Advertisement for orthosearch.org.uk
Results 1 - 20 of 46
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 36 - 36
1 Dec 2020
Genechten WV Vuylsteke K Martinez PR Swinnen L Verdonk P
Full Access

Autologous micro-fragmented adipose tissue (MFAT) for the treatment of symptomatic knee osteoarthritis (OA) is gaining interest although there is still a lack of supportive data on safety and clinical efficacy. This study primarily aimed to identify patient- and pathology-related parameters to tighten patient selection criteria for future clinical MFAT application. Secondly, the overall (1) therapeutic response rate (TRR), (2) short-term clinical effect, (3) effect durability and (4) therapeutic safety was investigated at a minimal follow-up of 1 year. Sixty-four subjects (91 knees) with symptomatic knee OA (mild-severe on MRI) were enrolled in a prospective single-centre case series. Ethical approval was obtained from the local and academic ethical committee (#B300201733775). After liposuction, the adipose tissue was mechanically processed in a Lipogem® device which eventually produced 6–9cc MFAT. Subjects were clinically assessed by means of the KOOS, NRS, UCLA and EQ-5D at baseline and 1, 3, 6 and 12 months after injection. Adverse events were meticulously recorded. The TRR was defined according to the OMERACT-OARSI criteria. A baseline MRI was scored following the MOAKS system. Paired sample t-tests, independent t-test and Fischer's exact test were applied on appropriate variables. Multiple regression models were fit separately for patient-and pathology-specific factors. Significance level was set at α=0.05. The overall TRR was 66% at 3 months and 50% at 12 months after injection. Subgroup analysis revealed that specifically patients with no-mild bone marrow lesions (BML) had a TRR of 88% at 3 months and 75% at 12 months after MFAT injection. Therapy responders at these timepoints improved with 29.3±14.1 points and 30.8±15.3 points on KOOS pain, while non-responders deteriorated mildly. All clinical scores were significantly higher at follow-up compared to baseline (p<0.05). BMI (factor 0.17, p=0.002) and age (factor −0.48, p=0.048) were prognosticators for the TRR% at 1 month and for absolute KOOS pain improvement at 6 months, respectively. Posterior horn lesions (PHL) in the medial meniscus (p<0.001) and bone marrow lesions (p=0.003) were negative prognosticators for the TRR at respectively 6 and 12 months post-injection. An inflammatory reaction (pain, swelling or stiffness) to MFAT was reported in 79% knees and resolved spontaneously within 16.6±13.5 days after administration. The study showed a durable and satisfying TRR (up to 75% at 1 year in selected patients without BML) and clinical improvement after a single intra-articular injection with autologous MFAT. The availability of an index knee MRI is mandatory to select MFAT patients, preferably with no or mild BML and without PHL of the medial meniscus. High BMI and younger age are associated with better early outcomes. In comparison to other injection therapies such as cortisone, hyaluronic acid and PRP, MFAT appears very attractive with an effect durability of at least 1 year


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 85 - 85
1 Nov 2021
Viganò M Ragni E Torretta E Colombini A Orfei CP De Luca P Libonati F Gelfi C de Girolamo L
Full Access

Introduction and Objective. The use of microfragmented adipose tissue (mFAT) for the treatment of musculoskeletal disorders, especially osteoarthritis, is gaining popularity following the positive results reported in recent case series and clinical trials. The purpose of this study is to characterize mFAT in terms of structure, cell content and secretome (i.e. protein and microvescicles released as paracrine mediators), and to compare it with unprocessed lipoaspirate tissue, in order to understand the possible mechanisms of action and the benefit derived from tissue processing. Materials and Methods. Unprocessed lipoaspirate (LA) and mFAT were obtained from 7 donors. Each tissue sample was divided in four aliquots: A) fixed in formalin for histological evaluation; B) enzymatically digested to harvest cells with the exclusion of adipocytes; C) cultured for 24 hours in serum-free DMEM to harvest secretome; D) freshly frozen for proteomic evaluation. Hematoxylin and eosin staning, as well as immunohistochemistry for CD31, CD90, CD146 were performed on aliquot A. Cell count, viability, senescence and immunophenotype were assessed on aliquot B. Culture medium from aliquot C was collected and used for proteomic analysis and micro-RNA extraction and quantitation from extracellular vesicles. Aliquot D was lysed, protein were extracted and analyzed using a high-throughput proteomic approach. Results. Histological investigations showed a lower red blood cell content in mFAT with respect to LA, while the presence of blood vessels (CD31+), stromal cells (CD90) and pericytes (CD146) was similar in all samples. These results were confirmed by flow cytometry, with reduction of erythrocytes (CD235a+) by 76% and reduction of lymphocytes (CD45+) by 79% in mFAT compared to LA. Otherwise, the proportions of stromal cells, pericytes and endothelial cells in LA and mFAT remained comparable. The percentage of senescent cells resulted similar before and after tissue processing, with very low values (< 5%). The analysis of the miRNAs contained in the extracellular vesicles in culture media identified 376 miRNAs in LA secretome and 381 in mFAT secretome. A high correlation in the expression of these miRNAs within subjects (LA and mFAT of each donor) was observed (R2> 0.8), indicating that processing in mFAT does not significantly alter the portfolio of miRNAs associated with extracellular vesicles. Proteomic analysis of secretome revealed that 217 proteins significantly differ between LA and mFAT. In particular, protein associated with acute phase were less represented in mFAT secretome, while intracellular proteins were more frequent. Proteomic analysis of tissues demonstrated a reduction of protein related to extracellular matrix and of proteins closely related to peripheral blood contamination in mFAT with respect to LA. Conclusions. Taken together, these results suggest that processing of LA into mFAT allow for removal of blood elements, in terms of red blood cells, lymphocytes, acute phase and complement system proteins, and for the reduction of extracellular matrix components. Otherwise, tissue structure, cell populations, cell viability and senescence are not influenced by tissue processing. Then, microfragmentation process represents a safe and efficient method for the application of adipose tissue properties to musculoskeletal disorders, allowing for the maintenance of all the effector elements for tissue regeneration while removing possible detrimental agents such as inflammatory mediators


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 86 - 86
1 Nov 2021
Cicione C Papalia R Giacomo GD Tilotta V Ambrosio L Russo F Vasta S Vadalà G Denaro V
Full Access

Introduction and Objective. Osteoarthritis (OA) represents one of the leading cause of disability all over the world. Cell therapies, mainly based on mesenchymal stem cells (MSCs), have shown to modulate the pathogenesis of OA in basic, preclinical and clinical studies. Adipose tissue (AT) have emerged as a rich and promising source of MSCs called adipose derived stem cells (ASCs). Different systems are available for processing lipoaspirate to purify the samples from oily and haemorrhagic fractions, minimizing the risk of complications and maximizing the biological yield for subsequent grafting. However, few studies compared the efficacy of the different processing devices already used in clinical practice. This study aims to characterize the products obtained by the use of two different systems such as micro-fragmentation or nano-fragmentation comparing them with the starting material (AT) and the collagenase isolated ASCs. Materials and Methods. AT from 12 donors arrived without selection to the laboratories: 4 lipoaspirated (LA), 4 micro-fragmented (mF) and 4 nano-fragmented (nF). The samples were divided into three aliquots for paraffin embedding, RNA extraction and digestion with collagenase for ASCs isolation. Paraffin embedded tissue sections were stained with hematoxylin-eosin to analyze morphology. RNA was extracted, retro-transcribed and analyzed with real-time PCR to analyze the expression of pluripotency genes (SOX2, NANOG and POU5F1) and inflammatory genes (IL-1beta and iNOS). Data were analyzed using Graphpad Prism 8.0 and expressed as mean ± SD. One-way ANOVA followed by Tukey test was used to compare the different groups. Results. The LA comprised small lobules, with intact cell membranes and structurally integer adipocytes. mF samples showed the presence of integer adipocytes, small lobules and higher amount of cell clusters. nF samples showed the almost completely absence of adipocytes, a high amount of cells without lipid content and a high amount of stromal matrix. Real-time PCR results showed the lowest expression levels of pluripotency genes in LA samples that were assumed equal to 1.0 and used to calculate the expression levels of the other samples. mF showed expression levels of pluripotency genes similar to AT. nF showed expression levels of pluripotency genes higher than AT and mF, but without statistically significant differences. ASCs showed statistically significant higher expression levels of these genes compared to LA and mF (p ≤ 0.001). Likewise, the expression of inflammatory genes resulted to be lowest in LA samples (assumed equal to 1.0), higher in mF samples and in nF samples without statistical significance. As expected, the highest values were found in ASCs isolated cells compared to all the other samples (p ≤ 0.0001). Conclusions. These results confirmed that micro-fragmentation (mF) and nano-fragmentation (nF) permitted to separate a cell mixture enriched in ASCs from a lipoaspirate sample without activating the inflammatory pathways. Both processing methods gave a minimally manipulated product suitable for OA cell therapy application. Further studies are needed to elucidate possible different activities of the ASCs enriched AT-derivatives


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 7 - 7
1 Nov 2018
Ferracini R
Full Access

Human mesenchymal stem cells (MSCs) are multipotent stem cells with the ability to differentiate into mesoderm-type cells such as osteoblasts, chondroblast, tenocytes etc. They can be retrieved by different sources, but the number of cells obtained suggested the adipose tissue as a primary harvest site of MSCs. Cells can be harvested using the Coleman procedure, obtaining stromal vascular fraction (SVF), enriched with MSCs, after collagenase digestion. The availability of SVF storage has been envisioned for multiple treatments of the degenerated tissue. Indeed, the use of SVF has been introduced into clinical trials for tissue regeneration for orthopaedic patients. Difficulties of a selective delivery of SVF locally have been previously discussed. Thus, the use of biological scaffolds in order to better localize SVF in the tissue site has been studied. The methodological evolution for the use of SVF in the best possible biological conditions is a milestone for good clinical results


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 64 - 64
1 Jul 2014
Lopa S Colombini A Stanco D de Girolamo L Sansone V Moretti M
Full Access

Summary. The donor-matched comparison between mesenchymal stem cells from knee infrapatellar and subcutaneous adipose tissue revealed their preferential commitment towards the chondrogenic and osteogenic lineage, respectively. These peculiarities could be relevant for the development of successful bone and cartilage cell-based applications. Introduction. Mesenchymal stem cells (MSCs) have been proposed in bone and cartilage tissue engineering applications as an alternative to terminally differentiated cells. In the present study we characterised and performed a donor-matched comparison between MSCs resident within the infrapatellar fat pad (IFP-MSCs) and the knee subcutaneous adipose tissue (ASCs) of osteoarthritic patients. These two fat depots, indeed, can be considered appealing candidates for orthopaedic cell-based therapies since they are highly accessible during knee surgery. Materials and Methods. IFP-MSCs and ASCs were obtained from 25 osteoarthritic patients undergoing total knee replacement. Undifferentiated cells were compared for their clonogenic ability and surface markers expression. Adipogenic, osteogenic and chondrogenic differentiative potentials were evaluated after IFP-MSCs and ASCs induction towards the various lineages by means of histological, biochemical and gene expression analysis of characteristic markers. Results. We found that undifferentiated IFP-MSCs and ASCs displayed a high clonogenic ability and the typical immunophenotype of MSCs (CD13. +. /CD29. +. /CD44. +. /CD73. +. /CD90. +. /CD105. +. /CD166. +. /CD31. −. /CD45. −. ), without any difference in terms of surface markers expression between these two cell populations. When both cell types were cultured in adequate adipo-, osteo- and chondro- differentiative media, IFP-MSCs and ASCs showed similar adipogenic potential, though undifferentiated ASCs had superior LEP expression compared to undifferentiated IFP-MSCs (p<0.01). ASCs showed a higher response to osteogenic induction in comparison with IFP-MSCs as demonstrated by significantly higher levels of calcified matrix deposition (p<0.05) and alkaline phosphatase activity (p<0.05). After 14 days of chondrogenic induction of cells cultured in pellets, we observed greater amounts of glycosaminoglycans (p<0.01) in IFP-MSCs pellets compared to ASCs pellets. Chondrogenic differentiation of IFP-MSCs showed also a superior gene expression of ACAN (p<0.001), SOX9, COMP (p<0.001) and COL2A1 (p<0.05) compared to ASCs. Furthermore, IFP-MSCs showed significantly lower levels of COL10A1 (p<0.05) and COL1A1 (p<0.01) and lower alkaline phosphatase release (p<0.05) compared to ASCs, supporting the hypothesis of a superior chondrogenic commitment of IFP-MSCs. Discussion/Conclusion. The observed dissimilarities between IFP-MSCs and ASCs suggest that despite similar features at the undifferentiated state, MSCs deriving from different anatomical sites within the same joint can display a specific commitment. The peculiar commitment of IFP-MSCs and ASCs towards the chondrogenic and osteogenic lineage suggests that they may be preferentially used for cartilage and bone applications, respectively


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 100 - 100
1 Jan 2017
García-Alvarez F Desportes P Estella R Alegre-Aguarón E Piñas J Castiella T Larrad L Albareda J Martínez-Lorenzo M
Full Access

Mesenchymal stem cells (MSCs) are self-renewing, multipotent cells that could potentially be used to repair injured cartilage in diseases. The objetive was to analyze different sources of human MSCs to find a suitable alternative source for the isolation of MSCs with high chondrogenic potential. Femoral bone marrow, adipose tissue from articular and subcutaneous locations (hip, knee, hand, ankle and elbow) were obtained from 35 patients who undewent different types of orthopedic surgery (21 women, mean age 69.83 ± 13.93 (range 38–91) years. Neoplasic and immunocompromised patients were refused. The Ethical Committee for Clinical Research of the Government of Aragón (CEICA) approved the study and all patients provided informed consent. Cells were conjugated wiith monoclonal antibodies. Cell fluorescence was evaluated by flow cytometry using a FACSCalibur flow cytometer and analysed using CellQuest software (Becton Dickinson). Chondrogenic differentiation of human MSCs from the various tissues at P1 and P3 was induced in a 30-day micropellet culture [Pittenger et al., 1999]. To evaluate the differentiation of cartilaginous pellet cultures, samples were fixed embedded in paraffin and cut into 5- υm-thick slices. The slices were treated with hematoxylin-eosin and safranin O (Sigma-Aldrich). Each sample was graded according to the Bern Histological Grading Scale [Grogan et al., 2006], which is a visual scale that incorporates three parameters indicative of cartilage quality: uniform and dark staining with safranin O, cell density or extent of matrix produced and cellular morphology (overall score 0–9). Stained sections were evaluated and graded by two different researchers under a BX41 dual viewer microscope or a Nikon TE2000-E inverted microscope with the NIS-Elements software. Statistics were calculated using bivariate analysis. Pearson's χ2 or Fisher's exact tests were used to compare the Bern Scores of various tissues. To evaluate the cell proliferation, surface marker expression and tissue type results, ANOVA or Kruskal-Wallis tests were used, depending on the data distribution. Results were considered to be significant when p was < 0.05. MSCs from all tissues analysed had a fibroblastic morphology, but their rates of proliferation varied. Subcutaneous fat derived MSCs proliferated faster than bone marrow. MSCs from Hoffa fat, hip and knee subcutaneous proliferated slower than MSCs from elbow, ankle and hand subcutaneous. Flow cytometry: most of cells lacked expression of CD31, CD34, CD36, CD117 (c-kit), CD133/1 and HLA-DR. At same time 95% of cells expressed CD13, CD44, CD59, CD73, CD90, CD105, CD151 y CD166. Fenotype showed no differences in cells from different anatomic places. Cells from hip and knee subcutaneous showed a worst differentiation to hyaline cartilage. Hoffa fat cells showed high capacity in transforming to hyaline cartilage. Cells from different anatomic places show different chondrogenic potential that has to be considered to choose the cells source


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 87 - 87
2 Jan 2024
Vargel I Açil M Tuncel S Baysal N Hartuç I Okur H Korkusuz F
Full Access

Deriving autologous mesenchymal stem cells (MSCs) from adipose tissues without using enzymes requires sophisticated biomedical instruments. Applied pressure on tissues and cells are adjusted manually although centrifugation and filtration systems are frequently used. The number of derived MSCs therefore could differ between instruments. We compared the number of MSCs obtained from four commercially available devices and our newly designed and produced instrument (A2, B3, L3, M2 and T3). Three-hundred mL of adipose tissue was obtained from a female patient undergoing liposuction using the transillumination solution. Obtained tissue was equally distributed to each device and handled according to the producers' guides. After handling, 3 mL stromal vascular fraction (SVF) was obtained from each device. Freshly isolated SVF was characterized using multi-color flow cytometry (Navios Flow Cytometer, Beckman Coulter, USA). Cell surface antigens were chosen according to IFATS and ISCT. CD31-FITC, CD34-PC5,5, CD73-PE, CD90-PB and CD45-A750 (Backman Coulter, USA) fluorochrome-labeled monoclonal antibodies were assessed. Markers were combined with ViaKrome (Beckman Coulter, USA) to determine cell viability. At least 10. 5. cells were acquired from each sample. A software (Navios EX, Beckman Coulter, USA) was used to create dot plots and to calculate the cell composition percentages. The data was analyzed in the Kaluza 2.1 software package (Beckman Coulter, USA). Graphs were prepared in GraphPad Prism. CD105 PC7/CD31 FITC cell percentages were 23,9%, 13,5%, 24,6%, 11,4% and 28,8% for the A2, B3, L3, M2 and T3 devices, respectively. We conclude that the isolated MSC percentage ranged from 11,4% to 28,8% between devices. The number of MSCs in SVF are key determinants of success in orthobiological treatments. Developing a device should focus on increasing the number of MSCs in the SVF while preserving its metabolic activity. Acknowledgments: Scientific and Technological Research Council of Türkiye (TÜBİTAK)- Technology and Innovation Funding Program Directorate (TEYDEB) funded this project (#321893). Servet Kürümoğlu and Bariscan Önder of Disposet Ltd., Ankara, Türkiye (. www.disposet.com. ) contributed to the industrial design and research studies. Ali Tuncel and Feza Korkusuz are members of the Turkish Academy of Sciences (TÜBA). Nilsu Baysal was funded by the STAR Program of TÜBITAK Grant # 3210893


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 5 - 5
1 Dec 2021
Agarwal N Mak CC Bojanic C To K Khan W
Full Access

Abstract. Osteoarthritis (OA) is a degenerative disorder associated with cartilage loss and is a leading cause of disability around the world. In old age, the capacity of cartilage to regenerate is diminished. With an aging population, the burden of OA is set to rise. Currently, there is no definitive treatment for OA. However, cell-based therapies derived from adipose tissue are promising. A PRISMA systematic review was conducted employing four databases (MEDLINE, EMBASE, Cochrane, Web of Science) to identify all clinical studies that utilized adipose tissue derived mesenchymal stem cells (AMSCs) or stromal vascular fraction (SVF) for the treatment of knee OA. Eighteen studies were included, which met the inclusion criteria. Meta-analyses were conducted on fourteen of these studies, which all documented WOMAC scores after the administration of AMSCs. Pooled analysis revealed that cell-based treatments definitively improve WOMAC scores, post treatment. These improvements increased with time. The studies in this meta-analysis have established the safety and efficacy of both AMSC therapy and SVF therapy for knee OA in old adults and show that they reduce pain and improve knee function in symptomatic knee OA suggesting that they may be effective therapies to improve mobility in an aging population


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 102 - 102
1 Nov 2021
Forriol F
Full Access

The knee joint has also a periarticular adipose tissue, which is known as Hoffa's fat pad (IPFP). IPFP has a dual function in the joint it reduces the concentration of Nitric Oxide, the release of glycosaminoglycans and the expression of MMP1 in the cartilage, but it also contains MSC and macrophages. Our hypothesis is that synovial fluid contains elements, not all of which are understood, which act as messengers and alter the “homeostasis” of the knee and the metabolism of all the cellular components of the joint, including the MSC of Hoffa's fat pad, thus making them another piece in the puzzle as far as OA of the knee is concerned. The IPFP of 37 patients with OA and 36 patients with ACL rupture were analyzed. Isolation, primary culture, and a functional and proteomic study of MSCs from IPFP were performed. Our results show that OA of the knee, in its more severe phases, also affects the MSC's of IPFP, which is a new actor in the OA degenerative process and which can contribute to the origin, onset and progression of the disease. A differential protein profile between OA and ACL patients were identified. Infrapatellar pad should be regarded as an adipose tissue with its own characteristics and it´s also able to produce and excrete important inflammatory mediators directly into the knee joint


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 93 - 93
1 Mar 2021
Haartmans M Cillero-Pastor B Emanuel K Eveque-Mourroux M Tuijthof G Heeren R Emans P
Full Access

Early detection of knee osteoarthritis (OA) is critical for possible preventive treatment, such as weight loss, physical activity and sports advice and restoring biomechanics, to postpone total knee arthroplasty (TKA). Specific biomarkers for prognosis and early diagnosis of OA are lacking. Therefore, in this study, we analyzed the lipid profiles of different tissue types within Hoffa's fat pad (HFP) of OA and cartilage defect (CD) patients, using matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI). The HFP has already been shown to play an important role in the inflammatory process in OA by prostaglandin release. Additionally, MALDI-MSI allows us to investigate on tissue lipid distribution at molecular level, which makes it a promising tool for the detection of disease specific biomarkers for OA development. Samples of HFP were obtained of patients undergoing surgical treatment for OA (n=3) (TKA) or CD (n=3) (cartilage repair). In all cases, tissue was obtained without patient harm. HFP samples were washed in phosphate buffered saline (PBS) and snap-frozen directly after surgical dissection to remove redundant blood contamination and to prevent as much tissue degradation as possible. Tissue sections were cut at 15 µm thickness in a cryostat (Leica Microsystems, Wetzlar) and deposited on indium tin oxide glass slides. Norharmane (Sigma-Aldrich) matrix was sublimed onto the tissue using the HTX Sublimator (HTX Technologies, Chapel Hill). µMALDI-MSI was performed using Synapt G2Si (Waters) at 50 µm resolution in positive ion mode. MS/MS fragmentation was performed for lipid identification. Data were processed with in-house Tricks for MATLAB and analyzed using principle component analysis (PCA) and verlan. OA and CD HFP specific lipid profiles were revealed by MALDI-MSI followed by PCA and DA. With these analyses we were able to distinguish different tissue types within HFP of different patient groups. Further discriminant analysis showed HFP intra-tissue heterogeneity with characteristic lipid profiles specific for connective and adipose tissues, but also for synovial tissue and blood vessels, revealing the high molecular complexity of this tissue. As expected, lipid signals were lower at the site of the connective tissue, compared to the adipose tissue. In particular, tri-acyl glycerol, di-acyl glycerol, sphingomyelin and phosphocholine species were differently abundant in the adipose tissue of HFP of OA compared to CD. To our knowledge, this is the first study comparing lipid profiles in HFP of OA patients with CD patients using MALDI-MSI. Our results show different lipid profiles between OA and CD patients, as well as intra-tissue heterogeneity within HFP, rendering MALDI-MSI as a useful technology for OA biomarker discovery. Future research will focus on expanding the number of subjects and the improvement of lipid detection signals


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 97 - 97
2 Jan 2024
Mohamed-Ahmed S Yassin M Rashad A Lie S Suliman S Espedal H Idris S Finne-Wistrand A Mustafa K Vindenes H Fristad I
Full Access

Mesenchymal stem cells (MSC) have been used for bone regenerative applications as an alternative approach to bone grafting. Selecting the appropriate source of MSC is vital for the success of this therapeutic approach. MSC can be obtained from various tissues, but the most used sources of MSC are Bone marrow (BMSC), followed by adipose tissue (ASC). A donor-matched comparison of these two sources of MSC ensures robust and reliable results. Despite the similarities in morphology and immunophenotype of donor-matched ASC and BMSC, differences existed in their proliferation and in vitro differentiation potential, particularly osteogenic differentiation that was superior for BMSC, compared to ASC. However, these differences were substantially influenced by donor variations. In vivo, although the upregulated expression of osteogenesis-related genes in both ASC and BMSC, more bone was regenerated in the calvarial defects treated with BMSC compared to ASC, especially during the initial period of healing. According to these findings, compared to ASC, BMSC may result in faster regeneration and healing, when used for bone regenerative applications


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 115 - 115
4 Apr 2023
Wu H Ding Y Sun Y Liu Z Li C
Full Access

Intervertebral disc degeneration can lead to physical disability and significant pain, while the present therapeutics still fail to biochemically and biomechanically restore the tissue. Stem cell-based therapy in treating intervertebral disc (IVD) degeneration is promising while transplanting cells alone might not be adequate for effective regeneration. Recently, gene modification and 3D-printing strategies represent promising strategies to enhanced therapeutic efficacy of MSC therapy. In this regard, we hypothesized that the combination of thermosensitive chitosan hydrogel and adipose derived stem cells (ADSCs) engineered with modRNA encoding Interleukin − 4 (IL-4) can inhibit inflammation and promote the regeneration of the degenerative IVD. Rat ADSCs were acquired from adipose tissue and transfected with modRNAs. First, the kinetics and efficacy of modRNA-mediated gene transfer in mouse ADSCs were analyzed in vitro. Next, we applied an indirect co-culture system to analyze the pro-anabolic potential of IL-4 modRNA engineered ADSCs (named as IL-4-ADSCs) on nucleus pulposus cells. ModRNA transfected mouse ADSCs with high efficiency and the IL-4 modRNA-transfected ADSCs facilitated burst-like production of bio-functional IL-4 protein. In vitro, IL-4-ADSCs induced increased anabolic markers expression of nucleus pulposus cells in inflammation environment compared to untreated ADSCs. These findings collectively supported the therapeutic potential of the combination of thermosensitive chitosan hydrogel and IL-4-ADSCs for intervertebral disc degeneration management. Histological and in vivo validation are now being conducted


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 42 - 42
11 Apr 2023
Hanetseder D Hruschka V Redl H Presen D
Full Access

Mesenchymal stem cells (MSCs) have the potential to repair and regenerate damaged tissues in response to injury, such as fracture or other tissue injury. Bone marrow and adipose tissue are the major sources of MSCs. Previous studies suggested that the regenerative activity of stem cells can be enhanced by exposure to tissue microenvironments. The aim of our project was to investigate whether extracellular matrix (ECM) engineered from human induced pluripotent stem cells-derived mesenchymal-like progenitors (hiPSCs-MPs) can enhance the regenerative potential of human bone marrow mesenchymal stromal cells (hBMSCs). ECM was engineered from hiPSC-MPs. ECM structure and composition were characterized before and after decellularization using immunofluorescence and biochemical assays. hBMSCs were cultured on the engineered ECM, and differentiated into osteogenic, chondrogenic and adipogenic lineages. Growth and differentiation responses were compared to tissue culture plastic controls. Decellularization of ECM resulted in efficient cell elimination, as observed in our previous studies. Cultivation hBMSCs on the ECM in osteogenic medium significantly increased hBMSC growth, collagen deposition and alkaline phosphatase activity. Furthermore, expression of osteogenic genes and matrix mineralization were significantly higher compared to plastic controls. Chondrogenic micromass culture on the ECM significantly increased cell growth and expression of chondrogenic markers, including glycosaminoglycans and collagen type II. Adipogenic differentiation of hBMSCs on the ECM resulted in significantly increased hBMSC growth, but significantly reduced lipid vacuole deposition compared to plastic controls. Together, our studies suggest that BMSCs differentiation into osteogenic and chondrogenic lineages can be enhanced, whereas adipogenic activity is decreased by the culture on engineered ECM. Contribution of specific matrix components and underlying mechanisms need to be further elucidated. Our studies suggest that the three-lineage differentiation of aged BMSCs can be modulated by culture on hiPSC-engineered ECM. Further studies are aimed at scaling-up to three-dimensional ECM constructs for osteochondral tissue regeneration


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 35 - 35
2 Jan 2024
Nardini M Gentili C Muraglia A Zanirato A Ferrari P Formica M Cancedda R Mastrogiacomo M
Full Access

Degenerative disc disease, associated to low back pain, afflicts more than 50% of humans, and represents a major healthcare problem, especially for the pathology initiation. Current treatments range from conservative strategies to more invasive surgical techniques, such as disc removal and vertebral fusion. In the Intervertebral Disease (IVD) the nucleus pulposus (NP) degeneration is a key factor for the pathology initiation. Several tissue engineering approaches aiming to restore the appropriate NP cell (NPCs) and matrix content, were attempted by using adult stromal cells either from bone marrow or adipose tissue, chondrocytes, notochordal cells and more recently also pluripotent stem cells. However, none was fully satisfactory since the NP acid and a-vascularized environment appeared averse to the implanted heterologous cells. Several studies demonstrated the efficacy of platelet derivatives such as platelet rich plasma (PRP) in promoting the regeneration of connective tissues. We investigated the efficacy of PRP on NPCs proliferation and differentiation with the goal to propose the direct stimulation of resident cells (stimulation of endogenous cells – less invasive surgical procedure) or the implantation of NPCs expanded in vitro in the presence of PRP as therapeutic agents in IVD degeneration. NPCs were isolated from small fragments of NP explants, cultivated in medium supplemented with PRP or FCS (standard condition control) and characterized by FACS analysis for the expression of the typical mesenchymal stem cells markers CD34, CD44, CD45, CD73, CD90 and CD105. NPCs cultured in PL showed a phenotypic profile like the cells cultured in FCS. However, compared to NPCs expanded in the presence of FCS, NPCs expanded in PRP showed a much better proliferation and differentiation capacity. NPCs differentiation was evaluated by the cell ability to produce an organized metachromatic cartilaginous matrix, confirmed by the positive immunohistochemical staining for chondrogenic markers


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 27 - 27
2 Jan 2024
Dei A Hills M Chang W Wagey R Eaves A Louis S Zeugolis D Sampaio A
Full Access

Cell-based therapies offer a promising strategy to treat tendon injuries and diseases. Both mesenchymal stromal cells (MSCs) and pluripotent stem cells (PSCs) are good candidates for such applications due to their self-renewing and differentiation capacity. However, the translation of cell-based therapies from bench to bedside can be hindered by the use of animal-derived components in ancillary materials and by the lack of standardised media and protocols for in vitro tenogenic differentiation. To address this, we have optimized animal component-free (ACF) workflows for differentiating human MSCs and PSCs to tenocyte-like cells (TLCs) respectively. MSCs isolated from bone marrow (n = 3) or adipose tissue (n = 3) were expanded using MesenCult™-ACF Plus Culture Kit for at least 2 passages, and differentiated to TLCs in 21 days using a step-wise approach. Briefly, confluent cultures were treated with an ACF tenogenic induction medium for 3 days, followed by treatment with an ACF maturation medium for 18 days. Monolayer cultures were maintained at high density without passaging for the entire duration of the protocol, and the medium was changed every 2 – 3 days. In a similar fashion, embryonic (n = 3) or induced PSCs (n = 3) were first differentiated to acquire a mesenchymal progenitor cell (MPC) phenotype in 21 days using STEMdiff™ Mesenchymal Progenitor Kit, followed by the aforementioned tenogenic protocol for an additional 21 days. In all cases, the optimized workflows using ACF formulations consistently activated a tenogenic transcriptional program, leading to the generation of elongated, spindle-shaped tenomodulin-positive (TNMD+) cells and deposition of an extracellular matrix predominantly composed of collagen type I. In summary, here we describe novel workflows that can robustly generate TLCs from MSCs and hPSC-derived MPCs for potential translational applications


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 76 - 76
14 Nov 2024
Yasuda T Ota S Mitsuzawa S Yamashita S Tsukamoto Y Takeuchi H Onishi E
Full Access

Introduction. A recent study to identify clinically meaningful benchmarks for gait improvement after total hip replacement (THA) has shown that the minimum clinically important improvement (MCII) in gait speed after THA is 0.32 m/sec. Currently, it remains to be investigated what preoperative factors link to suboptimal recovery of gait function after THA. This study aimed to identify preoperative lower-limb muscle predictors for gait speed improvement after THA for hip osteoarthritis. Method. This study enrolled 58 patients who underwent unilateral primary THA. Gait speed improvement was evaluated as the subtraction of preoperative speed from postoperative speed at 6 months after THA. Preoperative muscle composition of the glutei medius and minimus (Gmed+min) and the gluteus maximus (Gmax) was evaluated on a single axial computed tomography slice at the bottom end of the sacroiliac joint. Cross-sectional area ratio of individual composition to the total muscle was calculated. Result. The females (n=45) showed smaller total cross-sectional areas of the gluteal muscles than the males (n=13). Gmax in the females showed lower lean muscle mass area (LMM) and higher ratios of the intramuscular fat area and the intramuscular adipose tissue area to the total muscle area (TM) than that in the males. Regression analysis revealed that LMM/TM of Gmed+min may correlate negatively with postoperative improvement in gait speed. Receiver operating characteristic curve analysis for prediction of MCII in gait speed at ≥ 0.32 m/sec resulted in the highest area under the curve for Gmax TM with negative correlation. The explanatory variables of hip abductor muscle composition predicted gait speed improvement after THA more precisely in the females compared with the total group of both sexes. Conclusion. Preoperative Gmax TM could predict gait speed MCII after THA. Preoperative muscle composition should be evaluated separately based on sexes for achievement of clinically important improvement in gait speed after THA


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 50 - 50
1 Aug 2012
Hopper N Wardale J Rushton N
Full Access

Introduction. Mesenchymal stem cells (MSC) are an attractive cell population for regeneration of mesenchymal tissue such as bone and cartilage. Various studies have demonstrated the repair capacity of MSCs and even their usefulness in treating critical size defects. Much of the work conducted on adult stem cells has focused on MSCs found within the bone marrow stroma. Adipose tissue, like bone marrow, is derived from the embryonic mesenchyme and contains a stroma that is easily isolated. The aim of the present study is to evaluate the differentiation capability of adipose-tissue derived stem cells (ASC) extracted from the infrapatellar fat pad. Materials and Methods. Human infrapatellar fat pad tissue was obtained from patients undergoing total joint replacement for osteoarthritis with full ethical consent. A multipotent progenitor cell population was derived after collagenase digestion from the adipose tissue. The ASCs were induced to differentiate towards adipogenic, chondrogenic, and osteogenic lineages for 21 days both in normoxic and hypoxic cell culture conditions. The differentiation and multilineage potential was assessed according to cell morphology and in vitro detection of tissue-specific differentiation molecules. Results. After 3 weeks in culture the staining for oil-red-o, alcian bue, and alizarin-red confirmed the differentiation capability of ASC's to adipogenic, chondrogenic, and osteogenic lineages, respectively. The hypoxic cell culture condition was found to support the ASCs' chondrogenic differentiation capability and subsequently enhanced the proteoglycan release from the cells. Fluorescence-activated cell sorting (FACS) confirmed the presence of stromal precursor cell marker STRO-1 in the ASC population. Discussion. Subcutaneous adipose tissue is particularly attractive reservoir for progenitor cells because it is easily accessible, rather abundant, and self-replenishing. The results of this study demonstrate that ASCs can be derived from infrapatellar fat pad and that they have potential for musculoskeletal tissue repair and regeneration. Further studies are underway to evaluate how to adopt a biomaterial to deliver these cells into the defect area to facilitate the healing response


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 16 - 16
1 Apr 2018
Klar R Bondarava M Wiedenmann T Seitz D Ren B Thasler W Müller P Betz O
Full Access

Since the development of biomimetic and ceramic bone reconstructive in the early 1970, these specialised bioreactors intended for bone or cartilage regeneration have come a long way in trying to design an alternative procedure other than autogenous bone grafting. However, all known biomaterials still fall short of inducing substantial bone formation in vitro or in vivo, especially when treating large bony defects. As such there is a necessity to develop novel bone-reconstructive biomaterials that can more appropriately be utilised and can induce substantial more bone formation than current scaffolds. Using the rapid prototyping technique (Friedrich-Baur BioMed Center, Bayreuth, Germany) to develop new and improved hydroxyapatite/β-tricalcium phosphate devices, which can be predesigned to any outer shape with controlled pore structure and exhibit a unique intrinsic porosity <150µm due to the 3D-printing process to fit any skeletal bone loss site, the aim of our laboratories was to test the osteoinductive capacity of these new bioreactors in an in vitro culture system utilising adipose-derived stem cells (ADSCs). Immunofluorescent staining revealed that beside the standard surface protein expression patterns typical for ADSCs, the cells also produced osteoblast specific proteins, specifically osteocalcin, osteopontin and dentin matrix acidic phosphoprotein 1. ADSCs seeded on the surface of the biomimetic scaffolds showed constant proliferation, maintained viability and differentiation throughout the scaffold, including the small intrinsic pores. Subsequent, qRT-PCR also revealed that alkaline phosphatase and osteocalcin expression was significantly increased upon addition of osteogenic medium but even more so when human recombinant morphogenetic protein 2 (hBMP-2) was included. Immunofluorescent data of protein expression was consistent with qRT-PCR data. Taken into account with previous results by our laboratories in respect to adipose tissue as a viable inductive medium that can form substantial new bone formation in vivo the present results demonstrated that the investigated bioceramic devices possess the necessary capacity that could, together with adipose tissue, provide the next leap necessary to finally and decisively induce substantial or total new bone formation in clinical bone defects of humans


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 135 - 135
1 Nov 2021
Calafiore F Giannetti A Mazzoleni MG Ronca A Taurino F Mandoliti G Calvisi V
Full Access

Introduction and Objective. Platelet-Rich-plasma (PRP) has been used in combination with stem cells, from different sources, with encouraging results both in vitro and in vivo in osteochondral defects management. Adipose-derived Stem Cells (ADSCs) represents an ideal resource for their ease of isolation, abundance, proliferation and differentiation properties into different cell lineages. Furthermore, Stem Cells in the adipose tissue are more numerous than from other sources. Aim of this study was to evaluate the potential of ADSCs in enhancing the effect of arthroscopic mesenchymal stimulation combined with infiltration of PRP. Materials and Methods. The study includes 82 patients. 41 patients were treated with knee arthroscopy, Steadman microfractures technique and intraoperative PRP infiltration, Group A. In the Group B, 41 patients were treated knee arthroscopy, Steadman microfractures and intraoperative infiltration of PRP and ADSCs (Group B). Group A was used as a control group. Inclusion criteria were: Age between 40 and 65 years, Outerbridge grade III-IV chondral lesions, Kellegren-Lawrence Grade I-II. Patient-reported outcome measures (PROMs) evaluated with KOOS, IKDC, VAS, SF-12 were assessed pre-operatively and at 3 weeks, 6 months, 1-year post-operative. 2 patients of Group A and 3 patients of Group B, with indication of Puddu plate removal after high tibial osteotomy (HTO), underwent an arthroscopic second look, after specific informed consent obtained. On this occasion, a bioptic sample was taken from the repair tissue of the chondral lesion previously treated with Steadman microfractures. Results. PROMs showed statistically significant improvement (p <0.05) with comparable results in both groups. The histological examination of the bioptic samples in Group B showed a repair tissue similar to hyaline cartilage, according to the International Cartilage Repair Society (ICRS) Visual Histological Assessment Scale. In Group A, the repair tissue was fibrocartilaginous. Conclusions. According to the PROMs and the histological results, showing repair tissue after Steadman microfractures qualitatively similar to hyaline cartilage, the combination of ADSCs and PRP could represent an excellent support to the arthroscopic treatment of focal chondral lesions and mild to moderate osteoarthritis


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 44 - 44
1 Mar 2021
Spezia M Macchi M Elli S Schiaffini G Chisari E
Full Access

Adipose tissue releases several bioactive peptides and hormones, like adipokines that promote a low inflammatory systemic state. Inflammation, affecting the tendon homeostasis, could play a role in tendon disease development as well as in the healing process. Obese patients show a dysregulated level of adipokines and considering the higher mechanical demand, this relates to higher incidence of tendinopathies among these subjects. A systematic review was performed searching PubMed, Embase and Cochrane Library databases. Inclusion criteria were studies of any level of evidence published in peer-reviewed journals reporting clinical or preclinical results. Evaluated data were extracted and critically analysed. PRISMA guidelines were applied, and risk of bias was assessed, as was the methodological quality of the included studies. We excluded all the articles with high risk of bias and/or low quality after the assessment. After applying the previously described criteria, we included 12 articles assessed as medium or high quality. Leptin, others adipokines and in general changes in the hormones delicate equilibrium affect the tendon either qualitatively and/or quantitatively. The evidence still lacks consensus on their role which is probably involved in both anabolic and catabolic pathways. The role of adipokines in the structure and healing of tendons is still debated. Further studies are needed to clarify the relation between deregulated levels of adipokines and the development of tendinopathy. A better understanding of the molecular interactions could allow us to individuate future therapeutic targets