header advert
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 53 - 53
1 Dec 2020
Çil ET Gökçek G Şaylı U Şerif T Subaşı F
Full Access

Foot pain and related problems are quite common in the community. It is reported that 24% of individuals older than 45 experienced foot pain. Also, it is stated that at least two thirds of individuals experiences moderate physical disability due to foot problems. In the absence of evaluation of risk factors such as limited ankle dorsiflexion in the early period of the diseases (Plantar fasciitis, Achilles Tendinopathy e.g.) and the lack of mobile systems with portable remote access, foot pain becomes refractory/chronic foot pain, secondary pathologies and ends with workload of 1., 2. and 3rd level healthcare services. In the literature, manuel and dijital methods have been used to analyze the ankle range of motion (ROM). These studies are generally based on placing protractors on the image and / or angle detection from inclination measurement by using the gyroscope sensor of the mobile device. Some of these applications are effective and they are designed to be suitable for measuring in a clinical setting by a physician or physiotherapist. To the best of our knowledge, there is no system developed to measure real-time ankle ROM remotely with collaboration of the patients. In this research, we proposed to develop an ankle ROM analyze system with smart phone application that can be used comfortably by subjects. We present a case of a 22-year-old male with a symptomatic pes planus. The mobile application, which was used for data collection, was designed and implemented for Android devices. Initially, before the mobile application home page is opened, a consent page was submitted to the acceptance of individual within the scope of Law (KVKK) data privacy. Then, the participant was asked to state his sociodemographic characteristics [age, gender, height, weight] and dominant side. No history of foot-ankle injury, trauma, and surgery was recorded. Activity pain of the foot was 6 according to visual anolog scale (VAS) in the mobile application. His ankle dorsiflexion was 15 ° by manuel goniometer. Besides, server was responsible for storing the collected data and ROM measurement. ROM was calculated by processing the foot video which was sent through the mobile application. During the processing phase, a segmentation model was used which was trained with image process and deep learning methods. With the developed system, we obtained the manual goniometric measurement result with 2 degrees deviation. As the application is calibrated, it is expected to approach the actual measurement of ROM. We can conclude that mobile app-goniometer result in dorsiflexion measurement is a novel promising evaluation method for ankle ROM. it will be easy and practical to detect and monitor risk factor of the diseases, decrease medical costs, provide health services in rural areas, and contribution to life quality and to reduce the workload on physicians and physiotherapist


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 63 - 63
1 Jan 2017
Tan C Mohd Fadil M
Full Access

Tenodesis effect and digital cascade of the foot were never described in the current literature. However, understanding of these effects are important in the diagnoses and managements of foot flexor tendon rupture and lesser toe deformities. We aim to investigate the presence of these effects in the foot with intact and cut tendons. Ten fresh frozen cadaveric specimens were used in our study. 2. nd. , 3. rd. and 4. th. toe metatarsophalangeal joint (MTPJ) and proximal interphalangeal joint (PIPJ) range of motion (ROM) at ankle resting position were measured. Same measurements were repeated with maximum ankle plantarflexion and dorsiflexion. 4. th. toe Flexor Digitorum Longus (FDL) was then identified over plantar aspect of metatarsal shaft and cut transversely. 2. nd. , 3. rd. and 4. th. toe MTPJ and PIPJ ROM at ankle resting position, maximum plantarflexion and dorsiflexion were then measured. Mean 4. th. toe MTPJ and PIPJ ROM at ankle dorsiflexion were 13.5 ° of dorsiflexion and 25 ° of plantarflexion respectively, compared with values at ankle plantarflexion which were 35 ° and 25 ° respectively. After 4. th. toe FDL was cut, mean 4. th. toe MTPJ and PIPJ ROM at ankle dorsiflexion were 14 ° and 24 ° respectively and at ankle plantarflexion the values were 34.5 ° and 25 ° respectively. At ankle resting position before 4. th. FDL was cut, mean 4. th. toe MTPJ and PIPJ ROM were 22 ° and 31 ° respectively, compared with the values after 4. th. FDL was cut, ie 22.5 ° and 30.5 ° respectively. Tenodesis effect of the foot was shown in our study. However unlike in hand, this effect was only present in MTPJ and was still present following cut FDL. Similarly, digital cascade was still present following cut FDL. The maintenance of tenodesis effect and digital cascade following cut flexor tendon is likely contributed by various soft tissue restraints and intrinsic muscle actions. These findings are important in both the diagnosis and management of foot flexor tendon rupture and help us to better understand the biomechanics of lesser toe deformities and the managements of these deformities


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 34 - 34
1 Jan 2017
Kuo M Hong S Lu T Wang J
Full Access

Posterior cruciate ligament deficiency (PCLD) leads to structural and proprioceptive impairments of the knee, affecting the performance of daily activities including obstacle-crossing. Therefore, identifying the biomechanical deficits and/or strategies during this motor task would be helpful for rehabilitative and clinical management of such patients. A safe and successful obstacle-crossing requires stability of the body and sufficient foot clearance of the swing limb. Patients with PCLD may face demands different from normal when negotiating obstacles of different heights. The objective of this study was thus to identify the biomechanical deviations/strategies of the lower limbs in unilateral PCLD during obstacle-crossing using motion analysis techniques. Twelve patients with unilateral PCLD and twelve healthy controls participated in the current study with informed written consent. They were asked to walk and cross obstacles of heights of 10%, 20% and 30% of their leg lengths at self-selected speeds. The PCLD group was asked to cross the obstacles with each of the affected and unaffected limb as the leading limb, denoted as PCLD-A and PCLD-U, respectively. The kinematic and kinetic data were measured with a 7-camera motion analysis system (Vicon, Oxford Metrics, U.K.) and two force plates (AMTI, U.S.A.). The angles of the stance and swing limbs (crossing angles) and the moments of the stance limbs (crossing moments) for each joint in the sagittal plane when the leading limb was above the obstacle were calculated for statistical analysis. A 3 by 2, 2-way mixed-model analysis of variance with one between-subject factor (PCLD-A vs. Control, and PCLD-U vs. Control) and one within-subject factor (obstacle height) was performed (α=0.05). Paired t-test was used to compare the variables between PCLD-A and PCLD-U (α=0.05). SAS version 9.2 was used for all statistical analysis. When the leading toe was above the obstacle, the PCLD group showed significantly greater hip flexion in the swing limb but decreased dorsiflexion in the stance limb, both in PCLD-A and PCLD-U (P<0.05). Greater knee flexion and greater ankle dorsiflexion were found in the leading limb in PCLD-A (P<0.05). Meanwhile, the PCLD group showed significantly decreased ankle plantarflexor but increased knee extensor crossing moments in the stance limb compared with the Control (P<0.05). None of the calculated variables were found to be significantly different between PCLD-A and PCLD-U (P>0.05). When crossing the obstacle, patients with PCLD reduced ankle plantarflexor moments that were mainly produced by the gastrocnemius. This may help reduce the posterior instability of the affected knee. Greater knee extensor crossing moments may also help reduce the posterior instability of the standing knee when the leading toe was above the obstacle. The changed joint kinetics as a result of PCLD were not only seen on the affected side but also on the unaffected side during obstacle-crossing. This symmetrical pattern may be necessary in performing functional activities that may require either the affected side or the unaffected side leading. These results suggest that rehabilitative intervention, including muscular strengthening, on both affected and unaffected sides are necessary in patients with unilateral PCLD


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 4 | Pages 700 - 704
1 Jul 1999
Sochart DH Hardinge K

We have studied the relationship between movements of the foot and ankle and venous blood flow from the lower limb using colourflow Duplex ultrasound to determine the optimum type of exercise for promoting venous return. Studies of both active and passive movements were carried out on 40 limbs in 20 subjects (18 men; 2 women), with a median age of 27 years (20 to 54). We assessed ankle dorsiflexion and plantar flexion, subtalar inversion and eversion, and a combination of all movements. There was no difference in venous flow when comparing opposite limbs in a single subject (p > 0.5), but active exercises produced higher peak and mean velocities of blood flow than passive ones. The active combined movement produced the highest velocities with an increase of 38% in mean and of 58% in peak flow velocities, which were significantly greater than the peak and mean flow rates produced by passive movements. The active combined exercise would therefore be the most effective in eliminating stasis and could contribute to the prevention of deep-vein thrombosis