Autologous micro-fragmented
Introduction and Objective. The use of microfragmented
Introduction and Objective. Osteoarthritis (OA) represents one of the leading cause of disability all over the world. Cell therapies, mainly based on mesenchymal stem cells (MSCs), have shown to modulate the pathogenesis of OA in basic, preclinical and clinical studies.
Human mesenchymal stem cells (MSCs) are multipotent stem cells with the ability to differentiate into mesoderm-type cells such as osteoblasts, chondroblast, tenocytes etc. They can be retrieved by different sources, but the number of cells obtained suggested the
Summary. The donor-matched comparison between mesenchymal stem cells from knee infrapatellar and subcutaneous
Mesenchymal stem cells (MSCs) are self-renewing, multipotent cells that could potentially be used to repair injured cartilage in diseases. The objetive was to analyze different sources of human MSCs to find a suitable alternative source for the isolation of MSCs with high chondrogenic potential. Femoral bone marrow,
Deriving autologous mesenchymal stem cells (MSCs) from
Abstract. Osteoarthritis (OA) is a degenerative disorder associated with cartilage loss and is a leading cause of disability around the world. In old age, the capacity of cartilage to regenerate is diminished. With an aging population, the burden of OA is set to rise. Currently, there is no definitive treatment for OA. However, cell-based therapies derived from
The knee joint has also a periarticular
Early detection of knee osteoarthritis (OA) is critical for possible preventive treatment, such as weight loss, physical activity and sports advice and restoring biomechanics, to postpone total knee arthroplasty (TKA). Specific biomarkers for prognosis and early diagnosis of OA are lacking. Therefore, in this study, we analyzed the lipid profiles of different tissue types within Hoffa's fat pad (HFP) of OA and cartilage defect (CD) patients, using matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI). The HFP has already been shown to play an important role in the inflammatory process in OA by prostaglandin release. Additionally, MALDI-MSI allows us to investigate on tissue lipid distribution at molecular level, which makes it a promising tool for the detection of disease specific biomarkers for OA development. Samples of HFP were obtained of patients undergoing surgical treatment for OA (n=3) (TKA) or CD (n=3) (cartilage repair). In all cases, tissue was obtained without patient harm. HFP samples were washed in phosphate buffered saline (PBS) and snap-frozen directly after surgical dissection to remove redundant blood contamination and to prevent as much tissue degradation as possible. Tissue sections were cut at 15 µm thickness in a cryostat (Leica Microsystems, Wetzlar) and deposited on indium tin oxide glass slides. Norharmane (Sigma-Aldrich) matrix was sublimed onto the tissue using the HTX Sublimator (HTX Technologies, Chapel Hill). µMALDI-MSI was performed using Synapt G2Si (Waters) at 50 µm resolution in positive ion mode. MS/MS fragmentation was performed for lipid identification. Data were processed with in-house Tricks for MATLAB and analyzed using principle component analysis (PCA) and verlan. OA and CD HFP specific lipid profiles were revealed by MALDI-MSI followed by PCA and DA. With these analyses we were able to distinguish different tissue types within HFP of different patient groups. Further discriminant analysis showed HFP intra-tissue heterogeneity with characteristic lipid profiles specific for connective and
Mesenchymal stem cells (MSC) have been used for bone regenerative applications as an alternative approach to bone grafting. Selecting the appropriate source of MSC is vital for the success of this therapeutic approach. MSC can be obtained from various tissues, but the most used sources of MSC are Bone marrow (BMSC), followed by
Intervertebral disc degeneration can lead to physical disability and significant pain, while the present therapeutics still fail to biochemically and biomechanically restore the tissue. Stem cell-based therapy in treating intervertebral disc (IVD) degeneration is promising while transplanting cells alone might not be adequate for effective regeneration. Recently, gene modification and 3D-printing strategies represent promising strategies to enhanced therapeutic efficacy of MSC therapy. In this regard, we hypothesized that the combination of thermosensitive chitosan hydrogel and adipose derived stem cells (ADSCs) engineered with modRNA encoding Interleukin − 4 (IL-4) can inhibit inflammation and promote the regeneration of the degenerative IVD. Rat ADSCs were acquired from
Mesenchymal stem cells (MSCs) have the potential to repair and regenerate damaged tissues in response to injury, such as fracture or other tissue injury. Bone marrow and
Degenerative disc disease, associated to low back pain, afflicts more than 50% of humans, and represents a major healthcare problem, especially for the pathology initiation. Current treatments range from conservative strategies to more invasive surgical techniques, such as disc removal and vertebral fusion. In the Intervertebral Disease (IVD) the nucleus pulposus (NP) degeneration is a key factor for the pathology initiation. Several tissue engineering approaches aiming to restore the appropriate NP cell (NPCs) and matrix content, were attempted by using adult stromal cells either from bone marrow or
Cell-based therapies offer a promising strategy to treat tendon injuries and diseases. Both mesenchymal stromal cells (MSCs) and pluripotent stem cells (PSCs) are good candidates for such applications due to their self-renewing and differentiation capacity. However, the translation of cell-based therapies from bench to bedside can be hindered by the use of animal-derived components in ancillary materials and by the lack of standardised media and protocols for in vitro tenogenic differentiation. To address this, we have optimized animal component-free (ACF) workflows for differentiating human MSCs and PSCs to tenocyte-like cells (TLCs) respectively. MSCs isolated from bone marrow (n = 3) or
Introduction. A recent study to identify clinically meaningful benchmarks for gait improvement after total hip replacement (THA) has shown that the minimum clinically important improvement (MCII) in gait speed after THA is 0.32 m/sec. Currently, it remains to be investigated what preoperative factors link to suboptimal recovery of gait function after THA. This study aimed to identify preoperative lower-limb muscle predictors for gait speed improvement after THA for hip osteoarthritis. Method. This study enrolled 58 patients who underwent unilateral primary THA. Gait speed improvement was evaluated as the subtraction of preoperative speed from postoperative speed at 6 months after THA. Preoperative muscle composition of the glutei medius and minimus (Gmed+min) and the gluteus maximus (Gmax) was evaluated on a single axial computed tomography slice at the bottom end of the sacroiliac joint. Cross-sectional area ratio of individual composition to the total muscle was calculated. Result. The females (n=45) showed smaller total cross-sectional areas of the gluteal muscles than the males (n=13). Gmax in the females showed lower lean muscle mass area (LMM) and higher ratios of the intramuscular fat area and the intramuscular
Introduction. Mesenchymal stem cells (MSC) are an attractive cell population for regeneration of mesenchymal tissue such as bone and cartilage. Various studies have demonstrated the repair capacity of MSCs and even their usefulness in treating critical size defects. Much of the work conducted on adult stem cells has focused on MSCs found within the bone marrow stroma.
Since the development of biomimetic and ceramic bone reconstructive in the early 1970, these specialised bioreactors intended for bone or cartilage regeneration have come a long way in trying to design an alternative procedure other than autogenous bone grafting. However, all known biomaterials still fall short of inducing substantial bone formation in vitro or in vivo, especially when treating large bony defects. As such there is a necessity to develop novel bone-reconstructive biomaterials that can more appropriately be utilised and can induce substantial more bone formation than current scaffolds. Using the rapid prototyping technique (Friedrich-Baur BioMed Center, Bayreuth, Germany) to develop new and improved hydroxyapatite/β-tricalcium phosphate devices, which can be predesigned to any outer shape with controlled pore structure and exhibit a unique intrinsic porosity <150µm due to the 3D-printing process to fit any skeletal bone loss site, the aim of our laboratories was to test the osteoinductive capacity of these new bioreactors in an in vitro culture system utilising adipose-derived stem cells (ADSCs). Immunofluorescent staining revealed that beside the standard surface protein expression patterns typical for ADSCs, the cells also produced osteoblast specific proteins, specifically osteocalcin, osteopontin and dentin matrix acidic phosphoprotein 1. ADSCs seeded on the surface of the biomimetic scaffolds showed constant proliferation, maintained viability and differentiation throughout the scaffold, including the small intrinsic pores. Subsequent, qRT-PCR also revealed that alkaline phosphatase and osteocalcin expression was significantly increased upon addition of osteogenic medium but even more so when human recombinant morphogenetic protein 2 (hBMP-2) was included. Immunofluorescent data of protein expression was consistent with qRT-PCR data. Taken into account with previous results by our laboratories in respect to
Introduction and Objective. Platelet-Rich-plasma (PRP) has been used in combination with stem cells, from different sources, with encouraging results both in vitro and in vivo in osteochondral defects management. Adipose-derived Stem Cells (ADSCs) represents an ideal resource for their ease of isolation, abundance, proliferation and differentiation properties into different cell lineages. Furthermore, Stem Cells in the