Aims. The aim of this study is to evaluate whether acetabular retroversion (AR) represents a structural anatomical abnormality of the pelvis or is a functional phenomenon of pelvic positioning in the sagittal plane, and to what extent the changes that result from patient-specific functional position affect the extent of AR. Methods. A comparative radiological study of 19 patients (38 hips) with AR were compared with a control group of 30 asymptomatic patients (60 hips). CT scans were corrected for rotation in the axial and coronal planes, and the sagittal plane was then aligned to the anterior pelvic plane. External rotation of the hemipelvis was assessed using the superior iliac wing and inferior iliac wing angles as well as quadrilateral plate angles, and correlated with cranial and central acetabular version. Sagittal anatomical parameters were also measured and correlated to version measurements. In 12 AR patients (24 hips), the axial measurements were repeated after matching sagittal pelvic rotation with standing and supine anteroposterior radiographs. Results. Acetabular version was significantly lower and measurements of external rotation of the hemipelvis were significantly increased in the AR group compared to the control group. The AR group also had increased evidence of anterior projection of the iliac wing in the sagittal plane. The acetabular orientation angles were more retroverted in the supine compared to standing position, and the change in acetabular version correlated with the change in sagittal
Aims. Patients with abnormal spinopelvic mobility are at increased risk for instability. Measuring the change in sacral slope (ΔSS) can help determine spinopelvic mobility preoperatively. Sacral slope (SS) should decrease at least 10° to demonstrate adequate posterior pelvic tilt. There is potential for different ΔSS measurements in the same patient based on sitting posture. The purpose of this study was to determine the effect of sitting posture on the ΔSS in patients undergoing total hip arthroplasty (THA). Methods. In total, 51 patients undergoing THA were reviewed to quantify the variability in preoperative spinopelvic mobility when measuring two different sitting positions using SS for planning. Results. A total of 32 patients had standardized relaxed sitting radiographs, while 35 patients had standardized flexed sitting images. Of the 32 patients with relaxed sitting views, the mean ΔSS was 20.7° (SD 8.9°). No patients exhibited an increase in SS during relaxed sitting (i.e.
Purpose. Patients with acetabular dysplasia demonstrate altered biomechanics during gate and other activities. We hypothesized that these patients exhibit a compensatory increase in the
Aims. The purpose of this study was to evaluate spinopelvic mechanics from standing and sitting positions in subjects with and without femoroacetabular impingement (FAI). We hypothesize that FAI patients will experience less flexion at the lumbar spine and more flexion at the hip whilst changing from standing to sitting positions than subjects without FAI. This increase in hip flexion may contribute to symptomatology in FAI. Patients and Methods. Male subjects were prospectively enrolled to the study (n = 20). Mean age was 31 years old (22 to 41). All underwent clinical examination, plain radiographs, and dynamic imaging using EOS. Subjects were categorized into three groups: non-FAI (no radiographic or clinical FAI or pain), asymptomatic FAI (radiographic and clinical FAI but no pain), and symptomatic FAI (patients with both pain and radiographic FAI). FAI was defined as internal rotation less than 15° and alpha angle greater than 60°. Subjects underwent standing and sitting radiographs in order to measure spine and femoroacetabular flexion. Results. Compared with non-FAI controls, symptomatic patients with FAI had less flexion at the spine (mean 22°, . sd. 12°, vs mean 35°, . sd. 8°; p = 0.04) and more at the hip (mean 72°, . sd. 6°, vs mean 62°, . sd. 8°; p = 0.047). Subjects with asymptomatic FAI had more spine flexion and similar hip flexion when compared to symptomatic FAI patients. Both FAI groups also sat with more
Variation in pelvic tilt during postural changes may affect functional alignment. The primary objective of this study was to quantify the changes in lumbo-pelvic-femoral alignment from sitting to standing in patients undergoing THA. 144 patients were enrolled. Standing and sitting radiographs using the EOS imaging system were analyzed preoperatively and 1-year postoperatively. Pelvic incidence (PI), lumbar lordosis (LL), sacral slope (SS), proximal femoral angle (PFA) and spine/femoroacetabular flexion were determined. 38 patients had multilevel DDD (26%). Following THA, patients sat with increased
Osteochondroplasty procedure for cam deformity provides excellent outcomes on alleviating pain, improving quality of life and clinical function in femoroacetabular impingement syndrome (FAIS) patients. Although medium-term outcomes on gait biomechanics have been reported, it is unclear how it would translate to better hip muscle forces and joint loading in high range of motion tasks. The purpose of this study was to compare the muscle forces and hip joint contact forces (HCF) during a squat task in individuals before and after cam-FAIS surgical correction. Ten cam-FAIS patients prior and 2-years after osteochondroplasty, and 10 BMI- age- and sex-matched healthy control participants (CTRL) underwent 3D motion and ground reaction forces capture while performing a deep squatting task. Muscle and HCF were estimated using musculoskeletal modeling and comparisons were done using statistical parametric mapping (SPM). Postoperatives squatted down with a higher
Aims. The aims of this study were to measure sagittal standing and sitting lumbar-pelvic-femoral alignment in patients before and following total hip arthroplasty (THA), and to consider what preoperative factors may influence a change in postoperative pelvic position. Patients and Methods. A total of 161 patients were considered for inclusion. Patients had a mean age of the remaining 61 years (. sd. 11) with a mean body mass index (BMI) of 28 kg/m. 2. (. sd. 6). Of the 161 patients, 82 were male (51%). We excluded 17 patients (11%) with spinal conditions known to affect lumbar mobility as well as the rotational axis of the spine. Standing and sitting spine-to-lower-limb radiographs were taken of the remaining 144 patients before and one year following THA. Spinopelvic alignment measurements, including sacral slope, lumbar lordosis, and pelvic incidence, were measured. These angles were used to calculate lumbar spine flexion and femoroacetabular hip flexion from a standing to sitting position. A radiographic scoring system was used to identify those patients in the series who had lumbar degenerative disc disease (DDD) and compare spinopelvic parameters between those patients with DDD (n = 38) and those who did not (n = 106). Results. Following THA, patients sat with more
Aims. Concurrent hip and spine pathologies can alter the biomechanics of spinopelvic mobility in primary total hip arthroplasty (THA). This study examines how differences in pelvic orientation of patients with spine fusions can increase the risk of dislocation risk after THA. Patients and Methods. We identified 84 patients (97 THAs) between 1998 and 2015 who had undergone spinal fusion prior to primary THA. Patients were stratified into three groups depending on the length of lumbar fusion and whether or not the sacrum was involved. Mean age was 71 years (40 to 87) and 54 patients (56%) were female. The mean body mass index (BMI) was 30 kg/m. 2. (19 to 45). Mean follow-up was six years (2 to 17). Patients were 1:2 matched to patients with primary THAs without spine fusion. Hazard ratios (HR) were calculated. Results. Dislocation in the fusion group was 5.2% at one year versus 1.7% in controls but this did not reach statistical significance (HR 1.9; p = 0.33). Compared with controls, there was no significant difference in rate of dislocation in patients without a sacral fusion. When the sacrum was involved, the rate of dislocation was significantly higher than in controls (HR 4.5; p = 0.03), with a trend to more dislocations in longer lumbosacral fusions. Patient demographics and surgical characteristics of THA (i.e. surgical approach and femoral head diameter) did not significantly impact risk of dislocation (p > 0.05). Significant radiological differences were measured in mean
Objectives. The spinopelvic relationship (including pelvic incidence) has been shown to influence pelvic orientation, but its potential association with femoroacetabular impingement has not been thoroughly explored. The purpose of this study was to prove the hypothesis that decreasing pelvic incidence is associated with increased risk of cam morphology. Methods. Two matching cohorts were created from a collection of cadaveric specimens with known pelvic incidences: 50 subjects with the highest pelvic incidence (all subjects > 60°) and 50 subjects with the lowest pelvic incidence (all subjects < 35°). Femoral version, acetabular version, and alpha angles were directly measured from each specimen bilaterally. Cam morphology was defined as alpha angle > 55°. Differences between the two cohorts were analysed with a Student’s t-test and the difference in incidence of cam morphology was assessed using a chi-squared test. The significance level for all tests was set at p < 0.05. Results. Cam morphology was identified in 47/100 (47%) femurs in the cohort with pelvic incidence < 35° and in only 25/100 (25%) femurs in the cohort with pelvic incidence > 60° (p = 0.002). The mean alpha angle was also greater in the cohort with pelvic incidence < 35° (mean 53.7°, . sd. 10.7° versus mean 49.7°, . sd. 10.6°; p = 0.008). Conclusions. Decreased pelvic incidence is associated with development of cam morphology. We propose a novel theory wherein subjects with decreased pelvic incidence compensate during gait (to maintain optimal sagittal balance) through
Aims. The pelvis rotates in the sagittal plane during daily activities.
These rotations have a direct effect on the functional orientation
of the acetabulum. The aim of this study was to quantify changes
in pelvic tilt between different functional positions. Patients and Methods. Pre-operatively, pelvic tilt was measured in 1517 patients undergoing
total hip arthroplasty (THA) in three functional positions – supine,
standing and flexed seated (the moment when patients initiate rising
from a seated position). Supine pelvic tilt was measured from CT
scans, standing and flexed seated pelvic tilts were measured from standardised
lateral radiographs.
Aims. The aims of the study were to determine the differences in spinopelvic mobility between a cohort of hip OA patients and a control group for the 1) standing to relaxed-seated and 2) standing to deep-seated task. Methods. A cohort of 40 patients with end-stage hip OA and a control group of 40 subjects, matched for age, gender and BMI were prospectively studied. Clinical data and lateral view radiographs in different positions were assessed. Sagittal spinopelvic mobility was calculated as the change when moving from the standing to relaxed-seated and standing to deep-seated positions for the lumbar lordosis angle, pelvic tilt and pelvic-femoral angle. Results. When moving from the standing to sitting position, hip OA patients demonstrated less hip flexion (52±18 vs. 69±11, p<0.001), an increased posterior pelvic tilt (23±13 vs. 12±9, p<0.001) and more flexion of the lumbar spine (22±15 vs. 14±11, p=0.01). Similarly, when moving from the standing to deep-seated position, hip OA patients demonstrated also less hip flexion (64±21 vs. 84±18, p<0.001), accompanied by a posterior and not an
Aims. Long-term clinical outcomes for ceramic-on-ceramic (CoC) bearings
are encouraging. However, there is a risk of squeaking. Guidelines
for the orientation of the acetabular component are defined from
static imaging, but the position of the pelvis and thus the acetabular
component during activities associated with edge-loading are likely
to be very different from those measured when the patient is supine.
We assessed the functional orientation of the acetabular component. Patients and Methods. A total of 18 patients with reproducible squeaking in their CoC
hips during deep flexion were investigated with a control group
of 36 non-squeaking CoC hips. The two groups were matched for the
type of implant, the orientation of the acetabular component when
supine, the size of the femoral head, ligament laxity, maximum hip
flexion and body mass index. . Results. The mean functional anteversion of the acetabular component at
the point when patients initiated rising from a seated position
was significantly less in the squeaking group than in the control
group, 8.1° (-10.5° to 36.0°) and 21.1° (-1.9° to 38.4°) respectively
(p = 0.002). . Conclusion. The functional orientation of the acetabular component during
activities associated with posterior edge-loading are different
from those measured when supine due to patient-specific pelvic kinematics.
Individuals with a large
Spinopelvic pathology increases the risk for instability following total hip arthroplasty (THA), yet few studies have evaluated how pathology varies with age or sex. The aims of this study were: 1) to report differences in spinopelvic parameters with advancing age and between the sexes; and 2) to determine variation in the prevalence of THA instability risk factors with advancing age. A multicentre database with preoperative imaging for 15,830 THA patients was reviewed. Spinopelvic parameter measurements were made by experienced engineers, including anterior pelvic plane tilt (APPT), spinopelvic tilt (SPT), sacral slope (SS), lumbar lordosis (LL), and pelvic incidence (PI). Lumbar flexion (LF), sagittal spinal deformity, and hip user index (HUI) were calculated using parameter measurements.Aims
Methods
Pelvic tilt is believed to affect the symptomology of osteoarthritis (OA) of the hip by alterations in joint movement, dysplasia of the hip by modification of acetabular cover, and femoroacetabular impingement by influencing the impingement-free range of motion. While the apparent role of pelvic tilt in hip pathology has been reported, the exact effects of many forms of treatment on pelvic tilt are unknown. The primary aim of this study was to investigate the effects of surgery on pelvic tilt in these three groups of patients. The demographic, radiological, and outcome data for all patients operated on by the senior author between October 2016 and January 2020 were identified from a prospective registry, and all those who underwent surgery with a primary diagnosis of OA, dysplasia, or femoroacetabular impingement were considered for inclusion. Pelvic tilt was assessed on anteroposterior (AP) standing radiographs using the pre- and postoperative pubic symphysis to sacroiliac joint (PS-SI) distance, and the outcomes were assessed with the Hip Outcome Score (HOS), International Hip Outcome Tool (iHOT-12), and Harris Hip Score (HHS).Aims
Methods
Femoroacetabular impingement (FAI) patients report exacerbation of hip pain in deep flexion. However, the exact impingement location in deep flexion is unknown. The aim was to investigate impingement-free maximal flexion, impingement location, and if cam deformity causes hip impingement in flexion in FAI patients. A retrospective study involving 24 patients (37 hips) with FAI and femoral retroversion (femoral version (FV) < 5° per Murphy method) was performed. All patients were symptomatic (mean age 28 years (SD 9)) and had anterior hip/groin pain and a positive anterior impingement test. Cam- and pincer-type subgroups were analyzed. Patients were compared to an asymptomatic control group (26 hips). All patients underwent pelvic CT scans to generate personalized CT-based 3D models and validated software for patient-specific impingement simulation (equidistant method).Aims
Methods
Some patients presenting with hip pain and instability and underlying acetabular dysplasia (AD) do not experience resolution of symptoms after surgical management. Hip-spine syndrome is a possible underlying cause. We hypothesized that there is a higher frequency of radiological spine anomalies in patients with AD. We also assessed the relationship between radiological severity of AD and frequency of spine anomalies. In a retrospective analysis of registry data, 122 hips in 122 patients who presented with hip pain and and a final diagnosis of AD were studied. Two observers analyzed hip and spine variables using standard radiographs to assess AD. The frequency of lumbosacral transitional vertebra (LSTV), along with associated Castellvi grade, pars interarticularis defect, and spinal morphological measurements were recorded and correlated with radiological severity of AD.Aims
Methods
Patients with spinal pathology who undergo total hip arthroplasty (THA) have an increased risk of dislocation and revision. The aim of this study was to determine if the use of the Hip-Spine Classification system in these patients would result in a decreased rate of postoperative dislocation in patients with spinal pathology. This prospective, multicentre study evaluated 3,777 consecutive patients undergoing THA by three surgeons, between January 2014 and December 2019. They were categorized using The Hip-Spine Classification system: group 1 with normal spinal alignment; group 2 with a flatback deformity, group 2A with normal spinal mobility, and group 2B with a stiff spine. Flatback deformity was defined by a pelvic incidence minus lumbar lordosis of > 10°, and spinal stiffness was defined by < 10° change in sacral slope from standing to seated. Each category determined a patient-specific component positioning. Survivorship free of dislocation was recorded and spinopelvic measurements were compared for reliability using intraclass correlation coefficient.Aims
Methods
In computer simulations, the shape of the range of motion (ROM) of a stem with a cylindrical neck design will be a perfect cone. However, many modern stems have rectangular/oval-shaped necks. We hypothesized that the rectangular/oval stem neck will affect the shape of the ROM and the prosthetic impingement. Total hip arthroplasty (THA) motion while standing and sitting was simulated using a MATLAB model (one stem with a cylindrical neck and one stem with a rectangular neck). The primary predictor was the geometry of the neck (cylindrical vs rectangular) and the main outcome was the shape of ROM based on the prosthetic impingement between the neck and the liner. The secondary outcome was the difference in the ROM provided by each neck geometry and the effect of the pelvic tilt on this ROM. Multiple regression was used to analyze the data.Aims
Methods
The unparalleled events of the year 2020 continue to evolve and challenge the worldwide community on a daily basis. The COVID-19 pandemic has had a major impact on all aspects of our lives, and has caused major morbidity and mortality around the globe. The impact of COVID-19 on the practice of orthopedic surgery has been substantial with practice shutdowns, elective surgery restrictions, heightened utilization of telemedicine platforms and implementation of precautionary measures for in-person clinic visits. During this transition period the scholarly and educational pursuits of academic surgeons have been de-emphasized as the more immediate demands of clinical practice survivorship have been the priority. This unavoidable focus on clinical practice has heightened the importance of orthopedic subspecialty societies in maintaining an appropriate level of attention on research and educational activities. Under the outstanding presidential leadership of Robert Barrack, MD, The Hip Society adapted to the profound challenges of 2020, and maintained strong leadership in the realms of education and research. The recent 2020 summer meeting of the Hip Society was a testimonial to the resilience and dedication of the Society members to ongoing innovation in research and education. Due to travel and social distancing restrictions the 2020 summer meeting was transitioned from an in-person to a virtual meeting format. Dr Barrack and Program Chair Dr John Clohisy assisted with oversight of the meeting, while Olga Foley and Cynthia Garcia ensured the success of the meeting with remarkable planning and organization. These collaborative efforts resulted in an organized, well-attended, high level scientific meeting with engaging discussion and a remarkable virtual conference environment. The Bone & Joint Journal is very pleased to partner with The Hip Society to publish the proceedings of this very unique virtual meeting. The Hip Society is based in the United States and membership is granted to select individuals for leadership accomplishments in education and research related to hip disease. The Society is focused on the mission of advancing the knowledge and treatment of hip disorders to improve the lives of patients. The vision of the Hip Society is to lead in the discovery and dissemination of knowledge related to disorders of the hip. The annual closed meeting is one of the most important events of the society as this gathering highlights timely, controversial and novel research contributions from the membership. The top research papers from The Hip Society meeting will be published and made available to the wider orthopedic community in The Bone & Joint Journal. This partnership with The Bone & Joint Journal enhances the mission and vision of The Hip Society by international dissemination of the meeting proceedings. Given the far-reaching circulation of The Bone & Joint Journal the highest quality work is available to an expanding body of surgeons, associated healthcare providers and patients. Ultimately, this facilitates the overarching Hip Society goal of improving the lives of our patients. The 2020 virtual Hip Society meeting was characterized by outstanding member attendance, high quality paper presentations and robust discussion sessions. The meeting was held over two days and encompassed 58 open paper presentations divided into ten sessions with moderated discussions after each session. All papers will be presented in this issue in abstract form, while selected full papers passing our rigorous peer review process will be available online and in The Bone & Joint Journal in a dedicated supplement in 2021. The first session of the meeting focused on issues related to complex primary THA and osteonecrosis of the femoral head. Dr Gross presented on the conversion of hip fusion to THA in 28 patents at a mean 7 years. He reported a high clinical success rate, yet complications of heterotopic ossification and neurologic injury were relatively common. Consideration of heterotopic ossification prophylaxis and the selective use of a constrained liner were recommended. Dr Pagnano summarized the use of various contemporary porous acetabular components in 38 hips in the setting of prior pelvic radiation. The mean follow-up was 5 years and 10 year survivorship was 100% with all implants radiographically fixed. Dr Bolognesi's study demonstrated that THA in solid organ transplant patients is associated with higher risk for facility placement, transfusions and readmissions. This patient population also has increased mortality risk (4.3% risk at 1 year) especially lung transplant patients. The second group of papers focused on femoral head osteonecrosis. Dr Iorio presented single center data demonstrating that CT scan was a useful adjunct for diagnosis in the staging work-up for cancer, yet was not useful for ARCO staging and treatment decision-making. On the basic science side, Dr Goodman utilized a rabbit model of steroid-induced femoral head osteonecrosis to determine that immunomodulation with IL-4 has the potential to improve bone healing after core decompression. The session was concluded by Dr Nelson's study of ceramic-on-ceramic THA in 108 osteonecrosis patients. The median 12 year results were outstanding with marked increases in PROs, maintenance of high activity levels, and a 3.7% revision rate. In the second session attention was directed to THA instability and spinopelvic mobility. Dr Sierra presented a machine learning algorithm for THA dislocation risk. Two modifiable variables (anterior/lateral approach, elevated liner) were most influential in minimizing dislocation risk. Dr Taunton's study demonstrated a deep learning artificial intelligence model derived from postoperative radiographs to predict THA dislocation risk. High sensitivity and negative predictive value suggest that this model may be helpful in assessing postoperative dislocation risk. In reviewing a large single-center, multiple surgeon cohort of 2,831 DAA procedures, Dr Moskal noted a very low dislocation rate (0.45%) at minimum 2 years. Importantly, spinopelvic pathology or prior spinal instrumentation was not associated with an increased dislocation risk (0.30%). Dr Huo and colleagues analyzed pelvic tilt during functional gait in patients with acetabular dysplasia. They detected variable pelvic tilt on different surfaces with the data suggesting that patients with more
The aims of this study were to compare clinically relevant measurements of hip dysplasia on radiographs taken in the supine and standing position, and to compare Hip2Norm software and Picture Archiving and Communication System (PACS)-derived digital radiological measurements. Preoperative supine and standing radiographs of 36 consecutive patients (43 hips) who underwent periacetabular osteotomy surgery were retrospectively analyzed from a single-centre, two-surgeon cohort. Anterior coverage (AC), posterior coverage (PC), lateral centre-edge angle (LCEA), acetabular inclination (AI), sharp angle (SA), pelvic tilt (PT), retroversion index (RI), femoroepiphyseal acetabular roof (FEAR) index, femoroepiphyseal horizontal angle (FEHA), leg length discrepancy (LLD), and pelvic obliquity (PO) were analyzed using both Hip2Norm software and PACS-derived measurements where applicable.Aims
Methods