Introduction. The direct anterior approach (DAA) for total hip arthroplasty continues to gain popularity. Consequently, more procedures are being performed with the patient supine. The approach often utilizes a special leg positioner to assist with femoral exposure. Although the supine position may seem to allow for a more reproducible pelvic position at the time of cup implantation, there is limited evidence as to the effects on pelvic tilt with such leg positioners. Furthermore, the DAA has led to increased popularity of specific softwares, ie. Radlink or JointPoint, that facilitate the intra-op analysis of component position from fluoroscopy images. The aim of this study was to assess the difference in cup orientation measurements between intra-op fluoroscopy and post-op CT. Methods. A consecutive series of 48 DAA THAs were performed by a single surgeon in June/July 2018. All patients received OPS. TM. pre-operative planning (Corin, UK), and the cases were performed with the patient supine on the operating table with the PURIST leg positioning system (IOT, Texas, USA). To account for variation in pelvic tilt on the table, a fluoroscopy image of the hemi-pelvis was taken prior to cup impaction, and the c-arm rotated to match the shape of the obturator foramen on the supine AP Xray. The final cup was then imaged using fluoroscopy, and the radiographic cup orientation measured manually using Radlink GPS software (Radlink, California, USA). Post-operatively, each patient received a low dose CT scan to measure the radiographic cup orientation in reference to the supine coronal plane. Results. Mean cup orientation from intra-op fluoro was 38° inclination (32° to 43°) and 24° anteversion (20° to 28°). Mean cup orientation from post-op CT was 40° inclination (29° to 47°) and 30° anteversion (22° to 38°). Cups were, on average, 6° more anteverted and 2° more inclined on post-op CT than intra-op. These differences were statistically significant, p<0.001. All 48 cups were more anteverted on CT than intra-op. There was no statistical difference between pre- and post-op supine pelvic tilt (4.1° and 5.1° respectively, p = 0.41). Discussion. We found significant differences in cup orientation measurements performed from intra-op fluoro to those from post-op CT. This is an important finding given the attempts to adjust for pelvic tilt during the procedure. We theorise two sources of error contributing to the measurement differences. Firstly, the under-compensation for the
Introduction. Early hip OA may be attributed to smaller coverage of the femoral head leading to higher loads per unit area. We hypothesize that tight hamstrings may contribute to increased loads per unit area on the femoral head during gait. When a patient has tight hamstrings they cannot flex their pelvis in a normal fashion which may result in smaller coverage of the femoral head (Figure 1). This study aimed to determine if subjects with tight hamstrings can improve femoral head coverage during gait after a stretching intervention. Methods. Nine healthy subjects with tight hamstrings (popliteal angle>25°) were recruited and consented for this IRB approved study. Gait analysis with 58 reflective markers were placed by palpation on anatomical landmarks of the torso and lower extremities. Ten optoelectronic cameras (Qualisys, Gothenburg, Sweden) and three force plates (AMTI, Watertown, MA) were used to track marker position and measure foot strike forces. Subjects walked at a self-selected speed across the force plates until ten clean trials were performed and then were scanned with the reflective markers on the spine using an EOS (EOS Imaging, France) bi-planar x-ray system. Following testing participants completed a six week stretching program to increase hamstring length. Pelvic tilt (PT) was measured at heel strike for each trial and averaged. Using EOS scans the femoral head radius was measured using three points that best fit the load bearing surface on the sagittal view from the anterior acetabular rim to a point on the posterior acetabulum 45 degrees from vertical. The radius of femoral head and angle of acetabular coverage were used to calculate the load bearing surface area of femoral head. Load on the femur was calculated using an Anybody lower body model (Anybody Technology, Aalborg, Denmark) and load per unit area change was compared. Results. Nine participants completed the stretching program and post intervention testing. PA increased in all subjects (mean ± SD) 18.8° ± 11° (p<.01). Eight of nine subjects had an increase in anterior PT at heel strike resulting in a mean change of 2.1° ± 2.9° (p<.05). The change in PT resulted in a mean surface area change of 0.63cm. 2. ± 0.77 cm. 2. (p<.05), which resulted in a mean pressure change of −57.9MPa ± 55.7MPa. Removing the one subject who decreased in
Introduction. Pelvic and acetabular injuries are relatively rare and surgical reconstruction usually occurs only in specialist centres. As part of their work up there is a local protocol for radiological investigations including Judet oblique views for acetabular fractures, pelvic inlet and outlet for pelvic ring fractures and urethrograms for sustaining
Introduction. Acetabular cup orientation has been shown to be a factor in edge-loading of a ceramic-on-ceramic THR bearing. Currently all recommended guidelines for cup orientation are defined from static measurements with the patient positioned supine. The objectives of this study are to investigate functional cup orientation and the incidence of edge-loading in ceramic hips using commercially available, dynamic musculoskeletal modelling software that simulates each patient performing activities associated with edge-loading. Methodology. Eighteen patients with reproducible squeaking in their ceramic-on-ceramic total hip arthroplasties were recruited from a previous study investigating the incidence of noise in large-diameter ceramic bearings. All 18 patients had a Delta Motion acetabular component, with head sizes ranging from 40 – 48mm. All had a reproducible squeak during a deep flexion activity. A control group of thirty-six patients with Delta Motion bearings who had never experienced a squeak were recruited from the silent cohort of the same original study. They were matched to the squeaking group for implant type, acetabular cup orientation, ligament laxity, maximum hip flexion and BMI. All 54 patients were modelled performing two functional activities using the Optimized Ortho Postoperative Kinematics Simulation software. The software uses standard medical imaging to produce a patient-specific rigid body dynamics analysis of the subject performing a sit-to-stand task and a step-up with the contralateral leg, Fig 1. The software calculates the dynamic force at the replaced hip throughout the two activities and plots the bearing contact patch, using a Hertzian contact algorithm, as it traces across the articulating surface, Fig 2. As all the squeaking hips did so during deep flexion, the minimum posterior Contact Patch to Rim Distance (CPRD) can then be determined by calculating the smallest distance between the edge of the contact patch and the true rim of the ceramic liner, Fig 2. A negative posterior CPRD indicates posterior edge-loading. Results. The mean CPRD was significantly less in the squeaking group than the control group, −2.5mm and 2.9mm respectively, (p < 0.001), Fig 3. The mean pelvic tilt in the flexed seated position was 12.6° (range −13.5° to 30.3°) for the squeaking group and 5.1° (−9.8° to 26.4°) for the control group. Consequently, the mean functional cup anteversion at seat-off was significantly less in the squeaking group than the control group, 8.1° (−10.5° to 36.0°) and 21.1° (−1.9° to 38.4°) respectively (p < 0.001), Fig 3. There were 67% (12) of patients in the squeaking group that showed posterior edge-loading in the simulation compared to only 28% (10) in the control group that exhibited posterior edge-loading in the simulation. Conclusions. Acetabular cup orientation during activities associated with edge-loading are likely very different from those measured when supine. Patients with large
INTRODUCTION. Poor acetabular cup orientation in total hip arthroplasty (THA) can cause dislocation and impingement, and lead to osteolysis (Little et al., 2009) and inflammatory soft tissue reactions (Haan et al., 2008). While the intrinsic accuracy of cup positioning in navigation is reported as low as 1° (Parratte et al., 2009), a large
A flexed knee gait is common in patients with bilateral spastic
cerebral palsy and occurs with increased age. There is a risk for
the recurrence of a flexed knee gait when treated in childhood,
and the aim of this study was to investigate whether multilevel
procedures might also be undertaken in adulthood. At a mean of 22.9 months (standard deviation 12.9), after single
event multi level surgery, 3D gait analysis was undertaken pre-
and post-operatively for 37 adult patients with bilateral cerebral
palsy and a fixed knee gait.Aims
Patients and Methods