Many studies describe the use of the Ilizarov ring fixator for lower limb lengthening and for the management of the 3-dimensional lower limb deformities in achondroplasia, and most confirm the efficacy of this technique. However, long term follow up of these achondroplastic patients is lacking. Most studies have focused on magnitude of lengthening, treatment time required and complications, but no study has analyzed the long term postoperative condition of these patients using an objective, functional method such as gait analysis. Nineteen (19) achondroplastic patients, 12 males and 7 females, aged 19–38 years (mean 27.3 y) who have undergone tibia and femur lengthening, using the Ilizarov method, at the age of 9–19 years (mean 12.6 y), were evaluated 5–19 years (mean 10.1 y) after their last surgery, using 3-dimensional gait analysis. Nineteen (19) normal, height-matched subjects were used as controls. The VICON Nexus 8 Camera System was used to accurately measure spatiotemporal characteristics (walking velocity, stride length, step length, cadence) and kinematics (range of motion) of lower limb joints. Statistical comparison of deformity parameters between achondroplastic patients and normal population was done using the student t- test. A level of p<0.05 was considered statistically significant. Walking velocity, step length and stride length were statistically significantly decreased (p<0.05) in achondroplastic patients compared to normal population values. The achondroplastic group presented with excessive
Abstract. Introduction. Recent reports show that spinopelvic mobility influences outcome following total hip arthroplasty. This scoping review investigates the relationship between spinopelvic parameters (SPPs) and symptomatic femoroacetabular impingement (FAI). Methods. A systematic search of EMBASE, PubMed and Cochrane for literature related to SPPs and FAI was undertaken as per PRISMA guidelines. Clinical outcome studies and prospective/retrospective studies investigating the role of SPPs in symptomatic FAI were included. Review articles, case reports and book chapters were excluded. Information extracted pertained to symptomatic cam deformities, pelvic tilt, acetabular version, biomechanics of dynamic movements and radiological FAI signs. Results. The search identified 42 papers for final analysis out of 1168 articles investigating the link between SPPs and pathological processes characteristic of FAI. Only one (2.4%) study was of level 1 evidence, five (11.9%) studies) were level 2, 17 (40.5%) were level 3 and 19 (45.2%) were level 4. Three studies associated FAI pathology with a greater pelvic incidence (PI), while four associated it with a smaller PI.
Introduction. A deep squat (DS) is a challenging motion at the level of the hip joint generating substantial reaction forces (HJRF). During DS, the hip flexion angle approximates the functional range of hip motion. In some hip morphologies this femoroacetabular conflict has been shown to occur as early as 80° of hip flexion. So far in-vivo HJRF measurements have been limited to instrumented hip implants in a limited number of older patients performing incomplete squats (< 50° hip flexion and < 80° knee flexion). Clearly, young adults have a different kinetical profile with hip and knee flexion ranges going well over 100 degrees. Since hip loading data on this subgroup of the population is lacking and performing invasive measurements would be unfeasible, this study aimed to report a personalised numerical model solution based on inverse dynamics to calculate realistic in silico HJRF values during DS. M&M. Fifty athletic males (18–25 years old) were prospectively recruited for motion and morphological analysis. DS motion capture (MoCap) acquisitions and MRI scans of the lower extremities with gait lab marker positions were obtained. The AnyBody Modelling System (v6.1.1) was used to implement a novel personalisation workflow of the AnyMoCap template model. Bone geometries, semi-automatically segmented from MRI, and corresponding markers were incorporated into the template human model by an automated nonlinear morphing. Furthermore, a state-of-the-art TLEM 2.0 dataset, included in the Anybody Managed Model Repository (v2.0), was used in the template model. The subject-specific MoCap trials were processed to compute squat motion by resolving an overdeterminate kinematics problem. Inverse dynamics analyses were carried out to compute muscle and joint reaction forces in the entire body. Resulting hip joint loads were validated with measured in-vivo data from Knee bend trials in the OrthoLoad library. Additionally,