Advertisement for orthosearch.org.uk
Results 1 - 11 of 11
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 115 - 115
1 Aug 2012
Papadosifos N Boampong D Weiler R Smitham P Tyler N Holloway C Grange S
Full Access

Introduction. In the US over half a million people are prescribed crutches each year. More than 750,000 wheelchair users exist in the UK and wheelchair and crutch users commonly develop shoulder pathology. The purpose of this study was to determine the influence of complex topographies on heart rate (HR) and thus energy expenditure, using a wheelchair and differing crutch designs on the exertional body stress. Method. Two Paralympics Athletes from the GB amputee football squad were assessed in a Lomax Active wheelchair and 5 different types of crutches in a randomly allocated order over a course representing everyday complex terrains at the Pedestrian Accessibility and Movement Environment Laboratory (PAMELA), University College London. In addition results were compared over the same course with the athletes using their own personal pair of crutches. The PAMELA course consisted of a mixture of 4% and 2.5% cross falls (transverse) and a simulated road crossing, sprint, slalom and a slow straight. Results. Initial findings show both athletes needed to work harder, thus spend more energy (13% more) to cope with the wheelchair tasks (2.6) than with the crutches(2.3). The Total Heart Beat Index (THBI) revealed that trying to ambulate with the crutches was more difficult in 4% cross fall (3.3) than on the longitudinal slopes (3.2), followed by 2.5% cross fall (2.85), slalom (2.1) and sprint (1.8). For the same tasks executed using a wheelchair the 2.5% gradient was shown to be the higher energy demanding (3.8), followed by the 4% (3.5), slopes (2.9), slalom (2.2) and sprint (2.1). Both participants reached a lower THBI (2.2) during the same task when using their own crutches. Conclusion. The results of this study imply that ambulation with crutches puts less burden than wheelchair. This might be due to the time these athletes spend with crutches, either in training or activities of daily living. Furthermore, the physical strain which they underwent during the complex terrains was clearly reflected on their heart rate. The setting of longer distances to collect more consistent HR data should be the focus of further research. The comparison in performance between athletes and the general population should also be investigated


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 1 | Pages 117 - 119
1 Jan 2005
Chin T Sawamura S Shiba R Oyabu H Nagakura Y Nakagawa A

We have compared the energy expenditure during walking in three patients, aged between 51 and 55 years, with unilateral disarticulation of the hip when using the mechanical-controlled stance-phase control knee (Otto Bock 3R15) and the microprocessor-controlled pneumatic swing-phase control knee (Intelligent Prosthesis, IP). All had an endoskeletal hip disarticulation prosthesis with an Otto Bock 7E7 hip and a single-axis foot. The energy expenditure was measured when walking at speeds of 30, 50, and 70 m/min.

Two patients showed a decreased uptake of oxygen (energy expenditure per unit time, ml/kg/min) of between 10.3% and 39.6% when using the IP compared with the Otto Bock 3R15 at the same speeds. One did not show any significant difference in the uptake of oxygen at 30 m/min, but at 50 and 70 m/min, a decrease in uptake of between 10.5% and 11.6% was found when using the IP. The use of the IP decreased the energy expenditure of walking in these patients.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 37 - 37
1 Mar 2021
Kaufmann J McGregor A Phillips A
Full Access

Abstract. Objectives. Osteoporosis of the pelvis and femur is diagnosed in a high proportion of lower-limb amputees which carries an increased fracture risk and subsequently serious implications on mobility, physical dependency and morbidity. Through the development of biofidelic musculoskeletal and finite element (FE) models, we aim to determine the effect of lower-limb amputation on long-term bone remodelling in the hip and to understand the potential underpinning mechanisms for bone degradation in the younger amputee population. Methods. Our models are patient specific and anatomically accurate. Geometries are derived from MRI-scans of one bilateral, above-knee, amputee and one body-matched control subject. Musculoskeletal modelling enables comparison of muscle and joint reaction-forces throughout gait. This provides the loading scenario implemented in FE. FE modelling demonstrates the effect of loading on the amputated limb via a prosthetic socket by comparing bone mechanical stimulation in amputee and control cases. Results. Musculoskeletal modelling shows that the bilateral amputee has 25% higher peak hip-reaction force than controls but a 54% lower peak knee-reaction force. Compensation for missing muscles and joints cause large-scale changes to the muscle loading patterns of the residual limb. FE analysis shows a 32% reduction in bone stimulation within the proximal femur and an 81% reduction in the distal femoral shaft when compared to the healthy control. A shielding effect from weight-bearing through a prosthetic socket was observed that may offset any increases in joint and muscle loading at the amputated hip. Conclusions. Bone loss in the young amputee population could be driven by unloading osteopenia where altered joint and muscle loads cause altered mechanical stimulus in the femur. Over many cycles of remodelling, a net bone loss occurs. Importantly, this suggests that the issue is preventable, or even reversible, with the implementation of targeted loading regimes or changes to the design of the prosthetic socket. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 20 - 20
4 Apr 2023
Gori M Giannitelli S Vadalà G Papalia R Zollo L Rainer A Denaro V
Full Access

Intraneural electrodes can be harnessed to control neural prosthetic devices in human amputees. However, in chronic implants we witness a gradual loss of device functionality and electrode isolation due to a nonspecific inflammatory response to the implanted material, called foreign body reaction (FBR). FBR may eventually lead to a fibrous encapsulation of the electrode surface. Poly(ethylene glycol) (PEG) is one of the most common low-fouling materials used to coat and protect electrode surfaces. Yet, PEG can easily undergo encapsulation and oxidative damage in long-term in vivo applications. Poly(sulfobetaine methacrylate) - poly(SBMA) - zwitterionic hydrogels may represent more promising alternatives to minimize the FBR due to their ultra-low fouling features. Here, we tested and compared the poly(SBMA) zwitterionic hydrogel coating with the PEG coating in reducing adhesion and activation of pro-inflammatory and pro-fibrotic cells to polyimide surfaces, which are early hallmarks of FBR. We aimed to coat polyimide surfaces with a hydrogel thin film and analysed the release of a model drug from the hydrogel. We performed hydrogel synthesis, mechanical characterization and biocompatibility analysis. Cell adhesion, viability and morphology of human myofibroblasts cultured on PEG- and hydrogel-coated surfaces were evaluated through confocal microscopy-based high-content analysis (HCA). Reduced activation of pro-inflammatory human macrophages cultured on hydrogels was assessed as well as the hydrogel drug release profile. Because of its high hydration, biocompatibility, low stiffness and ultra-low fouling characteristics the hydrogel enabled lower adhesion and activation of pro-inflammatory and pro-fibrotic cells vs. polystyrene controls, and showed a long-term release of the anti-fibrotic drug Everolimus. Furthermore, a polyimide surface was successfully coated with a hydrogel thin film. Our soft zwitterionic hydrogel could outperform PEG as more suitable coating material of neural electrodes for mitigating the FBR. Such poly(SBMA)-based biomaterial could also be envisioned as long-term delivery system for a sustained release of anti-inflammatory and anti-fibrotic drugs in vivo


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 103 - 103
4 Apr 2023
Lu V Zhou A Krkovic M
Full Access

A major cause of morbidity in lower limb amputees is phantom limb pain (PLP) and residual limb pain (RLP). This study aimed to determine if surgical interposition of nerve endings into adjacent muscle bellies at the time of major lower limb amputation can decrease the incidence and severity of PLP and RLP. Data was retrospectively collected from January 2015 to January 2021, including eight patients that underwent nerve interposition (NI) and 36 that received standard treatment. Primary outcomes included the 11-point Numerical Rating Scale (NRS) for pain severity, and Patient-Reported Outcomes Measurement Information System (PROMIS) pain intensity, behaviour, and interference. Secondary outcome included Neuro-QoL Lower Extremity Function assessing mobility. Cumulative scores were transformed to standardised t scores. Across all primary and secondary outcomes, NI patients had lower PLP and RLP. Mean ‘worst pain’ score was 3.5 out of 10 for PLP in the NI cohort, compared to 4.89 in the control cohort (p=0.298), and 2.6 out of 10 for RLP in the NI cohort, compared to 4.44 in the control cohort (p=0.035). Mean ‘best pain’ and ‘current pain’ scores were also superior in the NI cohort for PLP (p=0.003, p=0.022), and RLP (p=0.018, p=0.134). Mean PROMIS t scores were lower for the NI cohort for RLP (40.1 vs 49.4 for pain intensity; p=0.014, 44.4 vs 48.2 for pain interference; p=0.085, 42.5 vs 49.9 for pain behaviour; p=0.025). Mean PROMIS t scores were also lower for the NI cohort for PLP (42.5 vs 52.7 for pain intensity; p=0.018); 45.0 vs 51.5 for pain interference; p=0.015, 46.3 vs 51.1 for pain behaviour; p=0.569). Mean Neuro-QoL t score was lower in NI cohort (45.4 vs 41.9;p=0.03). Surgical interposition of nerve endings during lower limb amputation is a simple yet effective way of minimising PLP and RLP, improving patients’ subsequent quality of life. Additional comparisons with targeted muscle reinnervation should be performed to determine the optimal treatment option


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 22 - 22
1 Dec 2022
Betti V Ruspi M Galteri G Ognisanto E Cristofolini L
Full Access

The anatomy of the femur shows a high inter-patient variability, making it challenging to design standard prosthetic devices that perfectly adapt to the geometry of each individual. Over the past decade, Statistical Shape Models (SSMs) have been largely used as a tool to represent an average shape of many three-dimensional objects, as well as their variation in shape. However, no studies of the morphology of the residual femoral canal in patients who have undergone an amputation have been performed. The aim of this study was therefore to evaluate the main modes of variation in the shape of the canal, therefore simulating and analysing different levels of osteotomy. To assess the variability of the femoral canal, 72 CT-scans of the lower limb were selected. A segmentation was performed to isolate the region of interest (ROI), ranging from the lesser tip of the trochanter to the 75% of the length of the femur. The canals were then sized to scale, aligned, and 16 osteotomy levels were simulated, starting from a section corresponding to 25% of the ROI and up to the distal section. For each level, the main modes of variations of the femoral canal were identified through Principal Component Analysis (PCA), thus generating the mean geometry and the extreme shapes (±2 stdev) of the principal modes of variation. The shape of the canals obtained from these geometries was reconstructed every 10 mm, best- fitted with an ellipse and the following parameters were evaluated: i) ellipticity, by looking at the difference between axismax and axismin; ii) curvature of the canal, calculating the arc of circumference passing through the shapes’ centroids; iii) conicity, by looking at the maximum/minimum diameter; iv) mean diameter. To understand the association between the main modes and the shape variance, these parameters were compared, for each level of osteotomy, between the two extreme geometries of the main modes of variation. Results from PCA pointed out that the first three PCs explained more than the 87% of the total variance, for each level of simulated osteotomy. By analysing the extreme geometries for a distal osteotomy (e.g. 80% of the length of the canal), the first PC was associated to a combination of ROC (var%=41%), conicity (var%=28%) and ellipticity (var%=7%). PC2 was still associated with the ROC (var%=16%), while PC3 turned out to be associated with the diameter (var%=38%). Through the SSM presented in this study, a quantitatively evaluation of the deformation of the intramedullary canal has been made possible. By analysing the extreme geometries obtained from the first three modes of variance, it is clear that the first three PCs accounted for the variations in terms of curvature, conicity, ellipticity and diameter of the femoral canal with a different weight, depending on the level of osteotomy. Through this work, it was also possible to parametrize these variations according to the level of excision. The results given for the segment corresponding to the 80% of the length of the canal showed that, at that specified level, the ROC, conicity and ellipticity were the anatomical parameters with the highest range of variability, followed by the variation in terms of diameter. Therefore, the analysis carried out can provide information about the relevance of these parameters depending on the level of osteotomy suffered by the amputee. In this way, optimal strategies for the design and/or customization of osteo-integrated stems can be offered depending on the patient's residual limb


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 90 - 90
1 Dec 2020
Gori M Giannitelli SM Papalia R Vadalà G Denaro V
Full Access

Invasive intraneural electrodes implanted in peripheral nerves are neural prosthetic devices that are exploied to control advanced neural-interfaced prostheses in human amputees. One of the main issues to be faced in chronic implants is represented by the gradual loss of functionality of such intraneural interfaces due to an electrical impedance increase caused by the progressive formation of a fibrotic capsule around the electrodes, which is originally due to a nonspecific inflammatory response called foreign body reaction (FBR). In this in vitro work, we tested the biocompatibility and ultra-low fouling features of the synthetic coating - poly(ethylene glycol) (PEG) - compared to the organic polymer - zwitterionic sulfated poly(sulfobetaine methacrylate) (SBMA) hydrogel - to prevent or reduce the first steps of the FBR: plasma protein adsorption and cell adhesion to the interface. Synthesis and characterization of the SBMA hydrogel was done. Preliminary biocompatibility analysis of the zwitterionic hydrogel, using hydrogel-conditioned medium, showed no cytotoxicity at all vs. control. We seeded GFP-labelled human myofibroblasts on PEG- and SBMA hydrogel-coated polyimide surfaces and evaluated their adhesion and cell viability at different time-points. Because of the high hydration, low stiffness reflecting the one of neural tissue, and ultra-low fouling characteristics of the SBMA hydrogel, this polymer showed lower myofibroblast adhesion and different cell morphology compared to adhesion controls, thereby representing a better coating than PEG for potentially mitigating the FBR. We conclude that soft SBMA hydrogels could outperform PEG coatings in vitro as more suitable dressings of intraneural electrodes. Furthermore, such SBMA-based antifouling materials can be envisioned as long-term diffusion-based delivery systems for controlled release of anti-inflammatory and anti-fibrotic drugs in vivo


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 11 - 11
1 Jan 2019
Giusto E Pendegrass C Liu C Blunn G
Full Access

Intraosseous Transcutaneous Amputation Prosthesis (ITAP) is a new generation of limb replacements that can provide to amputees, an alternative solution to the main problems caused by the most common used external prosthesis such as pressure sores, infections and unnatural gait. ITAP is designed as one pylon osteointegrated into the bone and protruding through the skin, allowing both the mechanical forces to be directly transferred to the skeleton and the external skin being free from frictions and infections. The skin attachment to the implant is fundamental for the success of the ITAP, as it prevents the implant to move and consequently fail. In this study we wanted to test if cell viability and attachment was improved using TiO2 nanotubes. Human keratinocytes and human dermal fibroblasts were seeded for three days on TiO2 nanotubes with different sizes (18–30nm, 40–60nm and 60–110nm), compared with controls (smooth titanium) and tested for viability and attachment. A Mann-Whitney U test was used to compare groups where p values < 0.05 were considered significant. The results showed that the viability and cell attachment for keratinocytes were significantly higher after three days on controls comparing with all nanotubes (p=0.02), while attachment was higher on bigger nanotubes and controls. Cell viability for fibroblasts was significantly higher on nanotubes between 40 and 110nm comparing with smaller size and controls (p=0.03), while investigation of cell attachment is ongoing. From these early results, we can say that TiO2 nanotubes can improve the soft tissue attachment on ITAP. Further in-vitro and ex-vivo experiments on cell attachment will be carried out


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 91 - 91
1 Jul 2014
Dowling R Pendegrass C Thomas B Blunn G
Full Access

Summary. Osseointegrated Amputation Prostheses can be functionalised by both biological augmentation and structural augmentation. These augmentation techniques may aid the formation of a stable skin-implant interface. Introduction. Current clinical options are limited in restoring function to amputees, and are associated with contact dermatitis and infection at the stump-socket interface. Osseointegrated Amputation Prosthesis attempts to solve issues at the stump-socket interface by directly transferring axial load to the prosthesis, via a skin-penetrating abutment. However, development is needed to achieve a seal at the skin-implant interface to limit infection. Fibronectin, an Extracellular Matrix protein, binds to integrins during wound healing, with the RGD tripeptide being part of the recognition sequence for its integrin binding domain. In vitro work has found silanization of RGD to polished titanium discs up regulates fibroblast attachment compared to polished control. Electron Beam Melting can produce porous titanium alloy implants, which may encourage tissue attachment. This study aims to test whether a combination of biological RGD coatings and porous metal manufacturing techniques can encourage the formation of a seal at the skin-implant interface. Materials and Methods. We developed four different augmented transcutaneous devices: Porous, Porous RGD coated, drilled and drilled RGD coated. These were implanted in tibial transcutaneous ovine model, n=6, for a period of 6 months. Following explantation we performed hard grade resin histology to assess soft tissue attachment at the transcutaneous interface. Results. Histological analysis revealed no statistical difference in epithelial downgrowth and epidermal attachment values between the four augmented devices. There were significant increases (p<0.05) in the number of blood vessels and the number of cells in the Porous RGD devices compared with both drilled implant devices. Both Porous and Porous RGD implant groups observed significant increase (p<0.05) in soft tissue infiltration compared with both Drilled implant devices. Discussion. The use of porous structures and RGD coatings increases tissue ingrowth and revascularisation in ITAP devices despite having no effect on epithelial downgrowth and epidermal attachment in a long-term ovine model. There were no detrimental effects in the transcutaneous interface formation observed. These augmentation techniques may prove beneficial in preclinical and clinical developments of transcutaneous osseointegrated devices


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 1 | Pages 114 - 121
1 Jan 2008
Pendegrass CJ Gordon D Middleton CA Sun SNM Blunn GW

Conventional amputation prostheses rely on the attachment of the socket to the stump, which may lead to soft-tissue complications. Intraosseous transcutaneous amputation prostheses (ITAPs) allow direct loading of the skeleton, but their success is limited by infection resulting from breaching of the skin at the interface with the implant. Keratinocytes provide the skin’s primary barrier function, while hemidesmosomes mediate their attachment to natural ITAP analogues. Keratinocytes must attach directly to the surface of the implant. We have assessed the proliferation, morphology and attachment of keratinocytes to four titaniumalloy surfaces in order to determine the optimal topography in vitro. We used immunolocalisation of adhesion complex components, scanning electron microscopy and transmission electron microscopy to assess cell parameters.

We have shown that the proliferation, morphology and attachment of keratinocytes are affected by the surface topography of the biomaterials used to support their growth. Smoother surfaces improved adhesion. We postulate that a smooth topography at the point of epithelium-ITAP contact could increase attachment in vivo, producing an effective barrier of infection.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 4 | Pages 564 - 569
1 Apr 2012
Pendegrass CJ El-Husseiny M Blunn GW

The success of long-term transcutaneous implants depends on dermal attachment to prevent downgrowth of the epithelium and infection. Hydroxyapatite (HA) coatings and fibronectin (Fn) have independently been shown to regulate fibroblast activity and improve attachment. In an attempt to enhance this phenomenon we adsorbed Fn onto HA-coated substrates. Our study was designed to test the hypothesis that adsorption of Fn onto HA produces a surface that will increase the attachment of dermal fibroblasts better than HA alone or titanium alloy controls.

Iodinated Fn was used to investigate the durability of the protein coating and a bioassay using human dermal fibroblasts was performed to assess the effects of the coating on cell attachment. Cell attachment data were compared with those for HA alone and titanium alloy controls at one, four and 24 hours. Protein attachment peaked within one hour of incubation and the maximum binding efficiency was achieved with an initial droplet of 1000 ng. We showed that after 24 hours one-fifth of the initial Fn coating remained on the substrates, and this resulted in a significant, three-, four-, and sevenfold increase in dermal fibroblast attachment strength compared to uncoated controls at one, four and 24 hours, respectively.