Advertisement for orthosearch.org.uk
Results 1 - 20 of 34
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 102 - 102
14 Nov 2024
Strack D Mesbah M Rayudu NM Baum T Kirschke J Subburaj K
Full Access

Introduction. Functional Spine Units (FSUs) play a vital role in understanding biomechanical characteristics of the spine, particularly bone fracture risk assessment. While established models focus on simulating axial compression of individual bones to assess fracture load, recent models underscore the importance of understanding fracture load within FSUs, offering a better representation of physiological conditions. Despite the limited number of FSU fracture studies, they predominantly rely on a linear material model with an annulus fibrosus Young's modulus set at 500 MPa, significantly higher than stiffness values (ca. 4 MPa) utilized in other FSU and spine section biomechanical models. Thus, this study aims to study the effect of varying annulus fibrosus stiffness on FSU fracture load, aiming to identify physiologically relevant biomechanical parameters. Method. Subject-specific geometry and material properties of bones were derived from computed tomography (CT) image data of five human cadaveric FSU specimens. The annulus fibrosus and nucleus pulposus were manually recreated and assigned linear elastic material properties. By subjecting the model to axial compression, the fracture load of the FSU was deduced from the peak of the force-displacement graph. To explore the effect of stiffness of the annulus fibrosus on simulated fracture load, we conducted a parameter study, varying stiffness values from the high 500 MPa to a more physiologically relevant 25 MPa, aiming to approximate values applied in FSU kinematic models while achieving bone fracture. Result. Significant reductions in fracture load were observed, ranging from 23% to 46%, as annulus stiffness decreased from 500MPa to 25MPa. Additionally, a discernible, gradual decline in fracture load was observed with a decrease in stiffness values. Conclusion. The stiffness of the annulus fibrosus significantly influences the simulated fracture load of an FSU. Future investigations should prioritize biomechanically accurate modeling of the intervertebral disc, ensuring alignment with experimental findings regarding FSU fracture load while maintaining biomechanical fidelity


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 54 - 54
11 Apr 2023
Šećerović A Ristaniemi A Cui S Li Z Alini M Weder G Heub S Ledroit D Grad S
Full Access

A novel ex vivo intervertebral disc (IVD) organ model and corresponding sample holder were developed according to the requirements for six degrees of freedom loading and sterile culture in a new generation of multiaxial bioreactors. We tested if the model can be maintained in long-term IVD organ culture and validated the mechanical resistance of the IVD holder in compression, tension, torsion, and bending. An ex vivo bovine caudal IVD organ model was adapted by retaining 5-6 mm of vertebral bone to machine a central cross and a hole for nutrient access through the cartilaginous endplate. A counter cross was made on a customized, circular IVD holder. The new model was compared to a standard model with a minimum of bone for the cell viability and height changes after 3 weeks of cyclic compressive uniaxial loading (0.02-0.2 MPa, 0.2 Hz, 2h/ day; n= 3 for day 0, n= 2 for week 1, 2, and 3 endpoints). Mechanical tests were conducted on the assembly of IVD and holder enhanced with different combinations of side screws, top screws, and bone adhesive (n=3 for each test). The new model retained a high level of cell viability after three weeks of in vitro culture (outer annulus fibrosus 82%, inner annulus fibrosus 69%, nucleus pulposus 75%) and maintained the typical values of IVD height reduction after loading (≤ 10%). The holder-IVD interface reached the following highest average values in the tested configurations: 320.37 N in compression, 431.86 N in tension, 1.64 Nm in torsion, and 0.79 Nm in bending. The new IVD organ model can be maintained in long-term culture and when combined with the corresponding holder resists sufficient loads to study IVD degeneration and therapies in a new generation of multiaxial bioreactors


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 58 - 58
1 Nov 2021
Soubrier A Kasper H Alini M Jonkers I Grad S
Full Access

Introduction and Objective. Low back pain (LBP) is a major cause of long-term disability in adults worldwide and it is frequently attributed to intervertebral disc (IVD) degeneration. So far, no consensus has been reached regarding appropriate treatment and LBP management outcomes remain disappointing. Spine unloading or traction protocols are common non-surgical approaches to treat LBP. These treatments are widely used and result in pain relief, decreased disability or reduced need for surgery. However, the underlying mechanisms -namely, the IVD unloading mechanobiology- have not yet been studied. The aim of this first study was to assess the feasibility of IVD unloading in a large animal organ culture set-up and evaluate its impact on mechanobiology. Materials and Methods. Bovine tail discs (diameter 16.1 mm ± 1.2 mm), including the endplates, were isolated and prepared for culture. Beside the day0 sample that was processed directly, three other discs were cultured for 3 days and processed on day4. One disc was loaded in the bioreactor according to a previously established physiological (compressive) loading protocol (2h/day, 0.2Hz). The two other discs were embedded in biocompatible resin, leaving the cartilage endplate free to permit nutrient diffusion, and fitted in the traction holder; one of these discs was kept in free swelling conditions, whereas the second was submitted to cyclic traction loading (2h/day, 0.2Hz) corresponding to 30% of the animal body weight corrected for organ culture. Results. The cell viability assessed on lactate dehydrogenase and ethidium homodimer stained histological slides was not different between the three cultured discs. This means that the disc viability was not affected neither by the embedding, nor by the traction itself. Compared to the physiologically loaded disc, the gene expression of COL1, COL2 and ACAN was higher in the nucleus pulposus and inner annulus fibrosus of the traction treated disc. In the outer annulus fibrosus of this disc TAGLN and MKX were higher expressed upon traction than in the physiologically loaded disc. Conclusions. Based on these preliminary data, we can conclude that large animal organ culture allows effective unloading of the disc, while preserving cell viability and modulating cellular gene expression responses. This sets the ground for future experiments and opens the door to an evidence-based improvement of clinical spine traction protocols and LBP management overall


Bone & Joint Research
Vol. 5, Issue 11 | Pages 560 - 568
1 Nov 2016
Peeters M Huang CL Vonk LA Lu ZF Bank RA Helder MN Doulabi BZ

Objectives. Studies which consider the molecular mechanisms of degeneration and regeneration of cartilaginous tissues are seriously hampered by problematic ribonucleic acid (RNA) isolations due to low cell density and the dense, proteoglycan-rich extracellular matrix of cartilage. Proteoglycans tend to co-purify with RNA, they can absorb the full spectrum of UV light and they are potent inhibitors of polymerase chain reaction (PCR). Therefore, the objective of the present study is to compare and optimise different homogenisation methods and RNA isolation kits for an array of cartilaginous tissues. Materials and Methods. Tissue samples such as the nucleus pulposus (NP), annulus fibrosus (AF), articular cartilage (AC) and meniscus, were collected from goats and homogenised by either the MagNA Lyser or Freezer Mill. RNA of duplicate samples was subsequently isolated by either TRIzol (benchmark), or the RNeasy Lipid Tissue, RNeasy Fibrous Tissue, or Aurum Total RNA Fatty and Fibrous Tissue kits. RNA yield, purity, and integrity were determined and gene expression levels of type II collagen and aggrecan were measured by real-time PCR. Results. No differences between the two homogenisation methods were found. RNA isolation using the RNeasy Fibrous and Lipid kits resulted in the purest RNA (A260/A280 ratio), whereas TRIzol isolations resulted in RNA that is not as pure, and show a larger difference in gene expression of duplicate samples compared with both RNeasy kits. The Aurum kit showed low reproducibility. Conclusion. For the extraction of high-quality RNA from cartilaginous structures, we suggest homogenisation of the samples by the MagNA Lyser. For AC, NP and AF we recommend the RNeasy Fibrous kit, whereas for the meniscus the RNeasy Lipid kit is advised. Cite this article: M. Peeters, C. L. Huang, L. A. Vonk, Z. F. Lu, R. A. Bank, M. N. Helder, B. Zandieh Doulabi. Optimisation of high-quality total ribonucleic acid isolation from cartilaginous tissues for real-time polymerase chain reaction analysis. Bone Joint Res 2016;5:560–568. DOI: 10.1302/2046-3758.511.BJR-2016-0033.R3


Bone & Joint Research
Vol. 5, Issue 9 | Pages 412 - 418
1 Sep 2016
Ye S Ju B Wang H Lee K

Objectives. Interleukin 18 (IL-18) is a regulatory cytokine that degrades the disc matrix. Bone morphogenetic protein-2 (BMP-2) stimulates synthesis of the disc extracellular matrix. However, the combined effects of BMP-2 and IL-18 on human intervertebral disc degeneration have not previously been reported. The aim of this study was to investigate the effects of the anabolic cytokine BMP-2 and the catabolic cytokine IL-18 on human nucleus pulposus (NP) and annulus fibrosus (AF) cells and, therefore, to identify potential therapeutic and clinical benefits of recombinant human (rh)BMP-2 in intervertebral disc degeneration. Methods. Levels of IL-18 were measured in the blood of patients with intervertebral disc degenerative disease and in control patients. Human NP and AF cells were cultured in a NP cell medium and treated with IL-18 or IL-18 plus BMP-2. mRNA levels of target genes were measured by real-time polymerase chain reaction, and protein levels of aggrecan, type II collagen, SOX6, and matrix metalloproteinase 13 (MMP13) were assessed by western blot analysis. Results. The serum level of patients (IL-18) increased significantly with the grade of IVD degeneration. There was a dramatic alteration in IL-18 level between the advanced degeneration (Grade III to V) group and the normal group (p = 0.008) Furthermore, IL-18 induced upregulation of the catabolic regulator MMP13 and downregulation of the anabolic regulators aggrecan, type II collagen, and SOX6 at 24 hours, contributing to degradation of disc matrix enzymes. However, BMP-2 antagonised the IL-18 induced upregulation of aggrecan, type II collagen, and SOX6, resulting in reversal of IL-18 mediated disc degeneration. Conclusions. BMP-2 is anti-catabolic in human NP and AF cells, and its effects are partially mediated through provocation of the catabolic effect of IL-18. These findings indicate that BMP-2 may be a unique therapeutic option for prevention and reversal of disc degeneration. Cite this article: S. Ye, B. Ju, H. Wang, K-B. Lee. Bone morphogenetic protein-2 provokes interleukin-18-induced human intervertebral disc degeneration. Bone Joint Res 2016;5:412–418. DOI: 10.1302/2046-3758.59.BJR-2016-0032.R1


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 141 - 141
2 Jan 2024
Ruiz-Fernández C Eldjoudi D Gonzalez-Rodríguez M Barreal A Farrag Y Mobasheri A Pino J Sakai D Gualillo O
Full Access

Monomeric C reactive protein (mCRP) presents important proinflammatory effects in endothelial cells, leukocytes, or chondrocytes. However, CRP in its pentameric form exhibits weak anti-inflammatory activity. It is used as a biomarker to follow severity and progression in infectious or inflammatory diseases, such as intervertebral disc degeneration (IVDD). This work assesses for the first time the mCRP effects in human intervertebral disc cells, trying to verify the pathophysiological relevance and mechanism of action of mCRP in the etiology and progression of IVD degeneration. We demonstrated that mCRP induces the expression of multiple proinflammatory and catabolic factors, like nitric oxide synthase 2 (NOS2), cyclooxygenase 2 (COX2), matrix metalloproteinase 13 (MMP13), vascular cell adhesion molecule 1 (VCAM1), interleukin (IL)-6, IL-8, and lipocalin 2 (LCN2), in human annulus fibrosus (AF) and nucleus pulposus (NP) cells. We also showed that nuclear factor-κβ (NF-κβ), extracellular signal-regulated kinase 1/2 (ERK1/2), and phosphoinositide 3-kinase (PI3K) are at play in the intracellular signaling of mCRP. Our results indicate that the effect of mCRP is persistent and sustained, regardless of the proinflammatory environment, as it was similar in healthy and degenerative human primary AF cells. This is the first article that demonstrates the localization of mCRP in intravertebral disc cells of the AF and NP and that provides evidence for the functional activity of mCRP in healthy and degenerative human AF and NP disc cells


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 21 - 21
2 Jan 2024
Strauss C Djojic D Grohs J Schmidt S Windhager R Stadlmann J Toegel S
Full Access

Intervertebral disc (IVD) degeneration is responsible for severe clinical symptoms including chronic back pain. Galectins are a family of carbohydrate-binding proteins, some of which can induce functional disease markers in IVD cells and other musculoskeletal diseases. Galectins −4 and −8 were shown to trigger disease-promoting activity in chondrocytes but their effects on IVD cells have not been investigated yet. This study elucidates the role of galectin-4 and −8 in IVD degeneration. Immunohistochemical evidence for the presence of galectin-4 and −8 in the IVD was comparatively provided in specimens of 36 patients with spondylochondrosis, spondylolisthesis, or spinal deformity. Confocal microscopy revealed co-localization of galectin-4 and −8 in chondrocyte clusters of degenerated cartilage. The immunohistochemical presence of galectin-4 correlated with histopathological and clinical degeneration scores of patients, whereas galectin-8 did not show significant correlations. The specimens were separated into annulus fibrosus (AF), nucleus pulposus (NP) and endplate, which was confirmed histologically. Separate cell cultures of AF and NP (n=20) were established and characterized using cell type-specific markers. Potential binding sites for galectins including sialylated N-glycans and LacdiNAc structures were determined in AF and NP cells using LC/ESI-MS-MS. To assess galectin functions, cell cultures were treated with recombinant galectin-4 or −8, in comparison to IL-1β, and analyzed using RT-qPCR and In-cell Western blot. In vitro, both galectins triggered the induction of functional disease markers (CXCL8 and MMP3) on mRNA level and activated the nuclear factor-kB pathway. NP cells were significantly more responsive to galectin-8 and Il-1β than AF cells. Phosphorylation of p-65 was time-dependently induced by both galectins in both cell types to a comparable extent. Taken together, this study provides evidence for a functional role of glycobiological processes in IVD degeneration and highlights galectin-4 and −8 as regulators of pro-inflammatory and degrative processes in AF and NP cells


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 68 - 68
17 Apr 2023
Lazaro-Pacheco D Holsgrove T
Full Access

Little information exists when using cell viability assays to evaluate cells within whole tissue, particularly specific types such as the intervertebral disc (IVD). When comparing the reported methodologies and the protocols issued by manufacturers, the processing, working times, and dye concentrations vary significantly, making the assay's reproducibility a costly and time-consuming trial and error process. This study aims to develop a detailed step-by-step cell viability assay protocol for evaluating IVD tissue. IVDs were harvested from bovine tails (n=8) and processed at day 0 and after 7 days of culture. Nucleus pulposus (NP) and the annulus fibrosus (AF) 3 mm cuts were incubated at room temperature (26˚C) with a Viability/Cytotoxicity Kit containing Calcein AM and Ethidium Ethidium homodimer-1 for 2 hr, followed by flash freezing in liquid nitrogen. Thirty µm sections were placed in glass slides and sealed with nail varnish or Antifade Mounting Medium. The IVD tissue was imaged within the next 4h after freezing using an inverted confocal laser-scanning microscope equipped with 488 and 543 nm laser lines. Cell viability at day 0 (NP: 92±9.6 % and AF:80±14.0%) and day 7 (NP: 91±7.9% and AF:76±20%) was successfully maintained and evaluated. The incubation time required is dependent on the working temperatures and tissue thickness. The calcein-AM dye will not be retained in the cells for more than four hours. The specimen preparation and culturing protocol have demonstrated good cell viability at day 0 and after seven days of culture. Processing times and sample preparation play an essential role as the cell viability components in most kits hydrolyse or photobleach quickly. A step-by-step replicable protocol for evaluating the cell viability in IVD will facilitate the evaluation of cell and toxicity-related outcomes of biomechanical testing protocols and IVD regenerative therapies


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 41 - 41
14 Nov 2024
Soubrier A Kasper H Alini M Jonkers I Grad S
Full Access

Introduction. Intervertebral disc degeneration has been associated with low back pain (LBP) which is a major cause of long-term disability worldwide. Observed mechanical and biological modifications have been related to decreased water content. Clinical traction protocols as part of LBP management have shown positive outcomes. However, the underlying mechanical and biological processes are still unknown. The study purpose was to evaluate the impact of unloading through traction on the mechanobiology of healthy bovine tail discs in culture. Method. We loaded bovine tail discs (n=3/group) 2h/day at 0.2Hz for 3 days, either in dynamic compression (-0.01MPa to -0.2MPa) or in dynamic traction (-0.01MPa to 0.024MPa). In between the dynamic loading sessions, we subjected the discs to static compression loading (-0.048MPa). We assessed biomechanical and biological parameters. Result. Over the 3 days of loading, disc height decreased upon dynamic compression loading but increased upon unloading. The neutral zone was restored for all samples at the end of the dynamic unloading. Upon dynamic compression, the stiffness increased over time while the hysteresis decreased. Upon dynamic unloading, sulfated glycosaminoglycan (sGAG) release in the medium was lower at the endpoint. In the outer annulus fibrosus (AFo), we saw a higher water/sGAG of at least 30%. In the nucleus pulposus, COL2 mRNA was expressed more highly upon dynamic unloading while MMP3, iNOS and TRPV4 expression levels were lower. In the AFo of the unloading group, COL2 expression was higher but COL1 was lower. Conclusion. The biomechanical and biological results consistently indicate that dynamic unloading of healthy bovine discs in culture facilitates water uptake and promotes an anti-catabolic response which reflects a function optimization of the disc. This work combines biomechanical and biological results and opens the door to evidence-based improvement of regenerative protocols for degenerated discs and conservative LBP management. This study is funded by AO Foundation and AO Spine


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 70 - 70
14 Nov 2024
Cicione C Tilotta V Ascione A Giacomo GD Russo F Tryfonidou M Noel D Camus A Maitre CL Vadalà G
Full Access

Introduction. Low back pain (LBP) is a worldwide leading cause of disability. This preclinical study evaluated the safety of a combined advanced therapy medicinal product developed during the European iPSpine project (#825925) consisting of mesendoderm progenitor cells (MEPC), derived from human induced pluripotent stem cells, in combination with a synthetic poly(N-isopropylacrylamide) hydrogel (NPgel) in an ovine intervertebral disc degeneration (IDD) model. Method. IDD was induced through nucleotomy in 4 adult sheep, 5 lumbar discs each (n=20). After 5 weeks, 3 alternating discs were treated with NPgel (n=6) or NPgel+MEPC (n=6). Before sacrifice, animals were subjected to: MRI of lumbar spines (disc height and Pfirmann grading); blood sampling (hematological, biochemical, metabolic and lymphocyte/monocytes immunological). After 3 months the sheep were sacrificed. The spines were processed for: macroscopic morphology (Thompson grading), microscopic morphology (Histological grading), and glycosaminoglycan content (GAG, DMMB Assay). Furthermore, at sacrifice biodistribution of human MEPC was assessed by Alu-sequences quantification (qPCR) from three tissue samples of heart, liver, spleen, brain, lungs, and kidneys, and PBMCs collected to assess activation of systemic immune cells. To each evaluation, appropriate statistical analysis was applied. Result. Flow cytometry showed no induction of systemic activation of T cells or monocytes. Alu quantification did not give detection of any cells in any organ. Disc height index was slightly increased in discs treated with NPgel+MEPC. Pfirmann's and Thompson's classification showed that treatment with NPgel or NPgel+MEPC gave no adverse reactions. Histological grading showed similar degeneration in vertebrae treated with NPgel+MEPC or with NPgel alone. The amount of GAG was significantly increased in the nucleus pulposus following treatment with NPgel+MEPC compared to NPgel alone, in which a decrease was observed compared to untreated discs in both nucleus pulposus and annulus fibrosus. Conclusion. This study showed the safety of both NPgel+MEPC and NPgel treatments


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 116 - 116
2 Jan 2024
Šećerović A Ristaniemi A Crivelli F Heub S Weder G Ferguson S Ledroit D Grad S
Full Access

Intervertebral disc (IVD) degeneration is inadequately understood due to the lack of in vitro systems that fully mimic the mechanical and biological complexity of this organ. We have recently made an advancement by developing a bioreactor able to simulate physiological, multiaxial IVD loading and maintain the biological environment in ex vivo IVD models [1]. To validate this new bioreactor system, we simulated natural spine movement by loading 12 bovine IVDs under a combination of static compression (0.1 MPa), cyclic flexion/extension (±3˚, ±6˚ or 0-6˚) and cyclic torsion (±2˚, ±4˚ or 0-4˚) for more than 10’000 (0.2 Hz) or 100’000 (1 Hz) cycles over 14 days. A higher number of cycles increased the release of glycosaminoglycans and nitric oxide, as an inflammation marker, whereas fewer cycles maintained these two factors at physiological levels. All applied protocols upregulated the expression of MMP13 in the outermost annulus fibrosus (AF), indicating a collagen degradation response. This was supported by fissures observed in the AF after a longer loading duration. Increasing loading cycles induced high cell death in the nucleus pulposus and inner AF, while with fewer cycles, high cell viability was maintained in all IVD regions, irrespective of the magnitude of rotation. Less frequent multiaxial loading maintains IVD homeostasis while more frequent loading initiates an IVD degenerative profile. Specifically, the morphological and molecular changes were localized in the AF, which can be associated with combined flexion/extension and torsion. More loading cycles induced region-specific cell death and a higher release of extracellular matrix molecules from the innermost IVD regions, likely associated with longer exposure to static compression. Altogether, we demonstrated the advantages of the multiaxial bioreactor to study region-specific response in the IVD, which will allow a more profound investigation of IVD degeneration under different combinations of motions


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 64 - 64
17 Apr 2023
Bermudez-Lekerika P Croft A Crump K Wuertz-Kozak K Le Maitre C Gantenbein B
Full Access

Previous research has shown catabolic cell signalling induced by TNF-α and IL-1β within intervertebral (IVD) cells. However, these studies have investigated this in 2D monolayer cultures, and under hyper-physiological doses. Thus, we aim to revisit the catabolic responses of bovine IVD cells in vitro in 3D culture under increasing doses of TNF-α or IL-1β stimulation at three different timepoints. Primary bovine nucleus pulposus (NP) and annulus fibrosus (AF) cells were isolated and expanded for two weeks. Subsequently, NP and AF cells were encapsulated in 1.2% alginate beads (4 × 106 cells/ml) and cultured for two weeks for phenotype recovery. Re-differentiated cells were stimulated with 0.1, 1 and 10 ng/ml TNF-α or with 0.01, 0.1 and 10 ng/ml IL-1β for one week. Beads were collected on the stimulation day (Day 0) and on Day 1 and 7 after stimulation. A dose-dependent upregulation of catabolic markers was observed in both cell types after one day of TNF-α or IL-1β stimulation. 10 ng/ml TNF-α stimulation induced a significant upregulation (p<0.05) of ADAMTS4, MMP3 and MMP13 in AF cells after one day of stimulation. Similarly, MMP3 upregulation showed a strong trend (p=0.0643) in NP cells. However, no effects on expression were seen after seven days. In addition, no significant difference between treatments in COL2, COL1 and ACAN expression was observed, and cell viability was not reduced at any time point, regardless of the treatment. We demonstrate a dose-dependent upregulation of catabolic markers in NP and AF cells under TNF-α or IL-1β stimulation, with a significant upregulation of ADAMTS4, MMP3 and MMP13 genes in AF cells after one day of treatment. Notably, after seven days of treatment, the dose-dependent effects were no longer observed possibly due to an adaptation mechanism of IVD cells to counter the metabolic shift


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 23 - 23
14 Nov 2024
Ambrosio L Schol J Fernández CR Papalia R Vadalà G Denaro V Sakai D
Full Access

Introduction. Intervertebral disc degeneration (IDD) is a progressive process affecting all disc tissues, namely the nucleus pulposus (NP), annulus fibrosus (AF), and cartilaginous endplates (CEPs). Several cell-based therapies have been proposed to replenish the disc cell population and promote tissue regeneration. However, cell-free therapeutics have been increasingly explored due to potentially higher advantages and cost-effectiveness compared to cell transplantation. Recently, extracellular vesicles (EVs) isolated from healthy Tie2. +. -NP cells (NPCs) have shown promising regenerative outcomes on degenerative NPCs (dNPCs). The aim of this study was to assess the effect of such EVs on all disc cell types, including AF cells (AFCs) and CEP cells (CEPCs), compared to EVs isolated from bone-marrow derived mesenchymal stromal cells (BM-MSCs). Method. NPCs harvested from young donors underwent an optimized culture protocol to maximize Tie2 expression (NPCs. Tie2+. ). BM-MSCs were retrieved from a commercial cell line or harvested during spine surgery procedures. EV characterization was performed via particle size analysis (qNano), expression of EV markers (Western blot), and transmission electron microscopy. dNPCs, AFCs, and CEPCs were isolated from surgical specimens of patients affected by IDD, culture-expanded, and treated with NPCs. Tie2+. -EVs or BM-MSC-EVs ± 10 ng/mL IL-1b. EV uptake was assessed with PKH26 staining of EVs under confocal microscopy. Cell proliferation and viability were assessed with the CCK-8 assay. Result. Upon characterization, isolated EVs exhibited the typical exosomal characteristics. NPCs. Tie2+. -EVs and BM-MSC-EVs uptake was successfully observed in all dNPCs, AFCs, and CEPCs. Both EV products significantly increased dNPC, AFC, and CEPC viability, especially in samples treated with NPCs. Tie2+. -EVs. Conclusion. NPCs. Tie2+. -EVs demonstrated to significantly stimulate the proliferation and viability of degenerative cells isolated from all disc tissues. Rather than the sole NP, EVs isolated by committed progenitors physiologically residing within the disc may exert their regenerative effects on the whole organ, thus possibly constituting the basis for a new therapy for IDD


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 113 - 113
1 Nov 2018
Grad S
Full Access

In recent years, novel therapies for intervertebral disc (IVD) regeneration have been developed that are based on the delivery of cells, biomaterials or bioactive molecules. The efficacy of these biological therapies depends on the type and degree of IVD degeneration. Whole organ culture bioreactors provide an attractive platform for pre-clinical testing of IVD therapeutics, since the cells are maintained within their native extracellular matrix, and the endplate remains intact to fulfil its function. Moreover, defined regimes of mechanical stress are applied to the IVD, representing either physiological or degenerative, detrimental loading. Different degrees of degeneration can be induced by high load, low nutrition, enzyme injection, and/or mechanical damage; while recent organ culture models also implement an inflammatory component. Using whole organ culture models, we found that mesenchymal stem cell injection into nucleotomized IVDs had an anabolic effect on the IVD cells. Furthermore, hyaluronan hydrogels were beneficial for cell delivery and mechanical support. We also found that anti-inflammatory treatment could partially prevent the induction of cytokines in an inflammatory model. However, chemokine delivery did not induce a significant repair response in an annulus fibrosus defect. In line with 3R principles, relevant ex-vivo models are essential to reliably test biological IVD treatments


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 119 - 119
1 Nov 2018
Günay B Isa IM Conrad C Scarcelli G Grad S Li Z Pandit A
Full Access

The degeneration of the intervertebral disc (IVD) is the primary cause for low back pain, which is treated with surgical interventions such as spinal fusion. A strategy to develop a regenerative and non-invasive treatment requires an injectable cell carrier system. Our efforts have focussed on developing a hyaluronan (HA)-based hydrogel system that can be used as a carrier for therapeutic agents in annulus fibrosus (AF) repair. High molecular weight HA at 20mM is chemically crosslinked with varying concentrations of 4-arm PEG. Hydrogels were optimised for degree of crosslinking, stability and rheological properties. Subsequently, the morphology and viability of the human AF cells encapsulated in the hydrogels were studied. The highest crosslinking was seen with 4-arm PEG at 1:1 HA:PEG molar ratio. This was the most stable against enzymatic and hydrolytic degradation, and had greater swelling property, which is desired as the degeneration decreases the water retention capability of the IVD. The gelation time, important for in situ injectability, was under five minutes for all formulations. Storage modulus was between 0.4–1.1 kPa. Compared to 2D cultures, cells were rounder after encapsulation, mimicking the native microenvironment, and had the similar metabolic activity for seven days. AF cells encapsulated in HA/4-arm PEG hydrogel were stiffer compared to the nucleus pulposus (NP) cells encapsulated similarly as measured with Brillouin microscopy. The 4-arm PEG crosslinked HA-based hydrogel system promises to be a candidate for an injectable carrier for cells for AF repair and regeneration


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 43 - 43
1 Nov 2018
Gluais M Clouet J Fusellier M Decante C Terreaux L Moraru C Veziers J Abadie J Lesoeur J Chew S Guicheux J Le Visage C
Full Access

Extensive annulus fibrosus (AF) radial tears lead to intervertebral disc (IVD) herniation. While unrepaired defects in the AF are associated with postoperative reherniation and high IVD degeneration prevalence, current surgical strategies are limited to symptomatic treatment of pain and disregard the structural integrity of the AF. For all these reasons, this study is focused on i) designing polycaprolactone (PCL) electrospun implants that mimic the multi-lamellar fibrous structure of the native tissue and ii) assessing their ability to properly close and repair an AF defect in a sheep in vivo model. Oriented PCL mats were produced by electrospinning with average fiber diameters of 1.3µm and a tensile modulus (55±1MPa) matching the one of a native human AF lamella (∼47MPa). In vitro experiments demonstrated a spontaneous colonization of PCL mats by human and ovine AF cells. In vivo study was carried out on 6 sheep in which 5 lumbar discs were exposed using a left retroperitoneal approach. Defects (2×5mm, 2mm depth) were created in the outer annulus, with randomized distribution of conditions including 10-layer oriented or non-oriented mats, untreated and healthy groups. X-ray and MRI examinations were performed every month until explantations at 1, 3 and 6 months, followed by immuno-histological analysis. Data showed no dislocation of the implants, cell infiltration between the PCL mats and within the mats, and a continuous type I collagen tissue formation between the implants and the surrounding AF tissue. These results highlight that multi-layer PCL electrospun mat is a promising biomaterial for AF repair


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 88 - 88
1 May 2017
Vergroesen P van der Veen A Emanuel K van Dieën J Smit T
Full Access

Daytime spinal loading is twice as long as night time rest, but diurnal disc height changes due to fluid flow are balanced. A direction-dependent permeability of the endplates, favouring inflow over outflow, has been proposed to explain this; however, fluid also flows through the annulus fibrosus. This study investigates the poro-elastic behaviour of entire intervertebral discs in the context of diurnal fluid flow. Caprine discs were preloaded in saline for 24 hours under different levels of static load. Under sustained load, we modulated the disc's swelling pressure by replacing saline for demi-water and back again to saline, both for 24h intervals. We measured the disc height creep and used stretched exponential models to determine the respective time constants. Reduction of culture medium osmolality induced an increase in disc height, and the subsequent restoration induced a decrease in disc height. Creep varied with the mechanical load applied. No direction-dependent resistance to fluid flow was observed. In addition, time constants for mechanical preloading were much shorter than for osmotic loading, suggesting that outflow is faster than inflow. However, a time constant does not describe the actual rate of fluid flow: close to equilibrium fluid flow is slower than far from equilibrium. As time constants for mechanical loading are shorter and daytime loading twice as long, the system is closer to the loading equilibrium than to the unloading equilibrium. Therefore, paradoxically, fluid inflow is faster during the night than fluid outflow during the day


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 18 - 18
1 Apr 2017
Russo F Musumeci M De Strobel F Bernardini M De Benedictis G Denaro L D'Avella D Giordano R Denaro V
Full Access

Background. Stem cell based intervertebral disc (IVD) regeneration is quickly moving towards clinical applications. However, many aspects need to be investigated to routinely translate this therapy to clinical applications, in particular, the most efficient way to deliver cell to the IVD. Cells are commonly delivered to the IVD through the annulus fibrosus (AF) injection. However, recent studies have shown serious drawbacks of this approach. As an alternative we have described and tested a new surgical approach to the IVD via the endplate-pedicles (transpedicular approach). The Purpose of the study was to test MSCs/hydrogel transplantation for IVD regeneration in a grade IV preclinical model of IDD on large size animals via the transpeducular approach with cell dose escalation. Methods. Adult sheep (n=18) underwent bone marrow aspiration for autologous MSC isolation and expansion. MSC were suspended in autologous PRP and conjugated with Hyaluronic Acid and Batroxobin at the time of transplant (MSCs/hydrogel). Nucleotomy was performed via the transpedicular approach in four lumbar IVDs and that were injected with 1) hydrogel, 2) Low doses of MSC/hydrogel, 3) High doses of MSC/hydrogel, 4) no injection (CTRL). The endplate tunnel was sealed using a polyurethane scaffold. X-ray and MRI were performed at baseline and 1,3,6,12 months. Disc macro- and micro-morphology were analysed at each time point. Results. The MRI index showed a significant decrease in the untreated group, the disc injected with hydrogel and those injected with low MSC dose compared to healthy discs in all time points. The discs treated with high dose of MSC showed maintenance of the MRI index compared to the healthy disc. Morphologically, the grade of degeneration evaluated using the were in agreement with the grades observed at the MRI. Conclusions. An effective dose of autologous MSC (1−107 cell/ml) delivered via the alternative transpedicular approach regenerates the NP in a preclinical model of grade IV IDD maintaining the AF intact This preclinical study has high translational value as large animal model with the long fallow up were used, MSCs were expanded in GMP facility simulating the clinical scenario, and the hydrogel were composed of clinically available drags and materials


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 38 - 38
1 Apr 2018
Schubert AK Smink J Pumberger M Putzier M Sittinger M Ringe J
Full Access

Introduction. Cell-based therapies become more and more prominent for the treatment of intervertebral disc (IVD) injuries. Different strategies are under current development and address the restoration of either annulus fibrosus (AF) or nucleus pulposus (NP). Application of such Advanced Therapy Medicinal Products (ATMPs) is strictly regulated. One requirement is to show the identity of the cells, to make sure the cells are indeed AF or NP cells and retained their IVD cell character during manufacturing process before injection to the site of injury. Therefore, we recently identified novel marker genes that discriminate AF and NP cells on tissue level. However, expression of these AF and NP tissue markers has not been investigated in cultured cells, yet. The aim of this study was to proof the tissue marker”s specificity to discriminate cultured AF and NP cells. Furthermore, we evaluated the tissue markers robustness to different cell culture conditions. Materials & Methods. AF and NP tissue was obtained from human lumbal IVD of five donors (31–45 years) with mild to moderate degenerative changes (Pfirrmann≤3). Cells were isolated by enzymatic digestion and expanded in culture medium containing 10% human serum and 1% antibiotics. To address specificity, AF and NP cells were cultured separately. To address robustness, 1) cells were cultured up to passage P2, 2) cell culture was performed using two different cell culture media and 3) cells were cryopreserved in an optional intermediate step. Gene expression analysis was performed for 11 novel AF and NP tissue marker: LDB2, ADGRL4, EMCN, ANKRD29, OLFML2A, SPTLC3, DEFB1, DSC3, FAM132B, ARAP2, CDKN2B (patent pending). Results & Discussion. In cell culture, AF and NP cells were indistinguishable by eye. Both AF and NP cells showed same cell morphology and cell growth through monolayer expansion. For most of the tested novel AF and NP tissue marker genes no difference was seen in cultured cells AF and NP cells on mRNA level. Overall marker expression was lower in cultured cells compared to tissue level. Hence, cultured AF and NP cells lost distinct characteristics that they showed before on tissue level. However, three tissue marker genes showed distinct expression in cultured AF and NP cells: LDB2, ARAP2 and DSC3. Furthermore, expression level was not changed by serial monolayer passaging, intermediate cryopreservation or different nutrition supplied by culture media. Hence, cell marker gene expression was robust to different cell culture conditions. Conclusion. We defined three markers to discriminate cultured AF and NP cells. Gene expression was specific for either AF or NP cells and robust. These novel AF and NP cell markers can be used to test cell identity and to show preservation of cell character in quality control of cell-therapeutic products. Morever markers are of high value for development of new ATMPs for targeted treatment of eigher AF or NP, as well as tissue engineered discs


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 122 - 122
1 Jan 2017
Khalaf K Nikkhoo M Kargar R Najafzadeh S
Full Access

Low back pain (LBP) is the leading cause of disability worldwide, interfering with an individual's quality of life and work performance. Understanding the degeneration mechanism of the intervertebral disc (IVD), one of the key triggers of LBP, is hence of great interest. Disc degeneration can be mimicked in animal studies using the injection of enzymatic digestion, needle puncture, stab injury, or mechanical over-loading [1]. However, the detailed response of the artificial degenerated disc using needle puncture under physiological dynamic loading in diurnal activities has not yet been analyzed using FE-models. To fill the gap in literature, this study investigates the role of needle puncture injury on the biomechanical response of IVD using a combination of Finite Element (FE) simulations and in-vitro lumbar spine sheep experiments. 16 lumbar motion segments (LMS) were dissected from juvenile sheep lumbar spines. The harvested LMSs were assigned equally to two groups (control group with no incision and an injured group punctured with a 16-gauge needle). All specimens were mounted in a homemade chamber filled with saline solution and underwent a stress-relaxation test using a mechanical testing apparatus (Zwick/Roell, Ulm-Germany). A validated inverse poroelastic FE methodology [2] in conjunction with in-vitro experiments were used to find the elastic modulus and permeability. Subsequently, specimen-specific FE models for the 16 discs were simulated based on daily dynamic physiological activity (i.e., 8h rest followed by a 16h loading phase under compressive loads of 350 N and 1000 N, respectively). The results of the individual FE models were well fitted with the in-vitro stress-relaxation experiments, with an average error of 7.48 (±2.24)%. The results of the simulations demonstrated that the variation of axial displacement in the control discs was significantly higher than the injured ones (P=0.037). At the end of day, the intradiscal pressure (IDP) was slightly higher in the control group (P=0.061) although the maximum axial stress in the annulus fibrosus (AF) was significantly higher in the injured group (P=0.028). The total fluid loss after 24h was significantly higher in the control group (p<0.001). We found that needle puncture can decrease the strain range, IDP, and fluid loss in an IVD, although it increases the axial stress. We therefore hypothesize that the fissures, clefts or tears produced by needle puncture alter the saturation time for disc deformation and pore pressure. The collapsed disc structure hinders the fluid flow capability; hence, the total fluid loss decreases for the injured discs, inhibiting the transportation of nutrients. Higher stresses in the AF were observed for the injured group in alignment with previous studies [3]. It is therefore concluded that the needle puncture injury methodology can be effectively used to mimic the degeneration mechanism in animal models. It is a convenient, reproducible, and cost-effective technique. Future work includes exploring degenerated disks induced by needle puncture to investigate potential regenerative therapeutics