Introduction. There have been increased concerns with trunnion fretting and corrosion and
Introduction:. The addition of neck-stem modularity of femoral components allowed for increased versatility in controlling stability, head center, and limb length in total hip arthroplasty (THA). Recent reports of neck-stem corrosion, complicated by
Introduction. Corrosion at the modular junction of the femoral component in total hip arthroplasty (THA) was considered as a cause of
Introduction. Neck-stem corrosion has been associated with
High failure rates have been associated with large diameter metal-on-metal total hip replacements (MoM THR). However there is limited literature describing the outcomes following the revision of MoM THR for
Distal neck modularity places a modular connection at a mechanically critical location. However, this is also the location that confers perhaps the greatest clinical utility. Assessment of femoral anteversion in 342 of our THR patients by CT showed a range from −24 to 61 degrees. The use of monoblock stems in some of these deformed femurs therefore must result in a failure to appropriately reconstruct the hip and have increased risks of impingement, instability, accelerated bearing wear or fracture, and
Corrosion at metal/metal modular interfaces in total hip arthroplasty was first described in the early 1990's, and the susceptibility of modular tapers to mechanically assisted crevice corrosion (MACC), a combination of fretting and crevice corrosion, was subsequently introduced. Since that time, there have been numerous reports of corrosion at this taper interface, documented primarily in retrieval studies or in rare cases of catastrophic failure. We have reported that fretting corrosion at the modular taper may produce soluble and particulate debris that can migrate locally or systemically, and more recently reported that this process can cause an
There are numerous benefits of femoral head/neck modularity in both primary and revision surgery. Taper corrosion necessitating revision surgery was recognised decades ago, and there are concerns that the incidence is increasing. Variables in design, manufacturing, biomechanics, and modular head assembly have all been implicated. While the incidence of clinically significant taper corrosion is unknown, the
Corrosion at metal/metal modular interfaces in total hip arthroplasty was first described in the early 1990's, and the susceptibility of modular tapers to mechanically assisted crevice corrosion (MACC), a combination of fretting and crevice corrosion, was subsequently introduced. Since that time, there have been numerous reports of corrosion at this taper interface, documented primarily in retrieval studies or in rare cases of catastrophic failure. We have reported that fretting corrosion at the modular taper may produce soluble and particulate debris that can migrate locally or systemically, and more recently reported that this process can cause an
Corrosion at metal/metal modular interfaces in total hip arthroplasty was first described in the early 1990's, and the susceptibility of modular tapers to mechanically assisted crevice corrosion (MACC), a combination of fretting and crevice corrosion, was subsequently introduced. Since that time, there have been numerous reports of corrosion at this taper interface, documented primarily in retrieval studies or in rare cases of catastrophic failure. We have reported that fretting corrosion at the modular taper may produce soluble and particulate debris that can migrate locally or systemically, and more recently reported that this process can cause an
Taper corrosion and fretting have been associated with oxide layer abrasion and fluid ingress that contributes to
Periacetabular osteolysis in association with well-fixed cementless components was first recognised as a serious clinical problem in the early 1990s. By the mid-1990s, revision surgery for pelvic osteolysis secondary to polyethylene wear was the most common revision hip procedure performed. As a result, new bearing surfaces were introduced in hopes of reducing wear volume and thus reducing pelvic osteolysis. These included highly crosslinked polyethylene, ceramic-on-ceramic and metal-on-metal bearing surfaces. Metal-on-metal has for the most part been eliminated in conventional hip replacement because of the concerns centered around
Ceramic bearings are currently the most widely used alternative to metal-on-polyethylene bearings in total hip arthroplasty (THA). A workgroup at International Consensus Meeting (ICM) analyzed the potential link between the type of bearing surface and the subsequent periprosthetic joint infection (PJI), and found a higher incidence of PJI when using a metal-on-metal (MoM) bearing surface. A potential reason is that the failure of a MoM bearing surface can result in
The vast majority of total hip replacements (THR) implanted today enable modularity by means of a tapered junction; based on the Morse taper design introduced for cutting tools in the 19. th. Century . 1. Morse-type tapers at the head-stem junction provide many benefits, key for a successful surgical outcome such as wider component selection and restoration of better biomechanics . 2. However, moving from mono-block to modular designs has not been without its issues. Fluid ingress and motion at the interface has led to a complex multifactorial degradation mechanism better known as fretting-corrosion . 3. Fretting-corrosion products created at the junction are commonly associated with
Ti-6Al-4V is the most common alloy used for orthopaedic implants. Its popularity is due to low density, superior corrosion resistance, good osseointegration and lower elastic modulus when compared to other commonly used alloys such as CoCrMo and stainless steel. In fact, the use of Ti64 has even further increased lately since recent controversy around
Introduction. Metal ion and particle release, particularly cobalt, has become an important subject in total hip arthroplasty, as it has shown to induce metal hypersensitivity,
Total hip arthroplasty (THA) is one of the most successful and commonly performed surgical interventions worldwide. Based on registry data, at one-year post THA, implant survivorship is nearly 100% and patient satisfaction is 90%. A novel, porous coated acetabular implant was introduced in Europe and Australia in 2007. Several years after its introduction, warnings were issued for the system when used with metal-on-metal bearings due to
Metal-on-metal bearing surfaces were reintroduced to take advantage of the reduction in volumetric wear afforded by these bearings and reduce the complications of osteolysis and aseptic loosening. In addition, metal-on-metal hip resurfacing and many metal-on-metal total hip replacement systems employed large diameter femoral heads, thereby reducing the risk of dislocations. Unfortunately, many metal-on-metal systems demonstrated poor survivorship and were associated with
I believe ceramic-on-polyethylene should be used in all patients undergoing THA. I believe the issues that one must look at include wear and osteolysis, bearing fracture and in 2018 corrosion/
Corrosion at metal/metal modular interfaces in total hip arthroplasty was first described in the early 1990s, and the susceptibility of modular tapers to mechanically assisted crevice corrosion (MACC), a combination of fretting and crevice corrosion, was subsequently introduced. Since that time, there have been numerous reports of corrosion at this taper interface, documented primarily in retrieval studies or in rare cases of catastrophic failure. We have reported that fretting corrosion at the modular taper may produce soluble and particulate debris that can migrate locally or systemically, and more recently reported that this process can cause an