Advertisement for orthosearch.org.uk
Results 1 - 9 of 9
Results per page:
Bone & Joint Open
Vol. 3, Issue 3 | Pages 189 - 195
4 Mar 2022
Atwan Y Sprague S Slobogean GP Bzovsky S Jeray KJ Petrisor B Bhandari M Schemitsch E

Aims

To evaluate the impact of negative pressure wound therapy (NPWT) on the odds of having deep infections and health-related quality of life (HRQoL) following open fractures.

Methods

Patients from the Fluid Lavage in Open Fracture Wounds (FLOW) trial with Gustilo-Anderson grade II or III open fractures within the lower limb were included in this secondary analysis. Using mixed effects logistic regression, we assessed the impact of NPWT on deep wound infection requiring surgical intervention within 12 months post-injury. Using multilevel model analyses, we evaluated the impact of NPWT on the Physical Component Summary (PCS) of the 12-Item Short-Form Health Survey (SF-12) at 12 months post-injury.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_16 | Pages 90 - 90
1 Apr 2013
Kawakami Y Matsumoto T Ii M Kawamoto A Kuroda R Mifune Y Shoji T Fukui T Kurosaka M Asahara T
Full Access

Introduction. The therapeutic potential of hematopoietic stem cells for fracture healing has been demonstrated with mechanistic insight of vasculogenesis and osteogenesis enhancement. Lnk has recently been proved an essential inhibitory signaling molecule in SCF-c-Kit signaling pathway for stem cell self-renewal demonstrating enhanced hematopoietic and osteogenic reconstitution in Lnk-deficient mice. We investigated the hypothesis that down regulation of Lnk enhances regenerative response via vasculogenesis and osteogenesis in fracture healing. Methods. A reproducible model of femoral fracture was created in mice. Immediately after fracture creation, mice received local administration of the following materials with AteloGene, 10μM (1)Lnk siRNA, (2)control siRNA. Results. Lnk group demonstrated more prompt fracture repair than control group. The functional bone healing was also significantly greater in Lnk group. Immunohistochemical staining and the mRNA expressions in fracture sites indicated the superior ability for angiogenesis and osteogenesis in Lnk group. Moreover, Lnk siRNA transfected cells showed high capacity of colony formation in vitro. Conclusion. We clarified that negatively controlled Lnk system contributed to a favorable environment for fracture healing by enhancing vasculogenesis and osteogenesis. These findings suggest that down regulation of Lnk may have a clinical potential for faster fracture healing, which contributes to reduce delayed union or nonunion


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_16 | Pages 17 - 17
1 Apr 2013
Giles E Nauth A Lin T Glick M Schemitsch E
Full Access

Introduction. Nonunion is a common and costly fracture outcome. Intricate reciprocity between angiogenesis and osteogenesis means vascular cell-based therapy offers a novel approach to stimulating bone regeneration. Hypothesis. The current study compared early and late outgrowth endothelial progenitor cell subtypes (EPCs vs OECs) for fracture healing potential in vitro and in vivo. Methods. Primary cell cultures were isolated and characterized by endothelial assays, immunosorbent assays, and multi-color flow cytometry. Co-cultures of EPC subtypes with/without primary osteoblasts (pObs) were analyzed for tube length and connectivity. In vivo, EPCs or OECs (1×10. 6. ) seeded on a gelfoam scaffold were implanted in a rat model of nonunion. Radiography was used to monitor callus formation. Results. OECs expressed more BMP-2 and less VEGF than EPCs (p<0.05). Analysis of surface markers showed decreased CD34+/CD133+/Flk-1+, CD133+ and CD45+ populations in OECs while CD34+/CD31+/Flk-1+ cells increased. pObs significantly inhibited the strong tubulogenesis of OECs while enhancing connectivity and sprout length of EPCs. In vivo, 0/6 scaffold-control and 1/5 OEC rats achieved union at 10 weeks. In comparison, all EPC rats achieved full or partial union. Discussion and Conclusion. Despite favorable tubulogenic and osteoconductive profiles of OECs, EPCs display enhanced fracture healing in vivo. Differences in CXCR4 expression and cell-mediated effects may contribute to this result


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 464 - 464
1 Sep 2012
Lindfors N Hyvönen P Nyyssönen M Kirjavainen M Kankare J Gullichsen E Salo J Lindfors N
Full Access

Bioactive glasses (BAGs) are bone substitutes with bone bonding, angiogenesis promoting and antibacterial properties. The bioactive process leading to bone bonding has been described as a sequence of reactions in the glass and at its surface. Implantation of the glass is followed by a rapid exchange of Na+ in the glass with H+ and H3O+ from the surrounding tissue, leading to the formation of silanol (SiOH) groups at the glass surface. Due to migration of Ca2+ and PO43− groups to the surface and cystallization, a CaO-P2O5 hydroxyapatite (HA) layer is formed on top of the Si-rich layer. Finally, cell interactions with the HA layer subsequently initiate the bone forming pathway. The rapid increase in pH and the subsequent osmotic effect caused by dissolution of the glass have been suggested to partly explain the antibacterial properties observed for BAGs. Comparing bactericidal effects of different BAGs, BAG-S53P4 has been shown to be the most effective, with the fastest killing or growth inhibitory effect. This antibacterial effect has been observed in vitro for all pathogens tested, including the most important aerobic and anaerobic pathogens, as well as very resistant bacteria. In a multicentre study in 2007–2009, BAG-S53P4 was used as bone graft substitute in treatment of osteomyelitis. Eleven patients (nine males, two females) with a radiologically diagnosed osteomyelitis in the lower extremity (N=10) and in the spine (N-1) participated. In the operation, the infected bone and the soft tissue were removed, and the cavitary bone defects were filled with BAG-S53P4 (BonAlive™, Bonalive Biomaterials Ltd., Finland). In four patients, muscle flaps were used as part of the treatment. Eight patients were treated in a one-stage procedure. Kanamycin granules were used in one patient and Garamycin granules (Septocol ®) in two patients. Patient data were obtained from hospital patient' records until August 2010, resulting in a mean follow-up period of 29 months (range 15–43). BAG-S53P4 was well tolerated; no BAG-related adverse effects were seen in any patient. The use of BAG-S53P4 as a bone graft substitute resulted in a fast recovery. Long-term clinical outcome was good or excellent in ten of eleven patients. These primary results indicate that BAG-S53P4 can be considered as a good and usable material in treatment of osteomyelitis. After this study BAG-S53P4 has been used in several other patients with very promising results


The Bone & Joint Journal
Vol. 102-B, Issue 7 | Pages 912 - 917
1 Jul 2020
Tahir M Chaudhry EA Zimri FK Ahmed N Shaikh SA Khan S Choudry UK Aziz A Jamali AR

Aims

It has been generally accepted that open fractures require early skeletal stabilization and soft-tissue reconstruction. Traditionally, a standard gauze dressing was applied to open wounds. There has been a recent shift in this paradigm towards negative pressure wound therapy (NPWT). The aim of this study was to compare the clinical outcomes in patients with open tibial fractures receiving standard dressing versus NPWT.

Methods

This multicentre randomized controlled trial was approved by the ethical review board of a public sector tertiary care institute. Wounds were graded using Gustilo-Anderson (GA) classification, and patients with GA-II to III-C were included in the study. To be eligible, the patient had to present within 72 hours of the injury. The primary outcome of the study was patient-reported Disability Rating Index (DRI) at 12 months. Secondary outcomes included quality of life assessment using 12-Item Short-Form Health Survey questionnaire (SF-12), wound infection rates at six weeks and nonunion rates at 12 months. Logistic regression analysis and independent-samples t-test were applied for secondary outcomes. Analyses of primary and secondary outcomes were performed using SPSS v. 22.0.1 and p-values of < 0.05 were considered significant.


Bone & Joint Research
Vol. 5, Issue 10 | Pages 512 - 519
1 Oct 2016
Mills L Tsang J Hopper G Keenan G Simpson AHRW

Objectives

A successful outcome following treatment of nonunion requires the correct identification of all of the underlying cause(s) and addressing them appropriately. The aim of this study was to assess the distribution and frequency of causative factors in a consecutive cohort of nonunion patients in order to optimise the management strategy for individual patients presenting with nonunion.

Methods

Causes of the nonunion were divided into four categories: mechanical; infection; dead bone with a gap; and host. Prospective and retrospective data of 100 consecutive patients who had undergone surgery for long bone fracture nonunion were analysed.


Bone & Joint Research
Vol. 5, Issue 4 | Pages 106 - 115
1 Apr 2016
Gruber HE Ode G Hoelscher G Ingram J Bethea S Bosse MJ

Objectives

The biomembrane (induced membrane) formed around polymethylmethacrylate (PMMA) spacers has value in clinical applications for bone defect reconstruction. Few studies have evaluated its cellular, molecular or stem cell features. Our objective was to characterise induced membrane morphology, molecular features and osteogenic stem cell characteristics.

Methods

Following Institutional Review Board approval, biomembrane specimens were obtained from 12 patient surgeries for management of segmental bony defects (mean patient age 40.7 years, standard deviation 14.4). Biomembranes from nine tibias and three femurs were processed for morphologic, molecular or stem cell analyses. Gene expression was determined using the Affymetrix GeneChip Operating Software (GCOS). Molecular analyses compared biomembrane gene expression patterns with a mineralising osteoblast culture, and gene expression in specimens with longer spacer duration (> 12 weeks) with specimens with shorter durations. Statistical analyses used the unpaired student t-test (two tailed; p < 0.05 was considered significant).


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 10 | Pages 1403 - 1408
1 Oct 2012
Hannemann PFW Göttgens KWA van Wely BJ Kolkman KA Werre AJ Poeze M Brink PRG

The use of pulsed electromagnetic fields (PEMF) to stimulate bone growth has been recommended as an alternative to the surgical treatment of ununited scaphoid fractures, but has never been examined in acute fractures. We hypothesised that the use of PEMF in acute scaphoid fractures would accelerate the time to union by 30% in a randomised, double-blind, placebo-controlled, multicentre trial. A total of 53 patients in three different medical centres with a unilateral undisplaced acute scaphoid fracture were randomly assigned to receive either treatment with PEMF (n = 24) or a placebo (n = 29). The clinical and radiological outcomes were assessed at four, six, nine, 12, 24 and 52 weeks.

A log-rank analysis showed that neither time to clinical and radiological union nor the functional outcome differed significantly between the groups. The clinical assessment of union indicated that at six weeks tenderness in the anatomic snuffbox (p = 0.03) as well as tenderness on longitudinal compression of the scaphoid (p = 0.008) differed significantly in favour of the placebo group.

We conclude that stimulation of bone growth by PEMF has no additional value in the conservative treatment of acute scaphoid fractures.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 4 | Pages 525 - 530
1 Apr 2011
Tobita K Ohnishi I Matsumoto T Ohashi S Bessho M Kaneko M Matsuyama J Nakamura K

We evaluated the effect of low-intensity pulsed ultrasound stimulation (LIPUS) on the remodelling of callus in a rabbit gap-healing model by bone morphometric analyses using three-dimensional quantitative micro-CT. A tibial osteotomy with a 2 mm gap was immobilised by rigid external fixation and LIPUS was applied using active translucent devices. A control group had sham inactive transducers applied. A region of interest of micro-CT was set at the centre of the osteotomy gap with a width of 1 mm. The morphometric parameters used for evaluation were the volume of mineralised callus (BV) and the volumetric bone mineral density of mineralised tissue (mBMD). The whole region of interest was measured and subdivided into three zones as follows: the periosteal callus zone (external), the medullary callus zone (endosteal) and the cortical gap zone (intercortical). The BV and mBMD were measured for each zone.

In the endosteal area, there was a significant increase in the density of newly formed callus which was subsequently diminished by bone resorption that overwhelmed bone formation in this area as the intramedullary canal was restored. In the intercortical area, LIPUS was considered to enhance bone formation throughout the period of observation. These findings indicate that LIPUS could shorten the time required for remodelling and enhance the mineralisation of callus.