out following fixation of unstable intertrochanteric fractures in osteoporotic bone remains an unsolved challenge. A novel new device is the X-Bolt which is an expanding type bolt that may offer superior fixation in osteoporotic bone compared to the standard DHS screw type device.

Aims

The aim of this study was to test if there was a difference in cut-out using the X-Bolt implant compared with the standard DHS system


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 210 - 210
1 Sep 2012
Cummins F Kelly D Kenny P
Full Access

Background and purpose

The two most common complications of femoral impaction bone grafting are femoral fracture and massive implant subsidence. We investigated fracture forces and implant subsidence rates in embalmed human femurs undergoing impaction grafting. The study consisted of two arms, the first examining the force at which femoral fracture occurs in the embalmed human femur, and the second examining whether significant graft implant/subsidence occurs following impaction at a set force at two different impaction frequencies.

Methods

Using a standardized impaction grafting technique with modifications, an initial group of 17 femurs underwent complete destructive impaction testing, allowing sequentially increased, controlled impaction forces to be applied until femoral fracture occurred. A second group of 8 femurs underwent impaction bone grafting at constant force, at an impaction frequency of 1 Hz or 10 Hz. An Exeter stem was cemented into the neomedullary canals. These constructs underwent subsidence testing simulating the first 2 months of postoperative weight bearing.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_15 | Pages 68 - 68
7 Nov 2023
Hohmann E Paschos N Keough N Molepo M Oberholster A Erbulut D Tetsworth K Glat V Gueorguiev B
Full Access

The purpose of this study was to develop a quality appraisal tool for the assessment of laboratory basic science biomechanical studies. Materials andScore development comprised of the following phases: item identification/development, item reduction, content/face/criterion validity, weighting, test-retest reliability and internal consistency. For item identification/development, the panel was asked to independently list criteria and factors they considered important for cadaver study and generate items that should be used to appraise cadaver study quality. For content validity, the content validity ratio (CVR) was calculated. The minimum accepted content validity index (CVI) was set to 0.85. For weighting, equal weight for each item was 6.7% [15 items]. Based on these figures the panel was asked to either upscale or downscale the weight for each item ensuring that the final sum for all items was 100%. Face validity was assessed by each panel member using a Likert scale from 1–7. Strong face validity was defined as a mean score of >5. Test-retest reliability was assessed using 10 randomly selected studies. Criterion validity was assessed using the QUACS scale as standard. Internal consistency was assessed using Cronbach's alpha. Five items reached a CVI of 1 and 10 items a CVI of 0.875. For weighting five items reached a final weight of 10% and ten items 5%. The mean score for face validity was 5.6. Test-retest reliability ranged from 0.78–1.00 with 9 items reaching a perfect score. Criterion validity was 0.76 and considered to be strong. Cronbach's alpha was calculated to be 0.71 indicating acceptable internal consistency. The new proposed quality score for basic science studies consists of 15 items and has been shown to be reliable, valid and of acceptable internal consistency. It is suggested that this score should be utilised when assessing basic science studies


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 5 - 5
1 Dec 2022
Li T Beaudry E Westover L Chan R
Full Access

The Adams-Berger reconstruction is an effective technique for treating distal radioulnar joint (DRUJ) instability. Graft preparation techniques vary amongst surgeons with insufficient evidence to support one technique over another. Our study evaluated the biomechanical properties of four graft preparation techniques. Extensor tendons were harvested from fresh frozen porcine trotters obtained from a local butcher shop and prepared in one of three configurations (n=5 per group): tendon only; tendon prepared with non-locking, running suture (2-0 FiberLoop, Arthrex, Naples, FL) spaced at 6 mm intervals; and tendon prepared with suture spaced at 12 mm intervals. A fourth configuration of suture alone was also tested. Tendons were allocated in a manner to ensure comparable average diameters amongst groups. Biomechanical testing occurred using custom jigs simulating radial and ulnar tunnels attached to a Bose Electroforce 3510 mechanical testing machine (TA Instruments). After being woven through the jigs, all tendons were sutured end-to-end with 2-0 PROLENE suture (Ethicon). Tendons then underwent a staircase cyclic loading protocol (5-25 Newtons [N] at 1 hertz [Hz] for 1000 cycles, then 5-50 N at 1 Hz for 1000 cycles, then 5-75 N at 1 Hz for 1000 cycles) until graft failure; if samples did not fail during the protocol, they were then loaded to failure. Samples were visually inspected for mode of failure after the protocol. A one-way analysis of variance was used to compare average tendon diameter; post-hac Tuhey tests were used to compare elongation and elongation rate. Survival to cyclic loading was analyzed using Kaplan-Meier survival curves with log rank. Statistical significance was set at a = 0.05. The average tendon diameter of each group was not statistically different [4.17 mm (tendon only), 4.33 mm (FiberLoop spaced 6 mm), and 4.30 mm (FiberLoop spaced 12 mm)]. The average survival of tendon augmented with FiberLoop was significantly higher than tendon only, and all groups had significantly improved survival compared to suture only. There was no difference in survival between FiberLoop spaced 6 mm and 12 mm. Elongation was significantly lower with suture compared to tendon augmented with FiberLoop spaced 6 mm. Elongation rate was significantly lower with suture compared to all groups. Modes of failure included rupture of the tendon, suture, or both at the simulated bone and suture and/or tendon interface, and elongation of the entire construct without rupture. In this biomechanical study, augmentation of porcine tendons with FiberLoop suture spaced at either 6 or 12 mm for DRUJ reconstruction significantly increased survival to a staircase cyclic loading protocol, as suture material was significantly stiffer than any of the tendon graft configurations


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_14 | Pages 14 - 14
23 Jul 2024
Nugur A Wilkinson D Santhanam S Lal A Mumtaz H Goel A
Full Access

Introduction. Distal femur fracture fixation in elderly presents significant challenges due to osteoporosis and associated comorbidities. There has been an evolution in the management of these fractures with a description of various surgical techniques and fixation methods; however, currently, there is no consensus on the standard of care. Non-union rates of up to 19% and mortality rates of up to 26 % at one year have been reported in the literature. Delay in surgery and delay in mobilisation post-operatively have been identified as two main factors for high rate of mortality. As biomechanical studies have proved better stability with dual plating or nail-plate combination, a trend has been shifting for past few years towards rigid fixation to allow early mobilisation. Our study aims to compare outcomes of distal femur fractures managed with either single plate (SP), dual plating (DP) or nail-plate construct (NP). Methods. A retrospective review of patients aged above 65 years with distal femur fractures (both native and peri-prosthetic) who underwent surgical management between June 2020 and May 2023 was conducted. Patients were divided into three groups based on mode of fixation - single plate or dual plating or nail-plate construct. AO/OTA classification was used for non-periprosthetic, and Unified classification system (UCS) was used for periprosthetic fractures. Data on patient demographics, fracture characteristics, surgical details, postoperative complications, re-operation rate, radiological outcomes and mortality rate were evaluated. Primary objective was to compare re-operation rate and mortality rate between 3 groups at 30 days, 6 months and at 1 year. Results. A cohort of 32 patients with distal femur fractures were included in this study. 91% were females and mean age was 80.97 (range 68–97). 18 (53%) were non-periprosthetic fracture and 14 (47%) were periprosthetic fractures.18 patients underwent single plate fixation (AO/OTA 33A – 8, 33B/C – 2, UCS V3B – 5, V3C – 3),10 patients had dual plate fixation (AO/OTA 33A – 1, 33B/C – 4, UCS V3B – 3, V3C – 2) and 4 patients underwent nail-plate combination fixation (AO/OTA 33A – 4). 70.5% patients had surgery within 36 hours of admission and 90% within 48 hours. Analysis showed no re-operation at 30 days, 6 months in all 3 groups. At 1 year one patient had re-operation in dual-plating periprosthetic group (Distal femur replacement done for failed fixation). Three patients (16%) in single plate group had re-operation at 2 years (2 for peri-implant fracture and 1 for infection). None of the patients treated with Nail-plate combination had re-operation. Mortality rate at 30 days was 0% in among all the 3 groups. At 6 months, it was 16% in single plate group and 0% in DP and NP groups at 6 months and at 1 year mortality rate was 27% in SP group, 10% in DP and 0% in NP group. Combined mortality rate was 0% at 30 days, 9% at 6 months and 18.7% at one year. Conclusion. Our analysis provides insights into fixation methods of distal femur fractures in elderly patients. We conclude that a lower re-operation rate and mortality rate can be achieved with early surgery and rigid fixation with either dual plating or nail-plate construct to allow early mobilisation. Further prospective studies are warranted to confirm these findings and guide the selection of optimal surgical strategies for these challenging fractures


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 94 - 94
1 Jul 2020
Badre A Axford D Banayan S Johnson J King GJ
Full Access

Previous biomechanical studies of lateral collateral ligament (LCL) injuries and their surgical repair, reconstruction and rehabilitation have primarily relied on gravity effects with the arm in the varus position. The application of torsional moments to the forearm manually in the laboratory is not reproducible, hence studies to date likely do not represent forces encountered clinically. The aim of this investigation was to develop a new biomechanical testing model to quantify posterolateral stability of the elbow using an in vitro elbow motion simulator. Six cadaveric upper extremities were mounted in an elbow motion simulator in the varus position. A threaded screw was then inserted on the dorsal aspect of the proximal ulna and a weight hanger was used to suspend 400g, 600g, and 800g of weight from the screw head to allow torsional moments to be applied to the ulna. An LCL injured (LCLI) model was created by sectioning of the common extensor origin, and the LCL. Ulnohumeral rotation was recorded using an electromagnetic tracking system during simulated active and passive elbow flexion with the forearm pronated and supinated. A repeated measures analysis of variance was performed to compare elbow states (intact, LCLI, and LCLI with 400g, 600g, and 800g of weight). During active motion, there was a significant difference between different elbow states (P=.001 pronation, P=.0001 supination). Post hoc analysis showed that the addition of weights did not significantly increase the external rotation (ER) of the ulnohumeral articulation (10°±7°, P=.268 400g, 10.5°±7.1°, P=.156 600g, 11°±7.2°, P=.111 800g) compared to the LCLI state (8.4°±6.4°) with the forearm pronated. However, with the forearm supinated, the addition of 800g of weight significantly increased the ER (9.2°±5.9°, P=.038) compared to the LCLI state (5.9°±5.5°) and the addition of 400g and 600g of weights approached significance (8.2°±5.7°, P=.083 400g, 8.7°±5.9°, P=.054 600g). During passive motion, there was a significant difference between different elbow states (P=.0001 pronation, P=.0001 supination). Post hoc analysis showed that the addition of 600g and 800g but not 400g resulted in a significant increase in ER of the ulnohumeral articulation (9.3°±7.8°, P=.103 400g, 11.2°±6.2°, P=.004 600g, 12.7°±6.8°, P=.006 800g) compared to the LCLI state (3.7°±5.4°) with the forearm pronated. With the forearm supinated, the addition of 400g, 600g, and 800g significantly increased the ER (11.7°±6.7°, P=.031 400g, 13.5°±6.8°, P=.019 600g, 14.9°±6.9°, P=.024 800g) compared to the LCLI state (4.3°±6.6°). This investigation confirms a novel biomechanical testing model for studying PLRI. Moreover, it demonstrates that the application of even small amounts of torsional moment on the forearm with the arm in the varus position exacerbates the rotational instability seen with the LCL deficient elbow. The effect of torsional loading was significantly worse with the forearm supinated and during passive elbow motion. This new model allows for a more provocative testing of elbow stability after LCL repair or reconstruction. Furthermore, this model will allow for smaller sample sizes to be used while still demonstrating clinically significant differences. Future biomechanical studies evaluating LCL injuries and their repair and rehabilitation should consider using this testing protocol


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 14 - 14
1 Mar 2021
Au K Gammon B Undurraga S Culliton K Louati H D'Sa H
Full Access

The clinical diagnosis of distal radioulnar joint (DRUJ) instability remains challenging. The current diagnostic gold standard is a dynamic computerized topography (CT) scan. This investigation compares the affected and normal wrists in multiple static positions of forearm rotation.. However, its accuracy has been questioned, as the wrist is unloaded and not placed under stress. This may fail to capture DRUJ instability that does not result in static malalignment between the ulnar head and sigmoid notch. The purpose of this biomechanical study was to evaluate the effectiveness of both dynamic and stress CT scans in detecting DRUJ instability. A customized DRUJ arthrometer was designed that allows for both static positioning, as well as dorsal and volar loading at the DRUJ in various degrees of forearm rotation. Ten fresh frozen cadavers were prepared and mounted in the apparatus. CT scans were performed both in the unloaded condition (dynamic CT) and with each arm subjected to a standardized 50N volar and dorsal force (stress CT) in neutral and maximum pronation/ supination. The TFCC (triangular fibrocartilage complex)was then sectioned peripherally to simulate DRUJ instability and the methodology was repeated. CT scans were then evaluated for displacement using the radioulnar ratio method. When calculating the radioulnar ratio for intact wrists using the dynamic CT technique, values were 0.50, 0.64, 0.34 for neutral, pronation and supination, respectively. When the TFCC was sectioned and protocol repeated, the values for the simulated unstable wrist for dynamic CT were 0.54, 0.62, 0.34 for neutral, pronation and supination, respectively. There was no statistically significant difference between the intact and sectioned states for any position of forearm rotation using dynamic CT. Usingstress CT, mean radioulnar ratios for the intact specimens were calculated to be 0.44, 0.36 and 0.31 for neutral, pronation and supination, respectively. After sectioning the TFCC, the radioulnar ratios increased to 0.61, 0.39 and 0.46 for neutral, pronation and supination. There was a statistically significant difference between intact and simulated-unstable wrists in supination (p = 0.002) and in neutral (p=0.003). The radioulnar ratio values used to measure DRUJ translation for dynamic CT scans were unable to detect a statistically significant difference between stable and simulated unstable wrists. This was true for all positions of forearm rotation. However, when a standard load was placed across the DRUJ, statically significant changes in the radioulnar ratio were seen in neutral and supination between stable and simulated unstable wrists. This discrepancy challenges the current gold standard of dynamic CT in its ability to accurately diagnosis DRUJ instability. It also introduces stress CT as a possible solution for diagnosing DRUJ instability from peripheral TFCC lesions


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 95 - 95
1 Jul 2020
Ayeni OR Shah A Kay J Memon M Coughlin R Simunovic N Nho SJ
Full Access

To assess the current literature on suture anchor placement for the purpose of identifying factors that lead to suture anchor perforation and techniques that reduce the likelihood of complications. Three databases (PubMed, Ovid MEDLINE, EMBASE) were searched, and two reviewers independently screened the resulting literature. Methodological quality of all included papers was assessed using Methodological Index for Non-Randomized Studies criteria and the Cochrane Risk of Bias Assessment tool. Results are presented in a narrative summary fashion using descriptive statistics. Fourteen studies were included in this review. Four case series (491 patients, 56.6% female, mean age 33.9 years), nine controlled cadaveric/laboratory studies (111 cadaveric hips and 12 sawbones, 42.2% female, mean age 60.0 years), and one randomized controlled trial (37 hips, 55.6% female, mean age 34.2 years) were included. Anterior cortical perforation by suture anchors led to pain and impingement of pelvic neurovascular structures. The anterior acetabular positions (three to four o'clock) had the thinnest bone, smallest rim angles, and highest incidence of articular perforation. Drilling angles from 10° to 20° measured off the coronal plane were acceptable. The mid-anterior (MA) and distal anterolateral (DALA) portals were used successfully, with some studies reporting difficulty placing anchors at anterior locations via the DALA portal. Small-diameter (< 1 .8-mm) suture anchors had a lower in vivo incidence of articular perforation with similar stability and pull-out strength in biomechanical studies. Suture anchors at anterior acetabular rim positions (3–4 o'clock) should be inserted with caution. Large-diameter (>2.3-mm) suture anchors increase the likelihood of articular perforation without increasing labral stability. Inserting small-diameter (< 1 .8-mm) all-suture suture anchors (ASAs) from 10° to 20° using curved suture anchor drill guides, may increase safe insertion angles from all cutaneous portals. Direct arthroscopic visualization, use of fluoroscopy, distal-proximal insertion, and the use of nitinol wire can help prevent articular violation


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 112 - 112
1 Jul 2020
Badre A Banayan S Axford D Johnson J King GJW
Full Access

Hinged elbow orthoses (HEO) are often used to allow protected motion of the unstable elbow. However, biomechanical studies have not shown HEO to improve the stability of a lateral collateral ligament (LCL) deficient elbow. This lack of effectiveness may be due to the straight hinge of current HEO designs which do not account for the native carrying angle of the elbow. The aim of this study was to determine the effectiveness of a custom-designed HEO with adjustable valgus angulation on stabilizing the LCL deficient elbow. Eight cadaveric upper extremities were mounted in an elbow motion simulator in the varus position. An LCL injured (LCLI) model was created by sectioning of the common extensor origin, and the LCL. The adjustable HEO was secured to the arm and its effect with 0°, 10°, and 20° (BR00, BR10, BR20) of valgus angulation was investigated. Varus-valgus angles and ulnohumeral rotations were recorded using an electromagnetic tracking system during simulated active elbow flexion with the forearm pronated and supinated. We examined 5 elbow states, intact, LCLI, BR00, BR10, BR20. There were significant differences in varus and ER angulation between different elbow states with the forearm both pronated and supinated (P=0 for all). The LCLI state with or without the brace resulted in significant increases in varus angulation and ER of the ulnohumeral articulation compared to the intact state (P 0.05). The difference between each of the brace angles and the LCLI state ranged from 1.1° to 2.4° for varus angulation and 0.5° to 1.6° for ER. Although there was a trend toward decreasing varus and external rotation angulation of the ulnohumeral articulation with the application of this adjustable HEO, none of the brace angles examined in this biomechanical investigation was able to fully restore the stability of the LCL deficient elbow. This lack of stabilizing effect may be due to the weight of the brace exerting unintentional varus and torsional forces on the unstable elbow. Previous investigations have shown that the varus arm position is highly unstable in the LCL deficient elbow. Our results demonstrate that application of an HEO with an adjustable carrying angle does not sufficiently stabilize the LCL deficient elbow in this highly unstable position and varus arm position should continue to be avoided in the rehabilitation programs of an LCL deficient elbow


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 67 - 67
1 Jul 2020
Pelet S Pelletier-Roy R
Full Access

Surgeries for reverse total shoulder arthroplasty (RTSA) significantly increased in the last ten years. Initially developed to treat patients with cuff tear arthropathy (CTA) and pseudoparalysis, wider indications for RTSA were described, especially complex proximal humerus fractures. We previously demonstrated in patients with CTA a different sequence of muscular activation than in normal shoulder, with a decrease in deltoid activation, a significant increase of upper trapezius activation and slight utility of the latissimus dorsi. There is no biomechanical study describing the muscular activity in patients with RTSA for fractures. The aim of this work is to describe the in vivo action of RTSA in patients with complex fractures of the proximal humerus. We conducted an observational prospective cohort study comparing 9 patients with RTSA for complex humerus fracture (surgery more than 6 months, healed tuberosities and rehabilitation process achieved) and 10 controls with normal shoulder function. Assessment consisted in a synchronized analysis of range of motion (ROM) and muscular activity on electromyography (EMG) with the use of 7 bipolar cutaneous electrodes, 38 reflective markers and 8 motion-recording cameras. Electromyographic results were standardized and presented in muscular activity (RMS) adjusted with maximal isometric contractions according to the direction tested. Five basic movements were evaluated (flexion, abduction, neutral external rotation, external rotation in 90° of abduction and internal rotation in 90° of abduction). Student t-test were used for comparative descriptive analysis (p < 0,05). The overall range of motion with RTSA is very good, but lower than the control group: flexion 155.6 ± 10 vs 172.2 ± 13.9, p<0.05, external rotation at 90° 55.6 ± 25 vs 85.6 ± 8.8, p<0,05, internal rotation at 90° 37.8 ± 15.6 vs 52.2 ± 12, p<0,05. The three heads of the deltoid are more stressed during flexion and abduction in the RTSA group (p. The increased use of the 3 deltoid chiefs does not support the hypothesis proposed by Grammont when the RTSA is performed for a complex proximal humerus fracture. This can be explained by the reduced dispalcement of the rotation center of the shoulder in these patients compared to those with CTA. These patients also didn't present shoulder stiffness before the fracture. The maximal muscle activity of the trapezius in flexion and of the latissimus dorsi in flexion and abduction had not been described to date. These new findings will help develop better targeted rehabilitation programs. In addition, the significant role of the latissimus dorsi must question the risks of its transfer (L'Episcopo procedure) to compensate for external rotation deficits


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 118 - 118
1 Jul 2020
Fletcher J Windolf M Gueorguiev B Richards G Varga P
Full Access

Proximal humeral fractures occur frequently, with fixed angle locking plates often being used for their treatment. However, the failure rate of this fixation is high, ranging between 10 and 35%. Numerous variables are thought to affect the performance of the fixation used, including the length and configuration of screws used and the plate position. However, there is currently limited quantitative evidence to support concepts for optimal fixation. The variations in surgical techniques and human anatomy make biomechanical testing prohibitive for such investigations. Therefore, a finite element osteosynthesis test kit has been developed and validated - SystemFix. The aim of this study was to quantify the effect of variations in screw length, configuration and plate position on predicted failure risk of PHILOS plate fixation for unstable proximal humerus fractures using the test kit. Twenty-six low-density humerus models were selected and osteotomized to create a malreduced unstable three-part fracture AO/OTA 11-B3.2 with medial comminution which was virtually fixed with the PHILOS plate. In turn, four different screw lengths, twelve different screw configurations and five plate positions were simulated. Each time, three physiological loading cases were modelled, with an established finite element analysis methodology utilized to evaluate average peri-screw bone strain, this measure has been previously demonstrated to predict experimental fatigue fixation failure. All three core variables lead to significant differences in peri-screw strain magnitudes, i.e. predicted failure risk. With screw length, shortening of 4 mm in all screw lengths (the distance of the screw tips to the joint surface increasing from 4 mm to 8 mm) significantly (p < 0 .001) increased the risk of failure. In the lowest density bone, every additional screw reduced failure risk compared to the four-screw construct, whereas in more dense bone, once the sixth screw was inserted, no further significant benefit was seen (p=0.40). Screw configurations not including calcar screws, also demonstrated significant (p < 0 .001) increased risk of failure. Finally, more proximal plate positioning, compared to the suggested operative technique, was associated with reduced the predicted failure risk, especially in constructs using calcar screws, and distal positioning increased failure risk. Optimal fixation constructs were found when placing screws 4 mm from the joint surface, in configurations including calcar screws, in plates located more proximally, as these factors were associated with the greatest reduction in predicted fixation failure in 3-part unstable proximal humeral fractures. These results may help to provide practical recommendations on the implant usage for improved primary implant stability and may lead to better healing outcomes for osteoporotic proximal fracture patients. Whilst prospective clinical confirmation is required, using this validated computational tool kit enables the discovery of findings otherwise hidden by the variation and prohibitive costs of appropriately powered biomechanical studies using human samples


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 17 - 17
1 Jul 2020
Badre A Axford D Banayan S Johnson J King GJ
Full Access

The role of anconeus in elbow stability has been a long-standing debate. Anatomical and electromyographic studies have suggested a potential role as a stabilizer. However, to our knowledge, no clinical or biomechanical studies have investigated its role in improving the stability of a lateral collateral ligament (LCL) deficient elbow. Seven cadaveric upper extremities were mounted in an elbow motion simulator in the varus position. An LCL injured model was created by sectioning of the common extensor origin, and the LCL. The anconeus tendon and its aponeurosis were sutured in a Krackow fashion and tensioned to 10N and 20N through a transosseous tunnel at its origin. Varus-valgus angles and ulnohumeral rotations were recorded using an electromagnetic tracking system during simulated active elbow flexion with the forearm pronated and supinated. During active motion, the injured model resulted in a significant increase in varus angulation (5.3°±2.9°, P=.0001 pronation, 3.5°±3.4°, P=.001 supination) and external rotation (ER) (8.6°±5.8°, P=.001 pronation, 7.1°±6.1°, P=.003 supination) of the ulnohumeral articulation compared to the control state (varus angle −2.8°±3.4° pronation, −3.3°±3.2° supination, ER angle 2.1°±5.6° pronation, 1.6°±5.8° supination). Tensioning of the anconeus significantly decreased the varus angulation (−1.2°±4.5°, P=.006 for 10N in pronation, −3.9°±4°, P=.0001 for 20N in pronation, −4.3°±4°, P=.0001 for 10N in supination, −5.3°±4.2°, P=.0001 for 20N in supination) and ER angle (2.6°±4.5°, P=.008 for 10N in pronation, 0.3°±5°, P=.0001 for 20N in pronation, 0.1°±5.3°, P=.0001 for 10N in supination, −0.8°±5.3°, P=.0001 for 20N in supination) of the injured elbow. Comparing anconeus tensioning to the control state, there was no significant difference in varus-valgus angulation except with anconeus tensioning to 20N with the forearm in supination which resulted in less varus angulation (P=1 for 10N in pronation, P=.267 for 20N in pronation, P=.604 for 10N in supination, P=.030 for 20N in supination). Although there were statistically significant differences in ulnohumeral rotation between anconeus tensioning and the control state (except with anconeus tensioning to 10N with the forearm in pronation which was not significantly different), anconeus tensioning resulted in decreased external rotation angle compared to the control state (P=1 for 10N in pronation, P=.020 for 20N in pronation, P=.033 for 10N in supination, P=.001 for 20N in supination). In the highly unstable varus elbow orientation, anconeus tensioning restores the in vitro stability of an LCL deficient elbow during simulated active motion with the forearm in both pronation and supination. Interestingly, there was a significant difference in varus-valgus angulation between 20N anconeus tensioning with the forearm supinated and the control state, with less varus angulation for the anconeus tensioning which suggests that loads less than 20N is sufficient to restore varus stability during active motion with the forearm supinated. Similarly, the significant difference observed in ulnohumeral rotation between anconeus tensioning and the control state suggests that lesser degrees of anconeus tensioning would be sufficient to restore the posterolateral instability of an LCL deficient elbow. These results may have several clinical implications such as a potential role for anconeus strengthening in managing symptomatic lateral elbow instability


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 51 - 51
1 Jul 2020
Vachhani K Whyne C Nam D Wong J Chou J Paul R
Full Access

Rotator cuff tears are the most common cause of shoulder disability, affecting 10% of the population under 60 and 40% of those aged 70 and above. Massive irreparable rotator cuff tears account for 30% of all tears and their management continues to be an orthopaedic challenge. Traditional surgical techniques, that is, tendon transfers are performed to restore shoulder motion, however, they result in varying outcomes of stability and complications. Superior capsular reconstruction (SCR) is a novel technique that has shown promise in restoring shoulder function, albeit in limited studies. To date, there has been no biomechanical comparison between these techniques. This study aims to compare three surgical techniques (SCR, latissimus dorsi tendon transfer and lower trapezius tendon transfer) for irreparable rotator cuff tears with respect to intact cuff control using a clinically relevant biomechanical outcome of rotational motion. Eight fresh-frozen shoulder specimens with intact rotator cuffs were tested. After dissection of subcutaneous tissue and muscles, each specimen was mounted on a custom shoulder testing apparatus and physiologic loads were applied using a pulley setup. Under 2.2 Nm torque loading maximum internal and external rotation was measured at 0 and 60 degrees of glenohumeral abduction. Repeat testing was conducted after the creation of the cuff tear and subsequent to the three repair techniques. Repeated measures analysis with paired t-test comparisons using Sidak correction was performed to compare the rotational range of motion following each repair technique with respect to each specimen's intact control. P-values of 0.05 were considered significant. At 0° abduction, internal rotation increased after the tear (intact: 39.6 ± 13.6° vs. tear: 80.5 ± 47.7°, p=0.019). Internal rotation was higher following SCR (52.7 ± 12.9°, intact - SCR 95% CI: −25.28°,-0.95°, p=0.034), trapezius transfer (74.2 ± 25.3°, intact – trapezius transfer: 95% CI: −71.1°, 1.81°, p=0.064), and latissimus transfer (83.5 ± 52.1°, intact – latissimus transfer: 95% CI: −118.3°, 30.5°, p=0.400) than in intact controls. However, internal rotation post SCR yielded the narrowest estimate range close to intact controls. At 60° abduction, internal rotation increased after the tear (intact: 38.7 ± 14.4° vs. tear: 49.5 ± 13°, p=0.005). Internal rotation post SCR did not differ significantly from intact controls (SCR: 49.3 ± 10.1°, intact – SCR: 95% CI: −28°, 6.91°, p=0.38). Trapezius transfer showed a trend toward significantly higher internal rotation (65.7 ± 21.1°, intact – trapezius transfer: 95% CI: −55.7°, 1.7°, p=0.067), while latissimus transfer yielded widely variable rotation angle (65.7 ± 38°, intact – latissimus transfer: 95% CI: −85.9°, 31.9°, p=0.68). There were no significant differences in external rotation for any technique at 0° or 60° abduction. Preliminary evaluation in this cadaveric biomechanical study provides positive evidence in support of use of SCR as a less morbid surgical option than tendon transfers. The cadaveric nature of this study limits the understanding of the motion to post-operative timepoint and the results herein are relevant for otherwise normal shoulders only. Further clinical evaluation is warranted to understand the long-term outcomes related to shoulder function and stability post SCR


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 87 - 87
1 Feb 2020
Polster V Guttowski D Huber G Nuechtern J Morlock M
Full Access

Introduction. Revision of total knee endoprostheses (TKA) is increasing in number and causes rising healthcare costs. For constrained prostheses, the use of intramedullar femoral stems is standard. However, there is a big variety of available stem types with regard to length, type of fixation (cemented vs. hybrid) and fixation area (diaphyseal vs. metaphyseal). The aim of this biomechanical study was to investigate the primary stability of revision TKA with different stem types and different femoral bone defects, to find out whether smaller or shorter stems may achieve sufficient stability while preserving bone for re-revision. Methods. 30 right human femora were collected, fresh frozen and divided in six groups, matching for age, gender, height, weight and bone density. In group 1–3 a bone defect of AORI type F2a (15mm medial) and in group 4–6 a defect of AORI type F3 (25mm on both sides) was created. In all six groups the same modular femoral surface component (Endo-Model-W, Waldemar Link) was used, combined with different stem types (100/ 160 mm cemented / uncemented / standard/ anatomical with / without cone). Additionally, one trial was set up, omitting the modular stem. The correct fit of the implants was confirmed by fluoroscopy. After embedding, specimens were mechanically loaded 10mm medially and parallel to the mechanical femoral axis with an axial force of 2700N and a torsional moment of 5.6Nm at a flexion angle of 15° with respect to the coupled tibial plateau according to in-vivo gait load for 10,000 cycles (1Hz) in a servohydraulic testing machine (Bionix, MTS). The relative movement between implant, cement and distal femur was recorded using a stereo video system (Aramis3D,gom). An axial pull-out test at 1mm/min was performed after dynamic loading. Results. No clinical or radiological loosening of any configuration was observed. In all cases, relative movements were below 20µm and the differences between groups were very small. There were two cases, the trial without stem and one probe with short cemented stem with poor cementing technique (not included in the group result), which showed greatly increased relative movements. Pull-out test exhibited that forces of short stems with cones and uncemented anatomical cone stems with large defects (groups 4–6) were not significantly different to cemented stems in small defects. Discussion. Despite the high experimental load, even causing bone fracture in two cases, no difference between the investigated stem types concerning primary stability was found, partially probably due to the high inter-individual variations. Possible long-term differences cannot be assessed with in-vitro testing representing direct post-op situation, but the results might partially explain the controversial clinical observations and suggest further investigation on patient specific decisive parameters for implant choice. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 61 - 61
1 Mar 2017
Lancaster-Jones OO Al-Hajjar M Williams S Jennings L Thompson J Isaac G Fisher J
Full Access

Introduction and Aims. There are many variables that can affect the occurrence and severity of edge loading in hip replacement. A translational mismatch between the centres of rotation of the head and cup may lead to dynamic separation, causing edge loading and increased wear. Combining a steep inclination angle with such translational mismatch in the medial-lateral axis caused a larger magnitude of separation and increased severity of edge loading. Previous studies have shown variation in the hip Swing Phase Load (SPL) during gait between different patients. The aim of this study was to apply a translational mismatch and determine the effect of varying the SPL on the occurrence and severity of edge loading under different cup inclination angles in a hip joint simulator. Methods. The Leeds II hip joint simulator with a standard gait cycle and 36mm diameter ceramic-on-ceramic bearings (BIOLOX. ®. delta) were used in this study. The study was in two stages; [1] a biomechanical study where the magnitude of dynamic separation, the duration of edge loading and the magnitude of force under edge loading (severity) were assessed under variations in component positioning and SPLs. [2] A wear study to assess edge loading with selected input conditions. For the biomechanical study, a combination of four mismatches, three cup inclination angles, and eight SPLs (Table 1) were investigated. For the wear study, three SPL conditions were selected with one cup angle and one mismatch (Table 1). Three million cycles were completed under each condition. Mean wear rates and 95% confidence limits were determined and statistical analysis (one way ANOVA) completed (significance taken at p<0.05). Table 1: Study matrix. Results. For any given translational mismatch or cup inclination angle, increasing the SPL from 50N to 450N resulted in a decrease in the magnitude of dynamic separation (Figures 1 and 2). In some scenarios when the mismatch between the centres of rotation was low and the SPL was high, no separation was observed. Under 150N SPL, the severity of edge loading was similar to that determined for the 50N SPL conditions although the magnitude of dynamic separation was lower. Higher wear rates were found for the 70N and 150N compared to 300N SPL (Figure 3). No significant difference was found between wear rate under the SPLs of 70N and 150N (p=0.05), but significant differences were found between the wear rates under 150N and 300N SPL and between 70N and 300N SPL (p<0.01 and p<0.01 respectively). Conclusion. The SPL contributed to the resistance of separation between the head and the cup, hence a lower dynamic separation was measured under higher SPL. The wear study demonstrated that edge loading was present even under a higher SPL. For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 10 - 10
1 Aug 2017
Levine W
Full Access

Subscapularis tenotomy (SST) has been the preferred approach for shoulder arthroplasty for decades but recent controversy has propelled lesser tuberosity osteotomy (LTO) as a potential alternative. Early work by Gerber suggested improved healing and better outcomes with LTO although subscapularis muscular atrophy occurred in this group as well with unknown long-term implications. However, we previously performed a biomechanical study showing that some of the poor results following tenotomy may have been due to historic non-anatomic repair techniques. Surgical technique is critical to allow anatomic healing – this is true of both SST or LTO techniques. A recent meta-analysis of biomechanical cadaveric studies showed that LTO was stronger to SST at “time-zero” with respect to load to failure but there were no significant differences in cyclic displacement. A recent study evaluated neurodiagnostic, functional, and radiographic outcomes in 30 patients with shoulder arthroplasty who had SST. The authors found that the EMG findings were normal in 15 patients but abnormal in the other 15 and that these abnormalities occurred in 5 muscle groups (not just the subscapularis). In another study, patient outcomes were inferior in those patients who had documented subscapularis dysfunction following SST compared to patients who had LTO (none of whom had subscap dysfunction). The literature is not clear, however, on ultimate outcomes based on subscapularis dysfunction post-arthroplasty with some studies showing no difference and others showing significant differences


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 45 - 45
1 Dec 2016
Lalonde S Pichora D Zakani S
Full Access

Cadaveric specimens that have been fresh-frozen and then thawed for use have historically been considered to be the gold standard for biomechanical studies and the closest surrogate to living tissue. However, there are notable issues related to specimen rapid decay in the thawed state as well as infectious hazard to those handling the specimens. Cadaveric specimen preparation using a new phenol-based soft-embalmed method has shown considerable promise in preserving tissue in a prolonged fresh-like state while mitigating the infection risk. In this study, we evaluated the ability of soft-embalmed specimens to replace fresh-frozen specimens in the biomechanical study of flexor tendon repair. An ex-vivo study was conducted on six cadaveric hands in both a fresh-frozen, thawed state and following embalming with a phenol-based solution. Six different combinations of flexor digitorum profundus (FDP) tendons, from D2 to D5, and flexor pollicis longus (FPL) tendons were used to create two groups of similar composition with 15 tendons each, one group to be tested fresh and the other following embalming. A 5cm length of each flexor tendon was harvested from zone 2 and transversely cut at the mid-section. A modified-Kessler repair was performed on each specimen using 4–0 Fiberwire, with two core sutures and 1cm purchase on each end. Incisions were closed with a running stitch to prepare the specimen for embalming. The same protocol was used to repair and harvest the second group of tendons one month following the perfusion of a phenol-based solution through the vasculature of the hand and forearm. Tendon repair biomechanics were characterised through a ramp loading to failure (rate 1mm/sec), incorporating the 12 mm travel distance of the testing machine. A video-extensometry technique was used to validate machine recordings for the repair site for force at the 2mm gap distance, the ultimate strength, and the mode of failure. Characteristics of the two groups were tested for equivalency using inferential confidence intervals (ICI). Both fresh and embalmed groups were indistinguishable in both force at 2mm gap (fresh 17.9±4.7N; embalmed 18.1±5.1) and ultimate strength (fresh 43.93±10.0; embalmed 43.7±9.4). With the exception of one specimen with complete suture pull-out, all specimens exhibited partial pull-out as the final mode of failure. Our study demonstrated that tendon repair characteristics of phenol-embalmed specimens were equivalent to fresh specimens. Post-mortem chemical preservation can indeed preserve both visual and biomechanical characteristics of soft tissues. This study opens new avenues in support of the use of embalmed specimens in medical curricula and surgical training


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 60 - 60
1 Mar 2017
Lancaster-Jones OO Al-Hajjar M Williams S Jennings L Thompson J Isaac G Fisher J
Full Access

Introduction and Aims. Clinically many factors such as variations in surgical positioning, and patients' anatomy and biomechanics can affect the occurrence and severity of edge loading which may have detrimental effect on the wear and durability of the implant. Assessing wear of hundreds of combinations of conditions would be impractical, so a preclinical testing approach was followed where the occurrence and severity of edge loading can be determined using short biomechanical tests. Then, selected conditions can be chosen under which the wear can be determined. If a wear correlation with the magnitude of dynamic separation or the severity of edge loading can be shown, then an informed decision can be made based upon the biomechanical results to only select important variables under which the tribological performance of the implant can be assessed. The aim of this study was to determine the relationship between the wear of ceramic-on-ceramic bearings and the (1) magnitude of dynamic separation, (2) the maximum force reached during edge loading and (3) the severity of edge loading resulting from component translational mismatch between the head and cup centres. Methods. The Leeds II hip joint simulator with a standard walking cycle and 36mm diameter ceramic-on-ceramic bearings (BIOLOX. ®. delta, DePuy Synthes Joint Reconstruction, Leeds, UK.) were used. The study was in two parts. Part one: a biomechanical study where the dynamic separation, the maximum load during edge loading, and the duration of edge loading alongside the magnitude of forces under edge loading (severity of edge loading) were assessed. Part two; a wear study where the wear rates of the bearing surfaces were assessed under a series of input conditions. These input testing conditions included inclining the acetabular cups at 45° and 65° cup inclination angle (in-vivo equivalent), with 2, 3, and 4mm medial-lateral component mismatch between the centres of the head and the cup. This equated to six conditions being assessed, each with three repeats for the biomechanical test, and six repeats completed for the wear study. The severity of edge loading was assessed as described in Equation 1. Severity of Edge Loading = ∫. t. t0. F(x) dx + ∫. t. t0. F(y) dy … Equation 1,. where F(x) is the axial load, F(y) is the medial-lateral load and t-t0 is the duration of edge loading. The wear of the ceramic bearings were determined using gravimetric analysis (XP205, Mettler Toledo, UK). Results. The wear rates of ceramic-on-ceramic bearings increased as the magnitude of dynamic separation (Figure 1), the maximum load at the rim during edge loading (Figure 2), and the severity of edge loading (Figure 3) increased. The magnitude of dynamic separation was found to have the highest correlation to the wear rate under the conditions tested in this study (R. 2. =0.94). Conclusions. A preclinical testing approach has been developed to understand the occurrence and severity of edge loading associated with variation of component positioning. A good correlation was found between the wear rates obtained for ceramic-on-ceramic bearings and the magnitude of parameters obtained under edge loading during a short-term biomechanical study. For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 78 - 78
1 Apr 2019
Fattori A Kontaxis A Chen X Vidoni G Castagna A Pressacco M
Full Access

Introduction. Reverse Shoulder Arthroplasty (RSA) is recognized to be an effective solution for rotator cuff deficient arthritic shoulders, but there are still concerns about impingement and range of motion (ROM). Several RSA biomechanical studies have shown that humeral lateralization can increase ROM in planar motions (e.g. abduction). However, there is still a debate whether humeral lateralization should be achieved with a larger sphere diameter or by lateralizing the center of rotation (COR). The latter has shown to decrease the deltoid moment arm and increase shear forces, where the former may pose challenges in implanting the device in small patients. The aim of this study was to evaluate how humeral lateralization achieved by varying COR lateral offset and glenosphere diameter in a reverse implant can affect impingement during activities of daily living (ADLs). Methods. Nine shoulder CT scans were obtained from healthy subjects. A reverse SMR implant (LimaCorporate, IT) was virtually implanted on the glenoid and humerus (neck-shaft angle 150°) as per surgical technique using Mimics software (Materialise NV). Implant positioning was assessed and approved by a senior surgeon. The 3D models were imported into a validated shoulder computational model (Newcastle Shoulder Model) to study the effects of humeral lateralization. The main design parameters considered were glenosphere diameter (concentric Ø36mm, Ø40mm, Ø44mm) and COR offset (standard, +2mm, +5mm), for a total of 9 combinations for each subject; −10°, 0° and 10° humeral components versions were analyzed. The model calculated the percentage of impingement (intra-articular, contact of cup with scapula neck and glenoid border; extra-articular, contact of humerus with acromion and coracoid) during 5 ADLs (hand to opposite shoulder, hand to back of head, hand to mouth, drink from mug and place object to head height). Results. On average, the Ø40mm and Ø44mm glenosphere resulted in significantly less impingement across ADLs compared to Ø36mm (−31% and −35% respectively). Humeral version and lateralization had no significant effect on impingement for the Ø44mm glenosphere. However, lateralization of +5 mm substantially reduced impingement on the Ø36mm glenosphere but the effect was significant only for the neutral 0° version (−42%) and 10° (−50%) anteversion. Discussion and Conclusions. The results of this study suggest that, for the SMR Reverse prosthesis, humeral lateralization through the increase of glenosphere diameter was the most efficient way to reduce impingement during ADLs compared to the lateralization of the COR. Humeral version can also affect the impact of lateralization on impingement during ADLs; in this study, the impingement for the Ø36mm glenosphere with 10° retroversion was not decreased through lateralization; this may be related to the combined effect of version and scapular morphology. Considering that using larger glenosphere diameter without offsetting the COR theoretically does not reduce overall deltoid lever arm nor increase the shear forces on the glenoid component, this should be the preferable option whenever possible. However, concerns over soft tissue over-tensioning may necessitate the use of a smaller diameter glenosphere in some patients