Advertisement for orthosearch.org.uk
Results 1 - 20 of 43
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 2 - 2
1 Mar 2021
Verlaan L Boekesteijn R Oomen P Liu W Peters M Emans P Rhijn L Meijer K
Full Access

Osteoarthritis is one of the major causes of immobility. Most commonly, osteoarthritis manifests at the knee joint. Prevalence of knee osteoarthritis (KNOA) increases with age. Another important risk factor for KNOA is obesity. Research has shown that obese subjects have almost four times the risk of developing KNOA, which may be explained by both an increased knee loading. In medial compartment KNOA, the knee adduction moment (KAM) during gait is considered a marker for disease severity. KAM is dependent of the magnitude of the ground reaction force and its moment arm relative to the knee joint centre. In addition, obesity has been reported to augment KAM during gait. However, after removal of the direct contributions of body weight, KAM parameters may be different due to obesity-related gait adaptations to limit knee loading. While KAM has been thoroughly investigated during gait, little is known about KAM during stair negotiation, during which knee loads are higher compared to gait. The aim of the current study is therefore to compare normalized KAM during the stance phase of stair negotiation between lean KNOA patients, obese KNOA patients, and healthy controls. This case control study included 20 lean controls, 14 lean KNOA patients, and 16 obese KNOA patients. All subjects ascended and descended a two-step staircase at a self-selected, comfortable speed. Radiographic imaging and MRI were used to evaluate knee cartilage and KNOA status. Motion analysis was performed with a three-dimensional motion capture system. Kinetic data were obtained by one force platform. The parameters of study included: stance phase duration, toe-out angle, KAM peaks and KAM impulse. During stair ascent obese KNOA patients showed a longer stance phase than healthy controls (P 0.050). Despite high between-subject variability, KAM impulse was found 45% higher in the obese KNOA group during stair descent, when compared to healthy controls (P =0.012). The absence of a significant effect of groups on the normalized KAM during stair negotiation may be explained by a lower ambulatory speed in the obese KNOA group, that effectively lowers GRFz. Decreasing ambulatory speed may be an effective strategy to lower KAM during stair negotiation


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 59 - 59
1 Mar 2021
Bowd J van Rossom S Wilson C Elson D Jonkers I Whatling G Holt C
Full Access

Abstract. Objective. Explore whether high tibial osteotomy (HTO) changes knee contact forces and to explore the relationship between the external knee adduction moment (EKAM) pre and 12 months post HTO. Methods. Three-dimensional gait analysis was performed on 17 patients pre and 12-months post HTO using a modified Cleveland marker-set. Tibiofemoral contact forces were calculated in SIMM. The scaled musculoskeletal model integrated an extended knee model allowing for 6 degrees of freedom in the tibiofemoral and patellofemoral joint. Joint angles were calculated using inverse kinematics then muscle and contact forces and secondary knee kinematics were estimated using the COMAC algorithm. Paired samples t-test were performed using SPSS version 25 (SPSS Inc., USA). Testing for normality was undertaken with Shapiro-Wilk. Pearson correlations established the relationships between EKAM1 to medial KCF1, and EKAM2 to medial KCF2, pre and post HTO. Results. Total knee contact force peak 1 significantly reduced from 2.6 x body weight pre-HTO to 2.3 x body weight 12-months post-HTO. Medial contact force peak 1 significantly reduced from 1.7 x body weight pre-HTO to 1.5 x body weight 12-months post-HTO. Second peak lateral knee contact force significantly increased from 0.9 body weight pre-HTO to 1.1 x body weight 12-months post-HTO. Furthermore, this study found very strong correlations between EKAM1 and medial KCF1 pre-HTO (r=0.85) as well as post-HTO (r=0.91). There was a significantly moderate relationship between EKAM2 and medial KCF2 pre-HTO (r=0.625). Conclusion. HTO significantly reduced overall and medial KCF during the first half of stance whilst increasing second half of stance peak lateral knee contact force. This study demonstrated a strong relationship between EKAM peaks and respective medial KCF peaks, supporting the usefulness of EKAM as a surrogate measure of medial compartment tibiofemoral contact forces. This demonstrates HTO successfully offloads the tibiofemoral joint overall, as well as offloading the medial compartment


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 35 - 35
17 Nov 2023
Timme B Biant L McNicholas M Tawy G
Full Access

Abstract. Objectives. Little is known about the impact of cartilage defects on knee joint biomechanics. This investigation aimed to determine the gait characteristics of patients with symptomatic articular cartilage lesions of the knee. Methods. Gait analyses were performed at the Regional North-West Joint Preservation Centre. Anthropometric measurements were obtained, then 16 retroreflective markers representing the Plug-in-Gait biomechanical model were placed on pre-defined anatomical landmarks. Participants walked for two minutes at a self-selected speed on a treadmill on a level surface, then for 2 minutes downhill. A 15-camera motion-capture system recorded the data. Knee kinematics were exported into Matlab to calculate the average kinematics and spatiotemporal parameters per patient across 20 gait cycles. Depending on the normality of the data, paired t-tests or Wilcoxon ranked tests were performed to compare both knees (α = 0.05). Results. 20 patients participated; one of whom has bilateral cartilage defects. All 20 data sets were analysed for level walking; 18 were analysed for downhill walking. On a level surface, patients walked at an average speed of 3.1±0.8km/h with a cadence of 65.5±15.3 steps/minute. Patients also exhibited equal step lengths (0.470±0.072m vs 0.471±0.070m: p=0.806). Downhill, the average walking speed was 2.85±0.5km/h with a cadence of 78.8±23.1 steps/minute and step lengths were comparable (0.416±0.09m vs 0.420±0.079m: p=0.498). During level walking, maximum flexion achieved during swing did not differ between knees (54.3±8.6° vs 55.5±11.0°:p=0.549). Neither did maximal extension achieved at heel strike (3.1±5.7° vs 5.4±4.7°:p=0.135). On average, both knees remained in adduction throughout the gait cycle, with the degree of adduction greater in flexion in the operative knee. However, differences in maximal adduction were not significant (22.4±12.4° vs 18.7±11.0°:p=0.307). Maximal internal-external rotation patterns were comparable in stance (0.9±7.7° vs 3.5±9.8°: p=0.322) and swing (7.7±10.9° vs 9.8±8.3°:p=0.384). During downhill walking, maximum flexion also did not differ between operative and contralateral knees (55.38±10.6° vs 55.12±11.5°:p=0.862), nor did maximum extension at heel strike (1.32±6.5° vs 2.73±4.5°:p=0.292). No significant difference was found between maximum adduction of both knees (15.87±11.0° vs 16.78±12.0°:p=0.767). In stance, differences in maximum internal-external rotation between knees were not significant (5.39±10.7° vs 6.10±11.8°:p=0.836), nor were they significant in swing (7.69±13.3° vs 7.54±8.81°:p=0.963). Conclusions. Knee kinematics during level and downhill walking were symmetrical in patients with a cartilage defect of the knee, but an increased adduction during flexion in the operative knee may lead to pathological loading across the medial compartment of the knee during high flexion activities. Future work will investigate this further and compare the data to a healthy young population. We will also objectively assess the functional outcome of this joint preservation surgery to monitor its success. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 76 - 76
11 Apr 2023
Petersen E Rytter S Koppens D Dalsgaard J Bæk Hansen T Larsen NE Andersen M Stilling M
Full Access

In an attempt to alleviate symptoms of the disease, patients with knee osteoarthrosis (KOA) frequently alter their gait patterns. Understanding the underlying pathomechanics and identifying KOA phenotypes is essential for improving treatments. We aimed to investigate altered kinematics in patients with KOA to identify subgroups. Sixty-six patients with symptomatic KOA scheduled for total knee arthroplasty and 12 age-matched healthy volunteers with asymptomatic knees were included. We used k-means to separate the patients based on dynamic radiostereometric assessed knee kinematics. Ligament lesions, KOA score, and clinical outcome were assessed by magnetic resonance imaging, radiographs, and patient reported outcome measures, respectively. We identified four clusters that were supported by clinical characteristics. Compared with the healthy group; The flexion group (n=20): revealed increased flexion, greater adduction, and joint narrowing and consisted primarily of patients with medial KOA. The abduction group (n=17): revealed greater abduction, joint narrowing and included primarily patients with lateral KOA. The anterior draw group (n=10): revealed greater anterior draw, external tibial rotation, lateral tibial shift, adduction, and joint narrowing. This group was composed of patients with medial KOA, some degree of anterior cruciate ligament lesion and the greatest KOA score. The external rotation group (n=19): revealed greater external tibial rotation, lateral tibial shift, adduction, and joint narrowing while no anterior draw was observed. This group included primarily patients with medial collateral and posterior cruciate ligament lesions. Patients with KOA can, based on their gait patterns, be classified into four subgroups, which relate to their clinical characteristics. The findings add to our understanding of associations between disease pathology characteristics in the knee and the pathomechanics in patients with KOA. A next step is to investigate if patients in the pathomechanic clusters have different outcomes following total knee arthroplasty


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 8 - 8
11 Apr 2023
Piet J Vancleef S Mielke F Van Nuffel M Orozco G Korhonen R Lories R Aerts P Van Wassenbergh S Jonkers I
Full Access

Altered mechanical loading is a widely suggested, but poorly understood potential cause of cartilage degeneration in osteoarthritis. In rodents, osteoarthritis is induced following destabilization of the medial meniscus (DMM). This study estimates knee kinematics and contact forces in rats with DMM to gain better insight into the specific mechanisms underlying disease development in this widely-used model. Unilateral knee surgery was performed in adult male Sprague-Dawley rats (n=5 with DMM, n=5 with sham surgery). Radio-opaque beads were implanted on their femur and tibia. 8 weeks following knee surgery, rat gait was recorded using the 3D²YMOX setup (Sanctorum et al. 2019, simultaneous acquisition of biplanar XRay videos and ground reaction forces). 10 trials (1 per rat) were calibrated and processed in XMALab (Knörlein et al. 2016). Hindlimb bony landmarks were labeled on the XRay videos using transfer learning (Deeplabcut, Mathis et al. 2019; Laurence-Chasen et al. 2020). A generic OpenSim musculoskeletal model of the rat hindlimb (Johnson et al. 2008) was adapted to include a 3-degree-of-freedom knee. Inverse kinematics, inverse dynamics, static optimization of muscle forces, and joint reaction analysis were performed. In rats with DMM, knee adduction was lower compared to sham surgery. Ground reaction forces were less variable with DMM, resulting in less variability in joint external moments. The mediolateral ground reaction force was lower, resulting in lower hip adduction moment, thus less force was produced by the rectus femoris. Rats with DMM tended to break rather than propel, resulting in lower hip flexion moment, thus less force was produced by the semimembranosus. These results are consistent with lower knee contact forces in the anteroposterior and axial directions. These preliminary data indicate no overloading of the knee joint in rats with DMM, compared with sham surgery. We are currently expanding our workflow to finite element analysis, to examine mechanical cues in the cartilage of these rats (Fig1G)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 95 - 95
14 Nov 2024
Machain TC Kharchenko A Hostettler R Lippl J Mouthuy PA
Full Access

Introduction. Supraspinatus tears comprise most rotator cuff injuries, the leading cause of shoulder pain and an increasing problem with ageing populations. Surgical repair of considerable or persistent damages is customary, although not invariably successful. Tissue engineering presents a promising alternative to generate functional tissue constructs with improved healing capacities. This study explores tendon tissue constructs’ culture in a platform providing physiological mechanical stimulation and reports on the effect of different loading regimes on the viability of human tendon cells. Method. Porcine decellularized tendon scaffolds were fixed into flexible, self-contained bioreactor chambers, seeded with human tenocytes, allocated in triplicates to either static control, low (15±0.8Newtons [N]), medium (26±0.5N), or high (49±2.1N)-force-regime groups, connected to a perfusion system and cultured under standard conditions. A humanoid robotic arm provided 30-minute adduction/abduction stimulation to chambers daily over a week. A metabolic activity assay served to assess cell viability at four time points. Statistical significance = p<0.05. Result. One day after beginning mechanical stimulation, chambers in the medium and high-force regimes displayed a rise in metabolic activity by 3% and 5%, respectively. By the last experimental day, all mechanical stimulation regimes had induced an augment in cell viability (15%, 57% and 39% with low, medium, and high loads, respectively) matched against the static controls. Compared to all other conditions, the medium-force regime prompted an increased relative change in metabolic activity for every time point set against day one (p<0.05). Conclusion. Human tenocytes’ viability reflected by metabolic activity in a physiologically relevant bioreactor system is enhanced by loading forces around 25N when mechanically stimulating using adduction/abduction motions. Knowing the most favourable load regime to stimulate tenocyte growth has informed the ongoing exploration of the distinctive effect of different motions on tendon regeneration towards engineering tissue grafts. This work was supported by the Engineering and Physical Sciences Research Council EP/S003509/1


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 148 - 148
4 Apr 2023
Jørgensen P Kaptein B Søballe K Jakobsen S Stilling M
Full Access

Dual mobility hip arthroplasty utilizes a freely rotating polyethylene liner to protect against dislocation. As liner motion has not been confirmed in vivo, we investigated the liner kinematics in vivo using dynamic radiostereometry. 16 patients with Anatomical Dual Mobility acetabular components were included. Markers were implanted in the liners using a drill guide. Static RSA recordings and patient reported outcome measures were obtained at post-op and 1-year follow-up. Dynamic RSA recordings were obtained at 1-year follow-up during a passive hip movement: abduction/external rotation, adduction/internal rotation (modified FABER-FADIR), to end-range and at 45° hip flexion. Liner- and neck movements were described as anteversion, inclination and rotation. Liner movement during modified FABER-FADIR was detected in 12 of 16 patients. Median (range) absolute liner movements were: anteversion 10° (5–20), inclination 6° (2–12), and rotation 11° (5–48) relative to the cup. Median absolute changes in the resulting liner/neck angle (small articulation) was 28° (12–46) and liner/cup angle (larger articulation) was 6° (4–21). Static RSA showed changes in median (range) liner anteversion from 7° (-12–23) postoperatively to 10° (-3–16) at 1-year follow-up and inclination from 42 (35–66) postoperatively to 59 (46–80) at 1-year follow-up. Liner/neck contact was associated with high initial liner anteversion (p=0.01). The polyethylene liner moves over time. One year after surgery the liner can move with or without liner/neck contact. The majority of movement is in the smaller articulation between head and liner


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 35 - 35
1 Mar 2021
Ng G Bankes M Daou HE Beaulé P Cobb J Jeffers J
Full Access

Abstract. OBJECTIVES. Although surgical periacetabular osteotomy (PAO) for hip dysplasia aims to optimise acetabular coverage and restore hip function, it is unclear how surgery affects capsular mechanics and joint stability. The purpose was to examine how the reoriented acetabular coverage affects capsular mechanics and joint stability in dysplastic hips. METHODS. Twelve cadaveric dysplastic hips (n = 12) were denuded to the capsule and mounted onto a robotic tester. The robot positioned each hip in multiple flexion angles (Extension, Neutral 0°, Flexion 30°, Flexion 60°, Flexion 90°) and performed internal-external rotations and abduction-adduction to 5 Nm in each rotational or planar direction. Each hip underwent a PAO, preserving the capsule, and was retested postoperatively in the robot. Paired sample t-tests compared the range of motion before and after PAO surgery (CI = 95%). RESULTS. Pre-operatively, the dysplastic hips demonstrated large ranges of internal-external rotations and abduction-adduction motions throughout all flexion positions. Post-operatively, the PAO slackenend the anterosuperior capsule and tightened the inferior capsule. This increased external rotation in Flexion 60° and Flexion 90° (∆. ER. = +16 and +23%) but provided lateral coverage to decrease internal rotation at Flexion 90° (∆. IR. = –15%). The PAO also reduced abduction throughout, but increased adduction in Neutral 0°, Flexion 30°, and Flexion 60° (∆. ADD. = +34, +30%, +29% respectively). CONCLUSIONS. The PAO provided crucial osseous structural coverage to the femoral head, decreasing hypermobility and adverse loading at extreme hip flexion-extension. However, it also slackened the anterosuperior capsule and increased adduction and external rotation, which may lead to ischiofemoral impingement and adductor irritations. Capsular instability may be secondary to acetabular undercoverage, thus capsular alteration may be warranted for larger corrections or rotational osteotomies. To preserve native hip and delay joint degeneration, it is crucial to preserve capsule and elucidate amount of reorientation needed without causing iatrogenic instability. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 50 - 50
1 Jan 2017
Rutherford M Hill J Beverland D Lennon A Dunne N
Full Access

Anterior-posterior (AP) x-rays are routinely taken following total hip replacement to assess placement and orientation of implanted components. Pelvic orientation at the time of an AP x-ray can influence projected implant orientation. 1. However, the extent of pelvic orientation varies between patients. 2. Without compensation for patient specific pelvic orientation, misleading measurements for implant orientation may be obtained. These measurements are used as indicators for post-operative dislocation stability and range of motion. Errors in which could result in differences between expectations and the true outcome achieved. The aim of this research was to develop a tool that could be utilised to determine pelvic orientation from an AP x-ray. An algorithm based on comparing projections of a statistical shape model of the pelvis (n=20) with the target X-ray was developed in MATLAB. For each iteration, the average shape was adjusted, rotated (to account for patient-specific pelvic orientation), projected onto a 2D plane, and the simulated outline determined. With respect to rotation, the pelvis was allowed to rotate about its transverse axis (pelvic flexion/extension) and anterior-posterior axis (pelvic adduction/abduction). Minimum root mean square error between the outline of the pelvis from the X-ray and the projected shape model outline was used to select final values for flexion and adduction. To test the algorithm, virtual X-rays (n=6) of different pelvis in known orientations were created using the algorithm described by Freud et al. 3. The true pelvic orientation for each case was randomly generated. Angular error was defined as the difference between the true pelvic orientation and that selected by the algorithm. Initial testing has exhibited similar accuracy in determining true pelvic flexion (x̄error = 2.74°, σerror=±2.21°) and true pelvic adduction (x̄error = 2.38°, σerror=±1.76°). For both pelvic flexion and adduction the maximum angular error observed was 5.62°. The minimum angular error for pelvic flexion was 0.37°, whilst for pelvic adduction it was 1.08°. Although the algorithm is still under development, the low mean, maximum, and standard deviations of error from initial testing indicate the approach is promising. Ongoing work will involve the use of additional landmarks for registration and training shapes to improve the shape model. This tool will allow surgeons to more accurately determine true acetabular orientation relative to the pelvis without the use of additional x-ray views or CT scans. In turn, this will help improve diagnoses of post-operative range of motion and dislocation stability


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 55 - 55
1 Jan 2017
Rivière C Girerd D Ollivier M Argenson J Parratte S
Full Access

A principle of Total Knee Arthroplasty (TKA) is to achieve a neutral standing coronal alignment of the limb (Hip Knee Ankle (HKA) angle) to reduce risks of implant loosening, reduce polyethylene wear, and optimise patella tracking. Several long-term studies have questioned this because the relationship between alignment and implant survivorship is weaker than previously reported. We hypothesize standing HKA poorly predicts implant failure because it does not predict dynamic HKA, dynamic adduction moment, and loading of the knee during gait. Therefore, the aim of our study is to assess the relationship between the standing (or static) and the dynamic (gait activity) HKAs. We performed a prospective study on a cohort of 35 patients (35 knees) who were treated with a posterior-stabilized TKA for primary osteoarthritis between November 2012 and January 2013. Three months after surgery each patient had a standardized digital full-leg coronal radiographs and was classified as neutrally aligned TKA (17 patients), varus aligned (9 patients), and valgus aligned (4 patients). Patients then performed a gait analysis for level walking and dynamic HKA and adduction moment during the stance phase of gait were measured. We found standing HKA having a moderate correlation with the peak dynamic varus (r=0.318, p=0.001) and the mean and peak adduction moments (r=0.31 and r=-0.352 respectively). In contrast we did not find a significant correlation between standing HKA and the mean dynamic coronal alignment (r=0.14, p=0.449). No significant differences were found for dynamic frontal parameters (dynamic HKA and adduction moment) between patients defined as neutrally aligned or varus aligned. In our practice, the standing HKA after TKA was of little value to predict dynamic behaviour of the limb during gait. These results may explain why standing coronal alignment after TKA may have limited influence on long term implant fixation and wear


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 180 - 180
1 Jul 2014
Sultan J Chapman G Jones R
Full Access

Summary. This study shows a significant reduction in knee adduction moment in patients with medial compartment osteoarthritis, in both the symptomatic and asymptomatic knees. Long-term follow-up studies are required to confirm the effect of treating the asymptomatic side on disease progression. Background. The knee is the commonest joint to be affected by osteoarthritis, with the medial compartment commonly affected. Knee osteoarthritis is commonly bilateral, yet symptoms may initially present unilaterally. Higher knee adduction moment has been associated with the development and progression of medial compartment knee osteoarthritis. The aim of this study was to assess the effect of lateral wedge insoles on the asymptomatic knee of patients with unilateral symptoms of medial compartment knee osteoarthritis. Methods. Twenty patients were assessed using a 3D optoelectronic tracking system, with 16 infrared camera, passive markers and four force platforms. Three different insoles were tested; a standard control shoe, the Boston lateral wedge insole (inclined at 5° throughout the full length of the insole) and the Salford insole (inclined at 5° throughout the full length of the insole, with medial arch support). A minimum of 5 trials per each insole were used. Kinetic and kinematic data were collected and processed using Qualysis Track Manager ® and Visual 3D™. Results. There was a significant reduction in knee adduction moment for both the Salford and Boston insoles as compared to the control shoe. This was 9.5–14.2% for the asymptomatic side, and 5.8–10.7% for the symptomatic side for the Salford and Boston insoles respectively. Although the reduction was larger on the asymptomatic side, this was not statistically significant. Patients reported significant reduction in pain with both Salford and Boston insoles as compared to the control shoe, and found the Salford insole to be the most comfortable. Stride length and walking speed was significantly higher with the Salford insole. Conclusions. This study confirms the effect of lateral wedge insoles on reducing knee adduction moment in patients with medial compartment osteoarthritis, in both the symptomatic and asymptomatic knees. Long-term follow-up studies are required to confirm the effect of treating the asymptomatic side on disease progression


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 99 - 99
1 Aug 2012
Whatling G Holt C Brakspear K Roberts H Watling D Kotwal R Wilson C Williams R Metcalfe A Sultan J Mason D
Full Access

BACKGROUND. High tibial Osteotomy (HTO) realigns the forces in the knee to slow the progression of osteoarthritis. This study relates the changes in knee joint biomechanics during level gait to glutamate signalling in the subchondral bone of patients pre and post HTO. Glutamate transmits mechanical signals in bone and activates glutamate receptors to influence inflammation, degeneration and nociception in arthritic joints. Thus glutamate signalling is a mechanism whereby mechanical load can directly modulate joint pathology and pain. METHODS. 3D motion analysis was used to assess level gait prior to HTO (n=5) and postoperatively (n=2). A biomechanical model of each subject was created in Visual3D (C-motion. Inc) and used for biomechanical analysis. Gene expression was analysed by RT-PCR from bone cores from anterior and posterior drill holes, subdivided according to medial or lateral proximal tibia from HTO patients (n=5). RESULTS. Knee adduction moment is a clinical marker of medial compartment loading. Pre-operatively the mean peak adduction moment was 3.8 ± 1.8 % body weight times height (BW.h). One subject maintained a consistent peak adduction moment pre (1.8 %BW.h) and post-operatively (1.9 %BW.h) with a reduction in the second moment peak. Another subjects peak adduction moment was significantly reduced from 6.7 %BW.h pre-operatively to 1.4 %BW.h postoperatively. GAPDH, osteocalcin, EAAT-1, EAAT1ex9skip, NR2A, KA1, OPG and RANKL mRNA expression was detected in HTO bone cores. In one patient, where HTO reduced medial compartment loading, differential expression of EAAT1ex9skip and KA1 was observed in pre and post HTO bone cores. CONCLUSION. Changes in knee adduction moments following HTO have been identified indicating altered medial compartmental loading. This is being investigated further in larger cohorts in a 5 year study. We have demonstrated that glutamate transporters and receptors are expressed in human subchondral bone and that glutamate transporter mRNA expression may vary after HTO surgery. In arthritis, glutamate concentrations in the synovial fluid are increased, activating receptors in joint tissues and nerves to influence pathology and nociception. Thus glutamatergic signals represent a direct mechanism linking mechanical loading through the joint to pathology and pain in human arthritis


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 58 - 58
1 Mar 2021
Kinghorn A Bowd J Whatling G Wilson C Mason D Holt C
Full Access

Abstract. OBJECTIVES. Valgus high tibial osteotomy (HTO) represents an effective treatment for patients with medial compartment osteoarthritis (OA) in a varus knee. However, the mechanisms which cause this clinical improvement are unclear. Previous studies suggest a wider stance gait can reduce medial compartment loading via reduction in the external knee adduction moment (KAM); a measure implicated in progression of medial compartment OA. This study aimed to measure whether valgus HTO is associated with a postoperative increase in static stance width. METHODS. 32 patients, recruited in the Biomechanics and Bioengineering Centre Versus Arthritis HTO study, underwent valgus (medial opening wedge) HTO. Weightbearing pre- and post- operative radiographs were taken showing both lower limbs. The horizontal distance, measured from a fixed point on the right talus to the corresponding point on the left, was divided by the talus width to give a standardised “stance width” for each radiograph. The difference between pre- and post- operative stance width was compared for each patient using a paired sample t-test. RESULTS. Preoperatively, mean stance was 4.00 talar-widths but postoperatively this increased to 5.41. This mean increase of 1.42 talar-widths was statistically significant (p=0.001) and represents a mean proportional increase in stance width of 35.5% following HTO. Of the 32 patients, 23 showed increased stance width and 9 decreased (range −4.64 to 6.00 talar-widths). CONCLUSIONS. These findings indicate an association of frontal plane surgical realignment at the proximal tibia via a medial opening wedge HTO with an increased stance width on postoperative radiographs. Considering both wider stance gait and HTO have been shown to affect the progression of medial compartment OA, these results may explain one mechanism contributing to the efficacy of HTO surgery. However, the range of changes in stance width suggests significant variability in how patients adapt at a whole-limb and whole-body level following HTO. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 17 - 17
1 Jan 2017
Deluzio K Brandon S Clouthier A Hassan E Campbell A
Full Access

Valgus unloader knee braces are a conservative treatment option for medial compartment knee osteoarthritis (OA). These braces are designed to reduce painful, and potentially injurious compressive loading on the damaged medial side of the joint through application of a frontal-plane abduction moment. While some patients experience improvements in pain, function, and joint loading, others see little to no benefit from bracing [1]. Previous biomechanical studies investigating the mechanical effectiveness of bracing have been limited in either their musculoskeletal detail [2] or incorporation of altered external joint moments and forces [3]. The first objective was to model the relative contributions of gait dynamics, muscle forces, and the external brace abduction moment to reducing medial compartment knee loads. The second objective was to determine what factors predict the effectiveness of the valgus unloading brace. Seventeen people with knee OA (8 Female age 54.4 +/− 4.2, BMI 30.00 +/− 4.0 kg/m. 2. , Kellgren-Lawrence range of 1–4 with med. = 3) and 20 healthy age-matched controls participated in this study which was approved by the institutional ethics review board. Subjects walked across a 20m walkway with and without a Donjoy OA Assist knee brace while marker trajectories, ground reaction forces, and lower limb electromyography were recorded. The external moment applied by the brace was estimated by multiplying the brace deformation by is pre-determined brace-stiffness. For each subject, a representative stride was selected for each brace condition. A generic musculokeletal model with two legs, a torso, and 96 muscles was modified to include subject-specific frontal plane alignment and medial and lateral contact locations [4]. Muscle forces, and tibiofemoral contact forces were estimated using static optimization [4]. We defined brace effectiveness as the difference in the peak medial contact force between the braced and the unbraced conditions. A stepwise regression analysis was performed to predict brace effectiveness based on: X-ray frontal plane alignment, medial joint space, KL grade, mass, WOMAC scores, unbraced walking speed, trunk, hip and knee joint angles and moments. The OA Assist brace reduced medial joint loading by approximately 0.1 to 0.2 BW or roughly 10%, during stance. This decrease was primarily due to the external brace abduction moment, and not changes in gait dynamics, or muscle forces. The brace effectiveness could be predicted (R. 2. =0.77) by the KL grade, and the magnitude of the hip adduction moment in early stance (unbraced). The brace was more effective for those that had larger hip adduction moments and for those with more severe OA. The valgus knee brace was found to reduce the medial joint contact force by approximately 10% as estimated using a musculoskeletal model. Bracing resulted in a greater reduction in joint contact force for those who had more severe OA while still maintaining a hip adduction moment similar to that of healthy controls


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 23 - 23
1 Mar 2021
Schopper C Zderic I Menze J Muller D Rocci M Knobe M Shoda E Richards G Gueorguiev B Stoffel K
Full Access

Femoral neck fractures account for half of all hip fractures and are recognized as a major public health problem associated with a high socioeconomic burden. Whilst internal fixation is preferred over arthroplasty for physiologically younger patients, no consensus exists about the optimal fixation device yet. The recently introduced implant Femoral Neck System (FNS) (DePuy Synthes, Zuchwil, Switzerland) was developed for dynamic fixation of femoral neck fractures and provides angular stability in combination with a minimally invasive surgical technique. Alternatively, the Hansson Pin System (HPS) (Swemac, Linköping, Sweden) exploits the advantages of internal buttressing. However, the obligate peripheral placement of the pins, adjacent to either the inferior or posterior cortex, renders the instrumentation more challenging. The aim of this study was to evaluate the biomechanical performance of FNS versus HPS in a Pauwels II femoral neck fracture model with simulated posterior comminution. Forty-degree Pauwels II femoral neck fractures AO 31-B2.1 with 15° posterior wedge were simulated in fourteen paired fresh-frozen human cadaveric femora, followed by instrumentation with either FNS or HPS in pair-matched fashion. Implant positioning was quantified by measuring the shortest distances between implant and inferior cortex (DI) as well as posterior cortex (DP) on anteroposterior and axial X-rays, respectively. Biomechanical testing was performed in 20° adduction and 10° flexion of the specimens in a novel setup with simulated iliopsoas muscle tension. Progressively increasing cyclic loading was applied until construct failure. Interfragmentary femoral head-to-shaft movements, namely varus deformation, dorsal tilting and rotation around the neck axis were measured by means of motion tracking and compared between the two implants. In addition, varus deformation and dorsal tilting were correlated with DI and DP. Cycles to 5/10° varus deformation were significantly higher for FNS (22490±5729/23007±5496) versus HPS (16351±4469/17289±4686), P=0.043. Cycles to 5/10° femoral head dorsal tilting (FNS: 10968±3052/12765±3425; HPS: 12244±5895/13357±6104) and cycles to 5/10° rotation around the femoral neck axis (FNS: 15727±7737/24453±5073; HPS: 15682±10414/20185±11065) were comparable between the implants, P≥0.314. For HPS, the outcomes for varus deformation and dorsal tilting correlated significantly with DI and DP, respectively (P=0.025), whereas these correlations were not significant for FNS (P≥0.148). From a biomechanical perspective, by providing superior resistance against varus deformation and performing in a less sensitive way to variations in implant placement, the angular stable Femoral Neck System can be considered as a valid alternative to the Hansson Pin System for the treatment of Pauwels II femoral neck fractures


Bone & Joint Research
Vol. 6, Issue 8 | Pages 514 - 521
1 Aug 2017
Mannering N Young T Spelman T Choong PF

Objectives. Whilst gait speed is variable between healthy and injured adults, the extent to which speed alone alters the 3D in vivo knee kinematics has not been fully described. The purpose of this prospective study was to understand better the spatiotemporal and 3D knee kinematic changes induced by slow compared with normal self-selected walking speeds within young healthy adults. Methods. A total of 26 men and 25 women (18 to 35 years old) participated in this study. Participants walked on a treadmill with the KneeKG system at a slow imposed speed (2 km/hr) for three trials, then at a self-selected comfortable walking speed for another three trials. Paired t-tests, Wilcoxon signed-rank tests, Mann-Whitney U tests and Spearman’s rank correlation coefficients were conducted using Stata/IC 14 to compare kinematics of slow versus self-selected walking speed. Results. Both cadence and step length were reduced during slow gait compared with normal gait. Slow walking reduced flexion during standing (10.6° compared with 13.7°; p < 0.0001), and flexion range of movement (ROM) (53.1° compared with 57.3°; p < 0.0001). Slow walking also induced less adduction ROM (8.3° compared with 10.0°; p < 0.0001), rotation ROM (11.4. °. compared with 13.6. °. ; p < 0.0001), and anteroposterior translation ROM (8.5 mm compared with 10.1 mm; p < 0.0001). Conclusion. The reduced spatiotemporal measures, reduced flexion during stance, and knee ROM in all planes induced by slow walking demonstrate a stiff knee gait, similar to that previously demonstrated in osteoarthritis. Further research is required to determine if these characteristics induced in healthy knees by slow walking provide a valid model of osteoarthritic gait. Cite this article: N. Mannering, T. Young, T. Spelman, P. F. Choong. Three-dimensional knee kinematic analysis during treadmill gait: Slow imposed speed versus normal self-selected speed. Bone Joint Res 2017;6:514–521. DOI: 10.1302/2046-3758.68.BJR-2016-0296.R1


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 42 - 42
1 Dec 2020
Özkan Ö Karaçoban L Dönmez G Korkusuz F
Full Access

Adductor strain is a common injury among football players. The adductor muscle group contains the three adductor muscles. (adductor longus, magnus and brevis) Adductor longus muscle is a triangular-shaped long muscle. This muscle originates from the superior ramus of the pubic bone and inserted into the middle part of the linea aspera. Adductor longus muscle is the most commonly injured muscle of adductors. Sudden acceleration, jumping, stretching, and kicking the ball are common causes of an adductor injury. Adductor muscle strains can result in missed playing time for football players. We present a 26-year-old man soccer player with pain in the left groin and proximal thigh. The symptoms had started during training and after kicking the ball with left foot (dominant side), he felt an acute pain in the groin region and proximal thigh. Despite the injury, he managed to finish the training. The team physician examined the patient immediately after training. The range of motion of both hip joints was in normal ranges and mild pain with adduction. There was a palpable mass at the inner proximal thigh during contraction of adductor muscles. There was no history of groin pain or adductor problems before this injury. Conventional radiographs showed no osseous abnormalities. 36 hours after the injury, MRI revealed acute grade IIB strain in the left adductor longus muscle, including both superior and inferior parts of the muscle. A hematoma was observed in the superior part of the left adductor muscle, with a craniocaudal length of 42 millimeters. There was an adductor muscle strain with hyperintensity extending for a craniocaudal length of approximately 12 centimeters involving more than 50% crosses sectional diameter of the muscle belly. Conservative treatment started immediately, consisting of cold therapy and soft tissue massage. Compression of the injured tissue using a 15-cm elastic bandage roll is done to limit bleeding and provide support. Iced water machine (Game Ready) was used. The team physician examined the player every day and prescribed physiotherapy protocol daily. Additionally, short interval follow-up MRI is used to evaluate the injury. (After 7 and 14 days of the injury) No injection was performed. The player is able to return to play immediately, despite MRI's strain images. The player started straight running 5 days later and joined to team training 8 days later and played 90 minutes-league-match 12 days after injury without any pain. No injection was performed. The player is able to return to play immediately, despite MRI's strain images. The player started straight running 5 days later and joined to team training 8 days later and played 90 minutes-league-match 12 days after injury without any pain. MRI is a useful technique in diagnosing trauma in football players presenting with groin pain. In this case, to estimate time-to-return-to-play, MRI alone is not strong evidence. MRI is a good option for follow up, but anamnesis and clinical examination is not inferior to diagnostic imaging


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 68 - 68
1 Dec 2020
Taylan O Slane J Ghijselings I Delport HP Scheys L
Full Access

Poor soft tissue balance in total knee arthroplasty (TKA) is one of the most primary causes of dissatisfaction and reduced joint longevity, which are associated with postoperative instability and early implant failure. 1. Therefore, surgical techniques, including mechanical instruments and 3-D guided navigation systems, in TKA aim to achieve optimum soft tissue balancing in the knee to improve postoperative outcome. 2. Patella-in-Place balancing (PIPB) is a novel technique which aims to restore native collateral ligament behaviour by preserving the original state without any release. Moreover, reduction of the joint laxity compensates for the loss of the visco-elastic properties of the cartilage and meniscus. Following its clinical success, we aimed to evaluate the impact of the PIPB technique on collateral ligament strain and laxity behaviour, with the hypothesis that PIPB would restore strains in the collateral ligaments. 3. . Eight fresh-frozen cadaveric legs were obtained (KU Leuven, Belgium, H019 2015-11-04) and CT images were acquired while rigid marker frames were affixed into the femur, and tibia for testing. After carefully removing the soft tissues around the knee joint, while preserving the joint capsule, ligaments, and tendons, digital extensometers (MTS, Minnesota, USA) were attached along the length of the superficial medial collateral ligament (MCL) and lateral collateral ligament (LCL). A handheld digital dynamometer (Mark-10, Copiague, USA) was used to apply an abduction or adduction moment of 10 Nm at fixed knee flexion angles of 0°, 30°, 60° and 90°. A motion capture system (Vicon Motion Systems, UK) was used to record the trajectories of the rigid marker frames while synchronized strain data was collected for MCL/LCL. All motion protocols were applied following TKA was performed using PIPB with a cruciate retaining implant (Stryker Triathlon, MI, USA). Furthermore, tibiofemoral kinematics were calculated. 4. and combined with the strain data. Postoperative tibial varus/valgus stresses and collateral ligament strains were compared to the native condition using the Wilcoxon Signed-Rank Test (p<0.05). Postoperative tibial valgus laxity was lower than the native condition for all flexion angles. Moreover, tibial valgus of TKA was significantly different than the native condition, except for 0° (p=0.32). Although, tibial varus laxity of TKA was lower than the native at all angles, significant difference was only found at 0° (p=0.03) and 90° (p=0.02). No significant differences were observed in postoperative collateral ligament strains, as compared to the native condition, for all flexion angles, except for MCL strain at 30° (p=0.02) and 60° (p=0.01). Results from this experimental study supported our hypotheses, barring MCL strain in mid-flexion, which might be associated with the implant design. Restored collateral ligament strains with reduced joint laxity, demonstrated by the PIPB technique in TKA in vitro, could potentially restore natural joint kinematics, thereby improving patient outcomes. In conclusion, to further prove the success of PIPB, further biomechanical studies are required to evaluate the success rate of PIPB technique in different implant designs


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 25 - 25
1 Jan 2017
Shih K Lin C Lu H Lin C Lu T
Full Access

Total knee replacements (TKR) have been the main choice of treatment for alleviating pain and restoring physical function in advanced degenerative osteoarthritis of the knee. Recently, there has been a rising interest in minimally invasive surgery TKR (MIS-TKR). However, accurate restoration of the knee axis presents a great challenge. Patient-specific-instrumented TKR (PSI-TKR) was thus developed to address the issue. However, the efficacy of this new approach has yet to be determined. The purpose of the current study was thus to measure and compare the 3D kinematics of the MIS-TKR and PSI-TKR in vivo during sit-to-stand using a 3D fluoroscopy technology. Five patients each with MIS-TKR and PSI-TKR participated in the current study with informed written consent. Each subject performed quiet standing to define their own neutral positions and then sit-to-stand while under the surveillance of a bi-planar fluoroscopy system (ALLURA XPER FD, Philips). For the determination of the 3D TKR kinematics, the computer-aided design (CAD) model of the TKR for each subject was obtained from the manufacturer including femoral and tibial components and the plastic insert. At each image frame, the CAD model was registered to the fluoroscopy image via a validated 2D-to-3D registration method. The CAD model of each prosthesis component was embedded with a coordinate system with the origin at the mid-point of the femoral epicondyles, the z-axis directed to the right, the y-axis directed superiorly, and the x-axis directed anteriorly. From the accurately registered poses of the femoral and tibial components, the angles of the TKR were obtained following a z-x-y cardanic rotation sequence, corresponding to flexion/extension, adduction/abduction and internal/external rotation. During sit-to-stand the patterns and magnitudes of the translations were similar between the MIS-TKR and PSI-TKR groups, with posterior translations ranging from 10–20 mm and proximal translations from 29–31mm. Differences in mediolateral translations existed between the groups but the magnitudes were too small to be clinically significant. For angular kinematics, both groups showed close-to-zero abduction/adduction, but the PSI-TKR group rotated externally from an internally rotated position (10° of internal rotation) to the neutral position, while the MIS-TKR group maintained at an externally rotated position of less than 5° during the movement. During sit-to-stand both groups showed similar patterns and magnitudes in the translations but significant differences in the angular kinematics existed between the groups. While the MIS-TKR group maintained at an externally rotated position during the movement, the PSI-TKR group showed external rotations during knee extension, a pattern similar to the screw home mechanism in a normal knee, which may be related to more accurate restoration of the knee axis in the PSI-TKR group. A close-to-normal angular motion may be beneficial for maintaining a normal articular contact pattern, which is helpful for the endurance of the TKR. The current study was the first attempt to quantify the kinematic differences between PSI and non-PSI MIS. Further studies to include more subjects will be needed to confirm the current findings. More detailed analysis of the contact patterns is also needed


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 113 - 113
1 Jan 2017
Iranpour F
Full Access

Constitutional knee varus increases the risk of medial OA disease due to increase in the knee adduction moment and shifting of the mechanical axis medially. Hueter-Volkmann’s law states that the amount of load experienced by the growth plate during development influences the bone morphology. For this reason, heightened sports activity during growth is associated with constitutional varus due to added knee adduction moment. In early OA, X-rays often show a flattened medial femoral condyle extension facet (EF). However, it is unknown whether this is a result of osteoarthritic wear, creep deformation over decades of use, or an outcome of Hueter-Volkmann’s law during development. A larger and flattened medial EF can bear more weight, due to increased load distribution. However, a flattened EF may also extrude the meniscus, leading meniscus degeneration and joint failure. Therefore, this study aimed to investigate whether varus knees have flattened medial EFs of both femur and tibia in a cohort of patients with no signs yet of bony attrition. Segmentation and morphology analysis was conducted using Materialise software (version 8.0, Materialise Inc., Belgium). This study excluded knees with bony attrition of the EFs based on Ahlbäck criteria, intraoperative findings, and operation notes history. Standard reference frames were used for both the femur and tibia to ensure reliable and repeatable measurements. The hip-knee-angle (HKA) angle defined varus or valgus knee alignment. Femur: The femoral EFs and flexion facets (FFs) had best-fit spheres fitted with 6 repetitions. Tibia: The slopes of the antero-medial medial tibial plateau were approximated using lines. Results 72 knees met the inclusion and exclusion criteria. The average age was 59 ± 11 years. The youngest was 31 and the oldest 84 years. Thirty-three were male and 39 were female. There was good intra- and inter-observer reliability for EF sphere fitting. Femur: The results demonstrated that the medial femoral condyle EF is flattened in knees with constitutional varus, as measured by the Sphere Ratios between the medial and lateral EF (varus versus straight: p = 0.006), and in the scaled values for the medial EF sphere radius (varus versus straight: p = 0.005). There was a statistically significant, moderate and positive correlation between the medial femoral EF radius, and the medial femoral EF-FF AP offset. Tibia: There was a statistically significant difference between the steepness of the slopes of the medial tibial plateau EF in varus and valgus knees, suggesting varus knees have a less concave (flatter) medial EF. Conclusions In comparison to straight knees, varus knees have flattened medial EFs in both femur and tibia. As this was the case in knees with no evidence of bony attrition, this could mean flattened medial EFs may be a result of medial physis inhibition during development, due to Hueter-Volkmann’s law. Flattened medial EFs may increase load distribution in the medial compartment, but could also be a potential aetiology in primary knee OA due to over extrusion of the medial meniscus and edge loading