Advertisement for orthosearch.org.uk
Results 1 - 19 of 19
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 34 - 34
1 Sep 2012
Corten K Jonkergouw F Bartels W Van Lenthe H Bellemans J Simon J Vander Sloten J
Full Access

Summary sentence

The bowing of the femur defines a curvature plane to which the proximal and distal femoral anatomic landmarks have a predictable interrelationship. This plane can be a helpful adjunct for computer navigation to define the pre-operative, non-diseased anatomy of the femur and more particularly the rotational alignment of the femoral component in total knee arthroplasty (TKA).

Background and aims

There is very limited knowledge with regards to the sagittal curvature -or bowing- of the femur. It was our aim (1) to determine the most accurate assessment technique to define the femoral bowing, (2) to define the relationships of the curvature plane relative to proximal and distal anatomic landmarks and (3) to assess the position of femoral components of a TKA relative to the femoral bowing.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 121 - 121
1 Jun 2018
Brooks P
Full Access

Each of the seven cuts required for a total knee arthroplasty has its own science, and can affect the outcome of surgery. Distal Femur. Sets the axial alignment (along with the tibial cut), and too little or too much depth affects ligament tension in extension. Anterior Femur. Sets the rotation of the femoral component, which affects patellar tracking. Internal rotation results in patellar maltracking. External rotation will either notch the femur, or cause too large a femoral component to be selected. Anterior and posterior femoral cuts also determine femoral component size selection. Too small a femoral component causes notching, flexion instability, and mismatch to the tibial component. Too big a femoral component causes overstuffing, periarticular pain, and patellar maltracking. Posterior Femur. Posterior referencing usually works, and the typical knee requires 3 degrees of external rotation to align with the transepicondylar axis. In valgus knees, there may be significant hypoplasia of the lateral femoral condyle, and posterior referencing has to be adjusted to avoid internal rotation. Posterior chamfer. A 4-in-one block saves time. Anterior chamfer. Deeper anterior chamfer allows a deeper trochlear groove, for patellar tracking. Tibia. Sets axial alignment with distal femoral cut. Posterior slope loosens flexion gap. Oversizing results in painful medial overhang. Lateral overhang usually not a problem. Undersizing results in inadequate bone support and subsidence. Patella. Inset or onset. Central peg associated with fracture. Err to medial and superior to assist tracking and avoid impingement on the tibial insert


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 139 - 139
1 Apr 2019
De Smet A Verrewaere D Sys G
Full Access

Introduction. Rotational or axial alignment is an important concept in total knee surgery. Malrotation of the femoral component can lead to patellofemoral maltracking, pain and stiffness. In reconstruction surgery of the knee, achievement of correct rotation is even more difficult because of the lack of anatomical landmarks. The linea aspera is often the only remaining landmark, but its reliability is questionable. Goal of research. Can custom-made 3D-guides help with rotational alignment of the knee after a wide resection of the distal femur?. Material and methods. Custom-made 3D-guides were designed from CT-scans, with the help of the commercially available Mimics software (Materialise NV, Leuven, Belgium) and SolidWorks (SolidWorks Corp., MA, USA). Anterior was defined as 90° relative to the PCL, with the center of the best-fitting inner cylinder, inside the femoral diaphysis, as rotation point. Firstly, the accuracy of the 3D-guides was tested. Twelve 3D-guides, on different heights, were made for 3 cadaveric femora. Anterior was marked with a pin and the position was evaluated with CT-scan. Secondly, to mimic surgery, seven reconstruction prostheses were placed in 4 cadavers, using the 3D-guide to indicate anterior and cutting surface. Resection height was aimed at 13cm. The position of the prostheses was also evaluated using CT-scan. Results. First test: The pins deviated on average 0.65° (SE: 0.75°) from anterior. Eighty-three percent deviated less then 1° from anterior, and only 2 pins deviated more than 1° (1.5° and 2.6°). The resection height indicated by the 3D-guide was on average 2.4mm (SE: 0.7mm) to high. Second test: The 7 reconstruction prostheses deviated on average 3.1° (SE: 2,18°) from anterior, with 4 prostheses deviating more than 1°. The 2 prostheses in endorotation were placed more lateral then was planned, while the 2 in exorotation were placed more medial. Deviation in the coronal and sagittal plane was respectively 1.56° (SE: 1.64°) and 1.84° (SE: 1.04). The mean height was 12.9cm. Discussion. The 3D-guides were accurate in indicating a previously established ‘anterior’ point on the femur and the resection height, but when used to position the femoral component during surgery they inadequately controlled rotation. The 3D-guides did not take into account that centering of the prosthesis could be a problem. When the prosthesis was place more medial or more lateral than anticipated the rotation point of the component was changed and when then aligned with the previously indicated anterior mark, it was placed respectively in exorotation and endorotation. Future research. Will aim to develop custom-made 3D-guides that also guide centering of the femoral component. Repercussion on function and kinematics of improved axial alignment will be evaluated with knee simulator testing and a control group


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 92 - 92
1 May 2016
Twiggs J Dickison D Roe J Fritsch B Liu D Theodore W Miles B
Full Access

Introduction. Total Knee Replacement (TKR) alignment measured intra-operatively with Navigation has been shown to differ from that observed in long leg radiographs (Deep 2011). Potential explanations for this discrepancy may be the effect of weight bearing or the dynamic contributions of soft tissue loads. Method. A validated, 3D, dynamic patient specific musculoskeletal model was used to analyse 85 post-operative CT scans using a common implant design. Differences in coronal and axial plane tibio-femoral alignment in three separate scenarios were measured:. Unloaded as measured in a post-op CT. Unloaded, with femoral and tibial components set aligned to each other. Weight bearing with the extensor mechanism engaged. Scenario number two illustrates the tibio-femoral alignment when the femoral component sits congruently on the tibia with no soft tissue acting whereas scenario three is progression of scenario number two with weight applied and all ligaments are active. Two tailed paired students t-test were used to determine significant differences in the means of absolute difference of axial and coronal alignments. Results. The mean coronal alignment were 1.7° ± 2.1° varus (range, −3.0° to 7.0°), 0.8° ± 2.0° varus (range, −3.7° to 4.8°), 0.4° ± 2.0° varus (range, −3.9° to 5.1°) for unloaded, unloaded with implants set aligned and weight bearing scenarios respectively. The mean of absolute difference in coronal alignment between the unloaded and weight bearing scenario was 1.8° ± 1.5° (range 0.0° to 5.9°). The mean axial alignment were 6.8° ± 5.5° external rotation (ER) (range, 20.0° ER to 11.0° internal rotation (IR)), 5.2° ± 6.1° ER (range, 24.8° ER to 12.6° IR), 7.1° ± 5.5° ER (range, 20.7° ER to 6.8° IR) for unloaded, unloaded with implants set to congruency and weight bearing scenarios respectively. The mean of absolute difference in axial alignment between the unloaded and weight bearing scenario was 2.8° ± 2.0° (range 0.1° to 8.8°). Statistically significant absolute differences in coronal and axial alignments were found. Conclusions. ‘Correct’ alignment has long been considered and important predictor of longevity and function following TKR surgery (Sikorski 2008). However, recent reports have challenged these long held beliefs. One possible reason is that these alignments are measured in static condition, not in a functional position where soft tissue is active. This study showed that knee joint alignment changes significantly between unloaded and loaded scenarios. This suggest that static, unloaded measurements do not represent functional alignment. Thus, tibio-femoral alignment measured from unloaded condition may not describe a ‘correct’ alignment for a particular patient. Further work should focus on dynamic and functional descriptions of component and/or limb alignment


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 67 - 67
1 Jan 2016
Thienpont E Lonner J
Full Access

Introduction. Patellofemoral arthroplasty (PFA) can give excellent results in well-selected patients. Axial alignment has been extensively studied in this type of surgery. However because there is no distal femoral cut, coronal alignment in PFA is less well known. The position of the patellofemoral component decides the varus or valgus alignment of the implant. Hypothesis. Coronal alignment in PFA (PFJ-Gender, Zimmer, Warsaw, US) is determined by the anterior condylar anatomy and features an important variance influencing coronal alignment. Materials and methods. Coronal alignment was measured in 57 PFAs on full leg weight bearing radiographs as the lateral distal femoral angle compared to the mechanical axis (mLDFA). In a first group of patients the anterior condylar anatomy was followed and in a second group the PFA was aligned to the Whiteside's line. Results. In the group following the condylar anatomy the mean (SD) mLDFA was 100° (9°) compared to the group where the Whiteside's line was followed, which presented a mean (SD) mLDFA was 89° (3°). Patellofemoral tracking evaluated on a Merchant view was better in the second group. Discussion. Literature shows that accurate patellofemoral alignment is 1° of valgus from the mechanical axis. Following the anterior condylar anatomy doesn't allow to recreate accurate frontal alignment with a PFA. This can be obtained by following Whiteside's line as a substitute for finding the mechanical axis. Conclusion. Whiteside's line is not only an accurate landmark for axial alignment but also for coronal alignment in PFA aligning the implant with the mechanical axis


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 125 - 125
1 Jan 2016
Watanabe S Sato T Tanifuji O Yamagiwa H Omori G Koga Y
Full Access

Introduction. Computed tomography (CT) based preoperative planning provides useful information for severe TKA and revision TKA cases, such as the amount of augmentation, length of stem extension and component alignment, to achieve correct alignment and joint line. In this study, we evaluated TKA alignment performed with CT preoperative planning. Materials and Methods. 7 primary TKAs for severe deformity and 3 revision TKAs were included. CT preoperative planning was performed with JIGEN (LEXI, Japan). Constrained condylar prosthesis (LCCK, Zimmer) were used in all case. For femoral component, axial alignment was decided by controlled IM rod insertion to femoral canal. Rotational alignment was decided according to anterior cortex that usually was not compromised. For tibial component, axial alignment was set to perpendicular to tibial mechanical axis. Coverage and joint line level were carefully decided. The amount of bone resection of bilateral distal and posterior femoral condyle and proximal tibia was measured, respectively. Stem extension length and offset were selected according to components position and canal filling. Amount of augmentation was also estimated bilateral distal and posterior femoral condyle, respectively. Postoperative component alignment was evaluated three-dimensionally with Knee-CAS (LEXI, Japan). Results. All femoral and tibial components were implanted within 5°in coronal and sagittal plane. All knees showed mechanical alignment within 5 degree from neutral. One of 10 TKAs needed femoral component size down, and two of 20 stems needed size change


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 27 - 27
1 Aug 2020
Abdic S Athwal G Wittman T Walch G Raiss P
Full Access

The use of shorter humeral stems in reverse shoulder arthroplasty has been reported as safe and effective. Shorter stems are purported to be bone preserving, easy to revise, and have reduced surgical time. However, a frequent radiographic finding with the use of uncemented short stems is stress shielding. Smaller stem diameters reduce stress shielding, however, carry the risk of varus or valgus malalignment in the metadiaphyseal region of the proximal humerus. The aim of this retrospective radiographic study was to measure the true post-operative neck-shaft (N-S) angle of a curved short stem with a recommended implantation angle of 145°. True anteroposterior radiographs of patients who received RTSA using an Ascend Flex short stem at three specialized shoulder centres (London, ON, Canada, Lyon, France, Munich, Germany) were reviewed. Radiographs that showed the uncemented stem and humeral tray in orthogonal view without rotation were included. Sixteen patients with proximal humeral fractures or revision surgeries were excluded. This yielded a cohort of 124 implant cases for analysis (122 patients, 42 male, 80 female) at a mean age of 74 years (range, 48 – 91 years). The indications for RTSA were rotator cuff deficient shoulders (cuff tear arthropathy, massive cuff tears, osteoarthritis with cuff insufficiency) in 78 patients (63%), primary osteoarthritis in 41 (33%), and rheumatoid arthritis in 5 (4%). The humeral component longitudinal axis was measured in degrees and defined as neutral if the value fell within ±5° of the humeral axis. Angle values >5° and < 5 ° were defined as valgus and varus, respectively. The filling-ratio of the implant within the humeral shaft was measured at the level of the metaphysis (FRmet) and diaphysis (FRdia). Measurements were conducted by two independent examiners (SA and TW). To test for conformity of observers, the intraclass correlation coefficient (ICC) was calculated. The inter- and intra-observer reliability was excellent (ICC = 0.965, 95% confidence interval [CI], 0.911– 0.986). The average difference between the humeral shaft axis and the humeral component longitudinal axis was 3.8° ± 2.8° (range, 0.2° – 13.2°) corresponding to a true mean N-S angle of 149° ± 3° in valgus. Stem axis was neutral in 70% (n=90) of implants. Of the 34 malaligned implants, 82% (n=28) were in valgus (mean N-S angle 153° ± 2°) and 18% (n=6) in varus position (mean N-S angle 139° ± 1°). The average FRmet and FRdiawere 0.68 ± 0.11 and 0.72 ± 0.11, respectively. No association was found between stem diameter and filling ratios (FRmet, FRdia) or cortical contact with the stem (r = 0.39). Operative technique and implant design affect the ultimate positioning of the implant in the proximal humerus. This study has shown, that in uncemented short stem implants, neutral axial alignment was achieved in 70% of cases, while the majority of malaligned humeral components (86%) were implanted in valgus, corresponding to a greater than 145° neck shaft angle of the implant. It is important for surgeons to understand that axial malalignment of a short stem implant does influence the true neck shaft angle


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 67 - 67
1 Aug 2017
Berry D
Full Access

Introduction. The use of stems in TKA revision surgery is well established. Stems off-load stress over a broad surface area of the diaphysis and help protect the metaphyseal interface areas from failure. Stems can provide an area of extra fixation. Uncemented Stems. Pros and Cons. Advantages. (1) Expeditious, (2) Compatible with intramedullary based revision instrumentation (3) Easy to remove if necessary (4) By filling diaphysis they help guarantee axial alignment. Disadvantages. (1) They help off load stress, but how much fixation do they really provide? (2) They don't fit all canal deformities, and under some circumstances can actually force implants into malalignment. (3) ? potential for end of stem pain. Cemented Stems. Pros and Cons. Advantages. (1) Cemented stem adds fixation in fresh metaphyseal and diaphyseal bone. (2) Proven 10-year track record. (3) Allow the surgeon to adjust for canal geometry abnormalities. Disadvantages. (1) More difficult to remove, if required. (2) They don't fill the canal so they don't guarantee alignment as well under most circumstances. Results. Favorable results with uncemented and cemented stems have been reported in several series. Cemented stems have longer term data. Technique Issues. Uncemented Stems. (1) Take advantage of offset bolts, tibial trays, stems to fit the stem/implant to the patient's anatomy. (2) Don't let the stem force you into suboptimal implant position. (3) Longer stems can be narrower but help engage more diaphysis. (4) Do a good job of restoring/uncovering cancellous bone in metaphysis for cement interdigitation. The cement provides the fixation. Cemented Stems. (1) Intra-operative x-ray with trials helps guarantee optimal alignment. (2) Use cement restrictors. (3) Cement tibia/femur separately. Metaphyseal Fixation. (1) Area of new emphasis. (2) Cones and sleeves can improve cemented and uncemented fixation


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 39 - 39
1 Sep 2012
Moopanar T Sorial R
Full Access

In an effort to improve alignment in total knee arthroplasty (TKA), more recent prosthetic devices adapt computerised sculpting technologies based on preoperative MRIs to individualize surgical treatment. This is achieved by creating patient-specific surgical positioning guides for prosthetic alignment. Our study reports on the early clinical and functional outcomes and CT measured alignment of patients undergoing surgery with the Signature patient specific knee system. We have reviewed the first one hundred patients selected to have a TKA using the patient specific knee system by a single surgeon over the last two years. Clinical and functional outcomes were assessed using the Western Ontario and McMaster Universities (WOMAC) index, the American Knee Society Scores (AKSS) and range of flexion at 6months. All data was analysed using a two tailed paired students t-test with statistical significance accepted at p<0.05. Post-operative CT scans were analysed to report on overall mechanical axial limb alignment, axial prosthetic tibial alignment, posterior tibial slope and femoral component rotation from the epicondylar axis. Preoperative versus postoperative WOMAC scores for patients were 80.4 ± 2.2 and 45.2 ± 2.1 respectively. This was statistically significant at p=1.3×10–14. The AKSS pre- and postoperatively were 85.1 ± 4.6 and 151.9 ± 4.6 respectively with statistical significance reached at p = 1.3×10–13. Specifically, the pre- vs postoperative knee scores were 33.6 ± 2.8 and 75.1 ± 2.6 (p=3.9×10–12) while the function scores were 51.5 ± 2.8 and 75.8 ± 4 (p=3.4×10–7) respectively. Range of flexion preoperatively was 110.8 ± 2.8 while postoperatively was 122.1 ± 2.6 (p=0.0003). Postoperative CT scans revealed that the tibial axial alignment was 90.5 ± 7.7 degrees while the posterior tibial slope was 5.5 ± 0.3 degrees on average. In terms of femoral rotation, the epicondyllar axis was found to be 0.56 ± 0.1 degrees externally rotated with respect to Whiteside's line. The mechanical axis was 0.84 ± 0.1 on average. With all these measured parameters the number of outliers outside the accepted +/−3 degree range are small. Our data demonstrates that the early results for knee replacements performed using the Signature patient specific jigs are very satisfactory delivering good clinical outcomes and an improved level of prosthetic alignment when compared to published data for standard instrumented knees


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 75 - 75
1 Jun 2018
Lewallen D
Full Access

Even though primary total knee arthroplasty involves resurfacing the joint with metal and plastic it is much more of a soft tissue operation than it is a bony procedure. The idea that altering the planned bony resection by a few degrees on either the tibial or femoral side of the joint might somehow eliminate the multifactorial pain complaints and reduced patient satisfaction seen in some 20% or more of cases in reported clinical series is clearly overly optimistic. Axial alignment is important, but no more so than the level of distal femoral resection, tibial and femoral rotation, tibial resection level and downslope and femoral sagittal plane alignment. The real problem is that errors in component positioning are common, rarely made one at a time, and are made more common by greater procedural complexity. No matter the resection method (let alone the resection target!) errors are commonly linked and iterative. For example: femoral malrotation on an under-resected distal femur (in a knee with minimal arthritic wear to begin with) can contribute to corresponding tibial malrotation helped by a “floated” tibial trial on an all too often overly resected and downsloped tibial surface that has been recut to allow full extension with the under-resected femur (and now also results in AP laxity in flexion). Small changes in the alignment target will not fix this!. On the other hand: Kinematic alignment individualised to the patient's anatomy as a means of reducing soft tissue imbalance and minimizing ligamentous releases is actually a reasonable objective and a laudable goal on the surface. The problem with operationalizing this widely relates to what is currently required to try and reliably achieve this goal using currently available implants and technology. In the early 1980's the proponents of “anatomic” alignment with a residual 2- to 3-degree varus tibial resection and corresponding joint obliquity were Hungerford and Krackow. This concept was widely adopted but proved to be fraught with difficulty in the hands of community based surgeons in that era due to common excessive varus tibial resection errors and resulting premature implant failures. Recent reports on kinematic alignment involve a plethora of technology combinations including pre-operative CT (or MRI) for 3D reconstruction and planning, custom jig fabrication, and navigated bony preparation or individualised bony cuts off of patient specific jigs. The goal is to allow customised resections that “estimate” original cartilage thickness and bone erosion and seek to replicate the original however native anatomy and provide better precision for bone resection. Even when successful this is often followed by placement of a standard implant not too different from those in the 80's and 90's which may well have one femoral articular “J curve” for all patents, a single patellofemoral groove design and anatomic shape for all, and that makes use of a central keel on a nonanatomic tibial design with limited sizing increments, all implanted into a patient without an ACL and not infrequently PCL deficient as well. And all of this is done with the hope of restoring the normal original knee kinematics!. The frequent combination of several of the above factors clinically in a single knee may help explain some of the variability in results of kinematic alignment reported by some authors even after excluding certain pre-operative deformities (excess valgus or varus). For now mechanical alignment methods and instrumentation should remain the standard of care for routine TKA practice for most, and in complex primary cases for all


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 30 - 30
1 Nov 2016
Martin R Meulenkamp B Desy N Duffy P Korley R Puloski S Buckley R
Full Access

Tibial plateau fractures are common injuries. Displaced fractures are treated with open reduction and internal fixation (ORIF). Goals of treatment include restoration of extremity axial alignment, joint stability and congruity, allowing for early motion and prevention of osteoarthritis. Short term results of surgical fixation of tibial plateau fractures are good, however, longer term outcomes have demonstrated a higher risk of end-stage arthritis and total knee arthroplasty. Despite the vast literature around tibial plateau fractures, to our knowledge there are no series examining post-operative reductions using axial imaging. It is our goal to define the incidence of articular malreductions following surgical fixation of tibial plateau fractures, to identify patient or surgeon factors associated with malreductions, and to define any regional patterns of malreduction location. De-identified post operative computed tomography (CT) scans were reviewed to identify tibial plateau malreductions with a step or gap greater than 2 mm, or condylar width greater than 5 mm. Three independent assessors reviewed the scans meeting criteria using Osirix DICOM software. Steps and gaps were mapped onto the axial sequence at the level of the joint line. Images were then matched to side and overlaid as best fit in Photoshop software to create a map of malreductions. A grid was created to divide the medial and lateral plateaus into quadrants to identify the density of malreductions by location. A multi-variate regression model was used to assess risk factors for malreduction. Sixty five post-operative CT scans were reviewed. Twenty one reductions had a step or gap more than 2 mm for a malreduction incidence of 32.3%. The incidence in patients undergoing submeniscal arthrotomy or fluoroscopic assisted reduction was 16.6% and 41.4%, respectively (p <0.001). Side of injury, age, BMI, AO fracture type, and use of locking plates were not predictive of malreduction. Malreductions were heavily weighted to the posterior lateral tibial plateau. The incidence of articular malreductions was high at 32.3%. Fluoroscopic reduction alone was a predictor for articular malreduction with most malreductions located in the posterior lateral quadrants of the plateau


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 76 - 76
1 May 2013
Minas T
Full Access

Although cartilage repair has been around since the time of open Pridie drilling, clinical outcomes for newer techniques such as arthroscopic debridement, microfracture (MFX), osteochondral autograft transfers (OATS), osteochondral allograft transplantation and Autologous Chondrocyte Implantation (ACI) are still finding their place in treating injured knees. Early mechanical symptoms are best managed by a gentle arthroscopic debridement of loose articular flaps. This allows the surgeon to assess the defect size, location in the tibio-femoral or patellofemoral joint, status of the cartilage overall and patients response to the intervention. If the symptom improvement is not satisfactory to the patient, after assessing background factors that will influence the results of a cartilage repair procedure, (alignment of the patellofemoral joint or axial alignment, ligament stability and status of the meniscus), the surgeon can choose the best procedure for that individual based on the expected outcomes of the various cartilage repair techniques while addressing the background factors. As all the techniques have failures and informed discussion with the patient prior to performing the procedure is critical in avoiding disappointment for the patient and the surgeon. The repair technique used should incorporate considerations of the defect size, location, and the patient age, activity level, expectations and ability to comply with the longer rehabilitation needed for biological procedures as compared to prosthetic implants


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 114 - 114
1 Feb 2015
Berry D
Full Access

Introduction. The use of stems in TKA revision surgery is well established. Stems off-load stress over a broad surface area of the diaphysis and help protect the metaphyseal interface areas from failure. Stems can provide an area of extra fixation. Uncemented Stems: Advantages – Expeditious; Compatible with intramedullary based revision instrumentation; Easy to remove if necessary; By filling diaphysis they help guarantee axial alignment. Disadvantages - They help off load stress, but how much fixation do they really provide?; They don't fit all canal deformities, and under some circumstances can actually force implants into malalignment; ? potential for end of stem pain. Cemented Stems: Advantages - Cemented stem adds fixation in fresh metaphyseal and diaphyseal bone; Proven 10-year track record; Allow the surgeon to adjust for canal geometry abnormalities. Disadvantages - More difficult to remove if required; They don't fill the canal so they don't guarantee alignment as well under most circumstances. Results:. Favorable results with uncemented and cemented stems have been reported in several series; Cemented stems have longer term data. Technique Issues: Uncemented Stems - Take advantage of offset bolts, tibial trays, stems to fit the stem/implant to the patient's anatomy. Don't let the stem force you into suboptimal implant position; Longer stems can be narrower but help engage more diaphysis; Do a good job of restoring/uncovering cancellous bone in metaphysis for cement interdigitation. The cement provides the fixation. Cemented Stems - Intraoperative x-ray with trials helps guarantee optimal alignment; Use cement restrictors; Cement tibia/femur separately. Metaphyseal Fixation - Area of new emphasis; Cover and sleeves can improve cemented and uncemented fixation


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 51 - 51
1 Dec 2013
Dujardin J Vandenneucker H Bellemans J Victor J
Full Access

A prospective randomized trial on 128 patients with end-stage osteoarthritis was conducted to assess the accuracy of patient-specific guides. In cohort A (n = 64), patient- specific guides from four different manufacturers (Subgroup A1 Signature ®, A2 Trumatch ®, A3 Visionaire ® and A4 PSI ®) were used to guide the bone cuts. Surgical navigation was used as an intraoperative control for outliers. In cohort B (n = 64), conventional instrumentation was used. All patients of cohorts A and B underwent a postoperative full-leg standing X-ray and CT scan for measuring overall coronal alignment of the limb and three-planar alignment of the femoral and the tibial component. Three-planar alignment was the primary endpoint. Deviation of more than three degrees from the target in any plane, as measured with surgical navigation or radiologic imaging, was defined as an outlier. In 14 patients (22%) of cohort A, the use of the patient-specific guide was abandoned because of outliers in more than one plane. In 18 patients (28%), a correction of the position indicated by the guide, was made in at least one plane. A change in cranial-caudal position was most common. Cohort A and B showed a similar percentage of outliers in long-leg coronal alignment (24.6%, 28.1%, p = 0.69), femoral coronal alignment (6.6%, 14.1%, p = 0.24) and femoral axial alignment (23%, 17.2%, p = 0.50). Cohort A had more outliers in coronal tibial alignment (14.6%) and sagittal tibial alignment (21.3%) than cohort B (3.1%, p = 0.03 and 3.1%, p = 0.002, respectively). These data indicate that patient specific guides do not improve accuracy in total knee arthroplasty


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IV | Pages 148 - 148
1 Mar 2012
Morgan B Livingstone J MacFadyen I Jackson M Atkins R
Full Access

Introduction. The optimal management of intra-articular tibial plateau fractures with metaphyseal-diaphyseal dissociation remains challenging and controversial. We report results using the technique of limited open reduction with external fixation using a fine wire circular frame. Method. Between 1994 –2006, 83 eligible patients were identified. Case notes were reviewed; X-Rays and CT scans were examined and used to rank-order the severity of injury. ‘Musculoskeletal Functional Assessment’ (MFA) and ‘Knee Outcome Survey’ (KOS) questionnaires were completed and axial alignment X-Rays were taken to assess functional and radiological outcome. Results. 47 patients were available for follow-up at mean 57 months post injury. All fractures had united. There were 3 cases (6.39%) of pin site infection that necessitated debridement of superficial soft tissues. There were no cases of deep infection. Functional outcome. The mean MFA score was 24.7 points (range, 2 to 68 points). Leisure & recreation (51.06), mobility (37.02) and emotional score (33.22) were most affected. The mean KOS was 73.11 (range, 18.75 to 96.25). When compared to control population, our patient cohort still have significant persistent levels of disability. No correlation was found between severity of injury, nor any patient demographic factors and functional outcome. 26 patients (85.1%) had returned to employment, though 29.8% had either been forced to change occupation or were limited in their original occupation by their injury. Radiological outcome. Knee subluxation was found to have a significant association with poorer MFA (-0.323 p = 0.028) and KOS scores (0.304 p = 0.04). No other radiological measures correlated with functional outcome. Conclusion. Treatment of these severe injuries by circular frame and limited internal fixation is a safe and effective operative option. It offers early mobilisation and movement of the knee, with a low complication rate and functional outcome equivalent to other treatment modalities


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 16 - 16
1 Oct 2014
Mancuso F Di Benedetto P Cainero V Gisonni R Beltrame A Causero A
Full Access

The clinical success and long-term outcomes of total knee arthroplasty (TKA) depend not only on the accuracy of femoral and tibial components positioning, but also on the restoration of a proper mechanical axis (MA). Coronal and rotational mal-alignment may affect significantly the final result of a knee replacement. Patient specific cutting guides and intra-operative Computer-Assisted Surgery (CAS) have recently been introduced as options to improve implant alignment during TKA. The purpose of this study was to compare the alignment accuracy and implant positioning of Patient Matched technique to CAS system in patients with primary TKA. A cohort of 68 consecutive patients who underwent TKA was enrolled for this study: 34 patients received a TKA using CAS system while 34 patients received a TKA using a MRI-based Patient Matched system. Mechanical axis and kinematics were digitally measured pre- and post-operatively in all knees using the intra-operative navigation system but data were blinded for the operating surgeon in the Patient Matched group. A post-operative CT-scan evaluation was performed in all patients to analyse the prosthetic components alignment (coronal, sagittal and axial alignment according to Perth Protocol from CT-scan). CT-scan measurements were used as landmarks as this tool is considered the gold standard. MA, posterior tibial slope (PTS) and femoral component rotation (FCR) in CAS group were compared to data of Patient Matched group. All patients also underwent a clinical evaluation with Knee Society Score (KSS) and Knee injury and Osteoarthritis Outcome Score (KOOS) at 6 and 12 months of follow up. KSS, KOOS and range of motion were comparable in the two groups after surgery. Operative time was significantly shorter in the Patient Matched group. No differences were found regarding complications rate. Mean angles, respectively for CAS and Patient Matched groups, were the following: MA was 1,7° (SD 0,9°) vs 0.8° (SD 2.1°); PTS was 3.1° (SD 0.9°) vs 3.4° (SD 2.1°); FCR was 1.5° (SD 2.2°) vs 1.36° (DS 1.2°). The outcomes of the CT scan evaluation were the following: MA was 1.5° (SD 0.8°) vs 1.0° (DS 1.5°); PTS was 2.3° (SD 0.8°) vs 3.0° (SD 2.6°); FCR was 0.4° (SD 0.8°) vs 0.2° (SD 0.3°). MA was within 3° of neutral alignment in 94% of patients for CAS group and in 97% of knees for Patient Matched group. After a short follow up, there weren't statistically significant differences between CAS and Patient Matched techniques as regards clinical and functional scores. Both the systems achieved the goal of neutral alignment within 3° of varus and valgus. We only observed greater precision for Patient Matched technique in optimizing femoral component rotation. Actually it is unpredictable if this difference may determine long term effects. Patient Matched technique and CAS for TKA surgery will certainly continue to have an impact in the future. Studies are needed to define which technique is better, in terms of long term results, failure rate and cost-effectiveness


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 88 - 88
1 Oct 2012
Schmidt F Asseln M Eschweiler J Belei P Radermacher K
Full Access

The alignment of prostheses components has a major impact on the longevity of total knee protheses as it significantly influences the biomechanics and thus also the load distribution in the knee joint. Knee joint loads depend on three factors: (1) geometrical conditions such as bone geometry and implant position/orientation, (2) passive structures such as ligaments and tendons as well as passive mechanical properties of muscles, and (3) active structures that are muscles. The complex correlation between implant position and clinical outcome of TKA and later in vivo joint loading after TKA has been investigated since 1977. These investigations predominantly focused on component alignment relative to the mechanical leg axis (Mikulicz-line) and more recently on rotational alignment perpendicular to the mechanical axis. In general four different approaches can be used to study the relationship between implant position and knee joint loads: In anatomical studies (1), the influence of the geometrical conditions and passive structures can be analyzed under the constraint that the properties of vital tissue are only approximated. This could be overcome with an intraoperative load measurement approach (2). Though, this set up does not consider the influence of active structures. Although post-operative in vivo load measurements (3) provide information about the actual loading condition including the influence of active structures, this method is not applicable to investigate the influence of different implant positions. Using mathematical approaches (4) including finite element analysis and multi-body-modeling, prostheses positions can be varied freely. However, there exists no systematical analysis of the influence of prosthesis alignment on knee loading conditions not only in axial alignment along and rotational alignment perpendicular to the mechanical axis but in all six degrees of freedom (DOF) with a validated mathematical model. Our goal was therefore to investigate the correlation between implant position and joint load in all six DOF using an adaptable biomechanical multi-body model. A model for the simulation of static single leg stance was implemented as an approximation of the phase with the highest load during walking cycle. This model is based on the AnyBody simulation software (AnyBody Technology A/S, Denmark). As an initial approach, with regard to the simulation of purely static loading the knee joint was implemented as hinge joint. The patella was realised as a deflection point, a so called “ViaNode,” for the quadriceps femoris muscle. All muscles were implemented based on Hill's muscle model. The knee model was indirectly validated by comparison of the simulation results for single and also double leg stance with in-vivo measurements from the Orthoload database (www.orthoload.de). For the investigation of the correlation between implant position and knee load, major boundary conditions were chosen as follows:. •. Flexion angle was set to 20° corresponding to the position with the highest muscle activity during gait cycle. •. Muscle lengths and thereby also muscle loads were adapted to the geometrical changes after each simulation step representing the situation after post-operative rehabilitation. As input parameters, the tibial and femoral components' positions were independently translated in a range of ±20mm in 10 equally distant steps for all three spatial directions. For the rotational alignment in adduction/abduction as well as flexion/extension the tibial and femoral components' positions were varied in the range of ±15° and for internal/external rotation within the range of ±20°, also in 10 equally angled steps. Changes in knee joint forces and torques as well as in patellar forces were recorded and compared to results of previous studies. Comparing the simulation results of single and double leg stance with the in-vivo measurements from the Orthoload database, changes in knee joint forces showed similar trends and the slope of changes in torques transmitted by the joint was equal. Against the background of unknown geometrical conditions in the Orthoload measurements and the simplification (hinge joint) of the initial multi-body-model compared to real knee joints, the developed model provides a reasonable basis for further investigations already – and will be refined in future works. As influencing parameters are very complex, a non-ambiguous interpretation of force/torque changes in the knee joint as a function of changes in component positions was in many cases hardly possible. Changes in patella force on the other hand could be traced back to geometrical and force changes in the quadriceps femoris muscle. Positional changes mostly were in good agreement with our hypotheses based on literature data when knee load and patellar forces respectively were primarily influenced by active structures, e.g. with regard to the danger of patella luxation in case of increased internal rotation of the tibial component. Whereas simulations also showed results contradicting our expectations for positional changes mainly affecting passive structures, e.g. cranial/caudal translation of the femoral component. This shows the major drawback of the implemented model: Intra-articular passive structures such as cruciate and collateral ligaments were not represented. Additionally kinematic influences on knee and patella loading were not taken into account as the simulations were made under static conditions. Implementation of relative movements of femoral, tibial and patella components and simulation under dynamic conditions might overcome this limitation. Furthermore, the boundary condition of complete muscle adaptations might be critical, as joint loads might be significantly higher shortly after operation. This could lead to a much longer and possibly ineffective rehabilitation process


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 202 - 202
1 Jun 2012
Tibesku C Mehl D Wong P Innocenti B Labey L Salehi A
Full Access

Purpose. Proper positioning of the components of a knee prosthesis for obtaining post-operative knee joint alignment is vital to obtain good and long term performance of a knee replacement. Although the reasons for failure of knee arthroplasty have not been studied in depth, the few studies that have been published claim that as much as 25% of knee replacement failures are related to malpositioning or malalignment [x]. The use of patient-matched cutting blocks is a recent development in orthopaedics. In contrast to the standard cutting blocks, they are designed to fit the individual anatomy based on 3D medical images. Thus, landmarks and reference axes can be identified with higher accuracy and precision. Moreover, stable positioning of the blocks with respect to the defined axes is easier to achieve. Both may contribute to better alignment of the components. The objective of this study was to check the accuracy of femoral component orientation in a cadaver study using specimen-matched cutting blocks in six specimens; first for a bi-compartmental replacement, and then for a tri-compartmental replacement in the same specimen. Materials and Methods. Frames with infrared reflective spherical markers were fixed to six cadaveric femurs and helical CT scans were made. A bone surface reconstruction was created and the relevant landmarks for describing alignment were marked using 3D visualisation software (Mimics). The centres of the spherical markers were also determined. Based on the geometry of the articular surface and the position of the landmarks, custom-made cutting blocks were designed. One cutting block was prepared to guide implantation of a bi-compartmental device and another one to guide implantation of the femoral component of a total knee replacement. The knee was opened and the custom-made cutting block for the bi-compartmental implant was seated onto the surface. The block was used to make the anterior cut, after which it was removed and replaced with the conventional cutting block using the same pinning holes to ensure the same axial rotational alignment. The other cuts were made using the conventional cutting block and the bi-compartmental femoral component was implanted. Afterwards, a similar procedure was used to make the extra cuts for the total knee component. The position of the components with respect to the reflective markers was measured by locating three reference points and “painting” the articular surface with a wand with reflective markers. The position of all marker spheres was continuously recorded with four infrared cameras and Nexus software. Results. Average alignment for the bi-compartmental component in transverse and frontal planes were 0.2° (standard deviation: 2.4°) and 0.4° (standard deviation: 2.8°), respectively. Average alignment for the tri-compartmental component in transverse and frontal planes were 0.6° (standard deviation: 3.2°) and 0.9° (standard deviation: 5.5°), respectively. Conclusions. The specimen matched cutting blocks, designed based on CT scan data, achieved a similar level of alignment accuracy as reported for navigation systems


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 62 - 62
1 Oct 2012
Deep K Menna C Picard F
Full Access

The aim of the study was to investigate rotational behaviour of the arthritic knee before (preimplant) and after (postimplant) total knee replacement (TKR) using (image-free navigation system as a measurement tool which recorded the axial plane alignment between femur and tibia, in addition to the coronal and sagittal alignment as the knee is flexed through the range of motion. The data on the rotation of the arthritic knee was collected after the knee exposure and registration of the lower limb (preimplant data). The position of rotation between the femur and tibia was recorded in 30° flexion, 45°, 60°, 90° and maximum degrees of flexion of the knee. The data was divided into subsets of varus and valgus knees and these were analysed pre and postimplant for their rotational position using SPSS for statistics. The system was used in 117 knees of which 91 had full data set available (43 male 48 female). These included 71 varus knees, 16 valgus knees and 4 neutral knees to start in extension. Preimplant data analysis revealed there is tendency for the arthritic knees to first go in internal rotation in the initial part of flexion to 30 degrees and then the rotation is reversed back. This happens irrespective of the initial starting rotational relationship between femur and tibia in full extension. This happens in both varus as well as valgus arthritic knees. This trend of internal rotation in this initial part of flexion is followed in TKR as well implanted with fixed bearing CR knees irrespective of the preoperative deformity. Also noteworthy was the difference in rotation at 30°, 60° and 90 degrees of flexion between preimplant and postimplant knees (irrespective of varus and valgus groups). When calculated at different points of flexion, there was statistically significant difference in the change of rotation at each point of flexion except 45 degree of flexion. The pre-operative values of change in rotation (internal being positive) at each step from the extended position being 5.4° (SD 4.5°) at 30 ° flexion, 4.7°(5.2°) at 45°, 3.6°(6.1°) at 60°, 3.5°(7.2°) at 90° and 4.2°(8.3°) at maximum flexion. Corresponding post-operative rotations were 2.2°(4.8°), 4.1°(6.4°), 6.6°(7.3°), 9.9°(8.8°) and 7.7°(8.9°). There was also an increase in the total range of rotation that the knee goes through after it has been implanted with prosthesis although it may not happen in every knee. This is statistically significant (p value <0.001) and seems more so in valgus group. The rotational movements and interrelationship of the femur and tibia is a complex issue, especially in the arthritic knees. Preimplant arthritic knee behaved generally similarly to normal knees according to the literature. Normal gait pattern demonstrates that the tibia moved through a 4° to 8° arc of internal rotation relative to the femur. The overall range (10.2° =/−4.2°) of knee rotation in this study greater than 8° might be explained by preimplant data acquired after the knee was approached and therefore releasing knee soft tissue envelop. This study confirmed that during the first 30° both varus and valgus knees moved internally. In our study there is increased range of total rotation postimplant (14° =/−6.8°) which may be explained by the fact that the anterior cruciate ligament is lost in all the TKRs and the posterior cruciate ligament may be dysfunctional as well. Thus the constraints on the knee rotation are decreased postimplant leading to increased rotation. We found some difference between varus and valgus post implant knees in that internal rotation seen in initial 30 degrees of flexion is much more pronounced in valgus knees as compared to varus knees (p value <0.001). This study confirmed knee internal rotation in initial stages of flexion, preimplant in arthritic knees during a passive knee flexion assessment. Varus and valgus knee seemed to behave similarly. This mimics the normal knee rotation. Postimplant knees in TKR behave differently