Advertisement for orthosearch.org.uk
Results 1 - 20 of 533
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 95 - 95
1 Jan 2016
O'Neill CK Molloy D Patterson C Beverland D
Full Access

Background. The current orthopaedic literature demonstrates a clear relationship between acetabular component positioning, polyethylene wear and risk of dislocation following Total Hip Arthroplasty (THA). Problems with edge loading, stripe wear and squeaking are also associated with higher acetabular inclination angles, particularly in hard-on-hard bearing implants. The important parameters of acetabular component positioning are depth, height, version and inclination. Acetabular component depth, height and version can be controlled with intra-operative reference to the transverse acetabular ligament. Control of acetabular component inclination, particularly in the lateral decubitus position, is more difficult and remains a challenge for the Orthopaedic Surgeon. Lewinnek et al described a ‘safe zone’ of acetabular component orientation: Radiological acetabular inclination of 40 ± 10° and radiological anteversion of 15 ± 10°. Accurate implantation of the acetabular component within the ‘safe zone’ of radiological inclination is dependent on operative inclination, operative version and pelvic position. Traditionally during surgery, the acetabular component has been inserted with an operative inclination of 45°. This assumes that patient positioning is correct and does not take into account the impact of operative anteversion or patient malpositioning. However, precise patient positioning in order to orientate acetabular components using this method cannot always be relied upon. Hill et al demonstrated a mean 6.9° difference between photographically simulated radiological inclination and the post-operative radiological inclination. The most likely explanation was felt to be adduction of the uppermost hemipelvis in the lateral decubitus position. The study changed the practice of the senior author, with target operative inclination now 35° rather than 40° as before, aiming to achieve a post-operative radiological inclination of 42° ± 5°. Aim. To determine which of the following three techniques of acetabular component implantation most accurately obtains a desired operative inclination of 35 degrees:. Freehand. Modified (35°) Mechanical Alignment Guide, or. Digital inclinometer assisted. Methods. 270 patients undergoing primary uncemented THA were randomised to one of the three methods of acetabular component implantation. Target operative inclination for all three techniques was 35°. Operative inclination was measured intra-operatively using both a digital inclinometer and stereophotogrammetric system. For both the freehand and Mechanical Alignment Guide implantation techniques, the surgeon was blinded to intra-operative digital inclinometer readings. Results. The freehand implantation technique had an operative inclination range of 25.2 – 43.2° (Mean 32.9°, SD 2.90°). The modified (35°) Mechanical Alignment Guide implantation technique had an operative inclination range of 29.3 – 39.3° (Mean 33.7°, SD 1.89°). The digital inclinometer assisted technique had an operative inclination range of 27.5 – 37.5° (Mean 34.0°, SD 1.57°). Mean unsigned deviation from target 35° operative inclination was 2.92° (SD 2.03) for the freehand implantation technique, 1.83° (SD 1.41) for the modified (35°) Mechanical Alignment Guide implantation technique and 1.28° (SD 1.33) for the digital inclinometer assisted technique. Conclusions. When aiming for 35° of operative inclination, the digital inclinometer technique appears more accurate than either the freehand or Mechanical Alignment Guide techniques. In order to improve accuracy of acetabular component orientation during Total Hip Arthroplasty, the surgeon should consider using such a technique


Abstract. Optimal acetabular component position in Total Hip Arthroplasty is vital for avoiding complications such as dislocation and impingement, Transverse acetabular ligament (TAL) have been shown to be a reliable landmark to guide optimum acetabular cup position. Reports of iliopsoas impingement caused by acetabular components exist. The Psoas fossa (PF) is not a well-regarded landmark for Component positioning. Our aim was to assess the relationship of the TAL and PF in relation to Acetabular Component positioning. A total of 22 cadavers were implanted on 4 occasions with the an uncemented acetabular component. Measurements were taken between the inner edge of TAL and the base of the acetabular component and the distance between the lower end of the PF and the most medial end of TAL. The distance between the edge of the acetabular component and TAL was a mean of 1.6cm (range 1.4–18cm). The distance between the medial end of TAL and the lowest part of PF was a mean of 1.cm (range 1,3–1.8cm) It was evident that the edge of PF was not aligned with TAL. Optimal acetabular component position is vital to the longevity and outcome following THA. TAL provides a landmark to guide acetabular component position. However we feel the PF is a better landmark to allow appropriate positioning of the acetabular component inside edge of the acetabulum inside the bone without exposure of the component rim and thus preventing iliopsoas impingement at the psoas notch and resultant groin pain


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_9 | Pages 5 - 5
1 Jun 2021
Muir J Dundon J Paprosky W Schwarzkopf R Barlow B Vigdorchik J
Full Access

Introduction. Re-revision due to instability and dislocation can occur in up to 1 in 4 cases following revision total hip arthroplasty (THA). Optimal placement of components during revision surgery is thus critical in avoiding re-revision. Computer-assisted navigation has been shown to improve the accuracy and precision of component placement in primary THA; however, its role in revision surgery is less well documented. The purpose of our study was to evaluate the effect of computer-assisted navigation on component placement in revision total hip arthroplasty, as compared with conventional surgery. Methods. To examine the effect of navigation on acetabular component placement in revision THA, we retrospectively reviewed data from a multi-centre cohort of 128 patients having undergone revision THA between March 2017 and January 2019. An imageless computer navigation device (Intellijoint HIP®, Intellijoint Surgical, Kitchener, ON, Canada) was utilized in 69 surgeries and conventional methods were used in 59 surgeries. Acetabular component placement (anteversion, inclination) and the proportion of acetabular components placed in a functional safe zone (40° inclination/20° anteversion) were compared between navigation assisted and conventional THA groups. Results. Mean inclination decreased post-operatively versus baseline in both the navigation (44.9°±12.1° vs. 43.0°±6.8°, p=0.65) and control (45.8°±19.4° vs. 42.8°±7.1°, p=0.08) groups. Mean anteversion increased in both study groups, with a significant increase noted in the navigation group (18.6°±8.5° vs. 21.6°±7.8°, p=0.04) but not in the control group (19.4°±9.6° vs. 21.2°±9.8°, p=0.33). Post-operatively, a greater proportion of acetabular components were within ±10° of a functional target (40° inclination, 20° anteversion) in the navigation group (inclination: 59/67 (88%), anteversion: 56/67 (84%)) than in the control group (49/59 (83%) and 41/59, (69%), respectively). Acetabular component precision in both study groups improved post-operatively versus baseline. Variance in inclination improved significantly in both control (50.6° vs. 112.4°, p=0.002) and navigation (46.2° vs. 141.1°, p<0.001) groups. Anteversion variance worsened in the control group (96.3° vs. 87.6°, p=0.36) but the navigation group showed improvement (61.2° vs. 72.7°, p=0.25). Post-operative variance amongst cup orientations in the navigation group (IN: 46.2°; AV: 61.2°) indicated significantly better precision than that observed in the control group (IN: 50.6°, p=0.36; AV: 96.3°, p=0.04). Discussion. Re-revision is required in up to 25% of revision THA cases, of which 36% are caused by instability. This places a significant burden on the health care system and highlights the importance of accurate component placement. Our data indicate that the use of imageless navigation in revision THA – by minimizing the likelihood of outliers – may contribute to lower rates of re-revision by improving component orientation in revision THA. Conclusion. Utilizing imageless navigation in revision THAs results in more consistent placement of the acetabular component as compared to non-navigated revision surgeries


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 74 - 74
1 Dec 2017
Murphy WS Kowal JH Hayden B Yun HH Murphy SB
Full Access

Introduction. Cup malpositioning remains a common cause of dislocation, wear, osteolysis, and revision. The concept of a “Safe Zone” for acetabular component orientation was introduced more than 35 years ago1. The current study assesses CT studies of replaced hips to assess the concept of a safe zone for acetabular orientation by comparing the orientation of acetabular components revised due to recurrent instability and to a series of stable hip replacements. Methods. Cup orientation in 50 hips revised for recurrent instability was measured using CT. These hips were compared to a group of 184 stable hips measured using the same methods. Femoral anteversion in the stable hips was also measured. Images to assess femoral anteversion in the unstable group were not available. An application specific software modules was developed to measure cup orientation using CT (HipSextant Research Application 1.0.13 Surgical Planning Associates Inc., Boston, Massachusetts). The cup orientation was determined by first identifying Anterior Pelvic Plane Coordinate system landmarks on a 3D surface model. A multiplanar reconstruction module then allowed for the creation of a plane parallel with the opening plane of the acetabulum. The orientation of the cup opening plane in the AP Plane coordinate space was calculated according to Murray's definitions of operative anteversion and operative inclination2. Both absolute cup position relative to the APP and tilt-adjusted cup position3 were calculated. Results. Supine tilt-adjusted Operative anteversion for the anteriorly unstable hips was significantly higher than in the stable hips (p< .0001). Supine tilt-adjusted Operative anteversion for the posteriorly unstable hips was significantly lower than in the stable hips (p<.01). Alt in the supine position, all unstable hips had operative anteversion of less than 22.9 or more than 38.6 degrees or operative inclination of less than 30.6 or more than 55.9 degrees or both. The center of the “safe zone” is 30.7 +/− 7.8 degrees of tilt-adjusted operative anteversion and 42.4 +/− 13.5 degrees of operative inclination (Figure 1). Conclusions. The current study demonstrates that most conventionally placed acetabular components are malpositioned but not all malpositioned acetabular components are associated with dislocation. Using acetabular revision for recurrent instability as the end point, a safe zone for acetabular component orientation does exist. The range is narrower for anteversion than for inclination. Improved methods of defining component positioning goals on a patient-specific basis and accurately placing the acetabular component may reduce the incidence of cup mal-position and its associated complications. For figures and tables, please contact authors directly


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 41 - 41
1 Mar 2017
Murphy S Murphy W Kowal J
Full Access

Introduction. Cup malpositioning remains a common cause of dislocation, wear, osteolysis, and revision. The concept of a “Safe Zone” for acetabular component orientation was introduced more than 35 years ago1. The current study assesses CT studies of replaced hips to assess the concept of a safe zone for acetabular orientation by comparing the orientation of acetabular components revised due to recurrent instability and to a series of stable hip replacements. Methods. Cup orientation in 21 hips revised for recurrent instability was measured using CT. These hips were compared to a group of 115 stable hips measured using the same methods. Femoral anteversion in the stable hips was also measured. Images to assess femoral anteversion in the unstable group were not available. An application specific software modules was developed to measure cup orientation using CT (HipSextant Research Application 1.0.13 Surgical Planning Associates Inc., Boston, Massachusetts). The cup orientation was determined by first identifying Anterior Pelvic Plane Coordinate system landmarks on a 3D surface model. A multiplanar reconstruction module then allowed for the creation of a plane parallel with the opening plane of the acetabulum. The orientation of the cup opening plane in the AP Plane coordinate space was calculated according to Murray's definitions of operative anteversion and operative inclination2. Both absolute cup position relative to the APP and tilt-adjusted cup position3 were calculated. Results. Operative anteversion for the anteriorly unstable hips was significantly higher than in the stable hips (p < .001). Operative anteversion for the posteriorly unstable hips was significantly lower than in the stable hips (p=.01). Adjusting for pelvic tilt in the supine position, all unstable hips had operative anteversion of less than 22.9 or more than 38.6 degrees or operative inclination of less than 28.9 or more than 55.9 degrees or both. The center of the “safe zone” is 30.7 +/− 7.8 degrees of tilt-adjusted operative anteversion and 42.4 +/− 13.5 degrees of operative inclination. Conclusions. The current study demonstrates that most conventionally placed acetabular components are malpositioned but not all malpositioned acetabular components are associated with dislocation. Using acetabular revision for recurrent instability as the end point, a safe zone for acetabular component orientation does exist. The range is narrower for anteversion than for inclination. Improved methods of defining component positioning goals on a patient-specific basis and accurately placing the acetabular component may reduce the incidence of cup malposition and its associated complications


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 68 - 68
1 Jan 2016
Murphy S Murphy W Kowal JH
Full Access

INTRODUCTION. Cup malpositioning remains a common cause of dislocation, wear, osteolysis, and revision. The concept of a “Safe Zone” for acetabular component orientation was introduced more than 35 years ago. 1. The current study assesses CT studies of replaced hips to assess the concept of a safe zone for acetabular orientation by comparing the orientation of acetabular components revised due to recurrent instability and to a series of stable hip replacements. METHODS. Cup orientation in 30 hips revisedin 27patients for recurrent instability was measured using CT. These hips were compared to a group of 115 stable hips measured using the same methods. Femoral anteversion in the stable hips was also measured. Images to assess femoral anteversion in the unstable group were not available. An application specific software modules was developed to measure cup orientation using CT (HipSextant Research Application 1.0.13 Surgical Planning Associates Inc., Boston, Massachusetts). The cup orientation was determined by first identifying Anterior Pelvic Plane Coordinate system landmarks on a 3D surface model. A multiplanar reconstruction module then allowed for the creation of a plane parallel with the opening plane of the acetabulum. The orientation of the cup opening plane in the AP Plane coordinate space was calculated according to Murray's definitions of operative anteversion and operative inclination. 2. Both absolute cup position relative to the APP and tilt-adjusted cup position. 3. were calculated. RESULTS. Operative anteversion for the anteriorly unstable hips was significantly higher than in the stable hips (p < 0.001). Operative anteversion for the posteriorly unstable hips was significantly lower than in the stable hips (p < 0.01). Adjusting for pelvic tilt in the supine position, all unstable hips had operative anteversion of less than 21.8 or more than 42.6 degrees or operative inclination of less than 30.6 or more than 55.9 degrees or both. The center of the “safe zone” is 32.2 ± 10.4 degrees of tilt-adjusted operative anteversion and 45.3 ± 8.7 degrees of operative inclination (Figure 1). CONCLUSIONS. The current study demonstrates that most conventionally placed acetabular components are malpositioned but not all malpositioned acetabular components are associated with dislocation. Using acetabular revision for recurrent instability as the end point, a safe zone for acetabular component orientation does exist. The range is narrower for anteversion than for inclination. Improved methods of accurately placing the acetabular component placement may reduce the incidence of cup malposition and its associated complications


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 117 - 117
1 May 2019
Lachiewicz P
Full Access

A well-fixed uncemented acetabular component is most commonly removed for chronic infection, malposition with recurrent dislocation, and osteolysis. However, other cups may have to be removed for a broken locking mechanism, a bad “track record”, and for metal-on-metal articulation problems. Modern uncemented acetabular components are hemispheres which have 3-dimensional ingrowth patterns. Coatings include titanium or cobalt-chromium alloy beads, mesh, and now the so-called “enhanced coatings”, such as tantalum trabecular metal, various highly porous titanium metals, and 3-D printed metal coatings. These usually pose a problem for safe removal without fracture of the pelvis or creation of notable bone deficiency. Preoperative planning is essential for safe and efficient removal of these well-fixed components. Strongly consider getting the operative report, component “stickers”, and contacting the implant manufacturer for information. There should a preoperative check list of the equipment and trial implants needed, including various screwdrivers, trial liners, and a chisel system. The first step in component removal is excellent 360-degree exposure of the acetabular rim, and this can be accomplished by several approaches. Then, the acetabular polyethylene liner is removed; a liner that is cemented into a porous shell can be “reamed out” using a specific device. Following this, any central or peripheral screws are removed; broken or stripped screw heads add an additional challenge. A trial acetabular liner is placed, and an acetabular curved chisel system is used. There are two manufacturers of this type of system. Both require the known outer acetabular diameter and the inner diameter of the trial liner. With the curved chisel system and patience, well-fixed components can be safely removed, and the size of the next acetabular component to be implanted is usually 4mm larger than the one removed. There are special inserts for removal of monobloc metal shells. Remember that removal of these well-fixed components is more difficult in patients compared to models, and is just the first step of a successful acetabular revision


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 132 - 132
1 Dec 2013
Murphy S Murphy W Werner SD Kowal JH
Full Access

Introduction:. Wear, wear-associated osteolysis, and instability are the most common reasons for revision total hip arthroplasty. These failures have been shown to be associated with acetabular component malpositioning. However, optimal acetabular component orientation on a patient-specific basis is currently unknown. The current study uses CT to assess acetabular orientation in a group of unstable hips as compared to a control group of stable hips. Methods:. Our institutional database of CT studies performed in the region of the hip beginning in February of 1998 (41,975 CT studies) was compared against our institutional database of revision total hip arthroplasties beginning in August of 2003 (2262 Revision THA) to identify CT studies of any hip treated for recurrent instability by revision of the acetabular component. Twenty hips in 20 patients with suitable CT studies were identified for the study group. Our control group consisted of 99 hips in 93 patients who had CT studies either for computer-assisted surgery on the contralateral side or for assessment of osteolysis. Using the CT data, the AP plane (APP) was defined, supine pelvic tilt was measured, and cup orientation was calculated by fitting a best fit plane to 6 points on the rim of the acetabular component. Cup orientation was calculated in degrees of operative anteversion and operative inclination according to the definitions of Murray. Both absolute cup position relative to the APP and tilt-adjusted cup position. 1. were calculated. Results:. The study group of 20 hips treated for instability showed a mean operative anteversion of 30.3 degrees (SD 17.6, range 1.0 to 58.1), a mean operative inclination of 35.9 degrees (SD 8.4, range 25.1 to 55.9), and a mean tilt-adjusted operative anteversion of 29.7 (SD 14.2, range 1.8 to 53). The control group of 99 hips showed a mean operative anteversion of 30.5 degrees (SD 10.7, range −1.9 to 57.5), a mean operative inclination of 37.7 degrees (SD 8.0, range 18.4 to 68.1), and a mean tilt-adjusted operative anteversion of 26.7 (SD 10.8, range −0.2 to 47.3). Most interestingly. all of the hips treated for instability had an operative anteversion of either 22.9 degrees or less or 38.67 degrees or more of tilt-adjusted operative inclination of either 30.5 degrees or less or 55.9 degrees or more, or both. The center of the safe zone in this study is 30.7 of tilt-adjusted operative anteversion and 43.2 degrees of operative inclination (Figure 1). There was no discernable safe zone in the non tilt-adjusted group. Discussion and Conclusion:. Most conventionally placed acetabular components are malpositioned but not all malpositioned acetabular components are associated with dislocation. The hip dislocation safe zone appears to be narrower in operative anteversion than in operative inclination. Improved methods of improving the accuracy and reliability of acetabular component placement may reduce the incidence of cup malposition and its associated complications


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 87 - 87
1 Feb 2020
Yoshitani J Kabata T Kajino Y Inoue D Ohmori T Taga T Takagi T Ueno T Ueoka K Yamamuro Y Nakamura T Tsuchiya H
Full Access

Aims. Accurate positioning of the acetabular component is essential for achieving the best outcome in total hip arthroplasty (THA). However, the acetabular shape and anatomy in severe hip dysplasia (Crowe type IV hips) is different from that of arthritic hips. Positioning the acetabular component in the acetabulum of Crowe IV hips may be surgically challenging, and the usual surgical landmarks may be absent or difficult to identify. We analyzed the acetabular morphology of Crowe type IV hips using CT data to identify a landmark for the ideal placement of the centre of the acetabular component as assessed by morphometric geometrical analysis and its reliability. Patients and Methods. A total of 52 Crowe IV and 50 normal hips undergoing total hip arthroplasty were retrospectively identified. In this CT-based simulation study, the acetabular component was positioned at the true acetabulum with a radiographic inclination of 40° and anteversion of 20° (Figure 1). Acetabular shape and the position of the centre of the acetabular component were analyzed by morphometric geometrical analysis using the generalized Procrustes analysis (Figure 2). To describe major trends in shape variations within the sample, we performed a principal component analysis of partial warp variables (Figure 3). Results. The plot of the landmarks showed that the centre of the acetabular component of normal hips was positioned around the centre of the acetabulum and superior and slightly posterior on the acetabular fossa (Figure 3). The acetabular shapes of Crowe IV hips were distinctively triangular; the ideal position of the centre of the acetabular component was superior on the posterior bony wall (Figure 3). The first and second relative warps explained 34.2% and 18.4% of the variance, respectively, compared with that of 28.6% and 18.0% in normal hips. We defined the landmark as one-third the distance from top on the posterior bony wall in Crowe IV hips. The average distance from the centre of the acetabular component was 5.6 mm. There were 24 hips (50%) for which the distance from 1/3 pbw was within 5 mm, and 43 hips (89.6%) for which the distance was within 10 mm. Conclusions. Morphometric geometrical analysis showed that the acetabulum shape of Crowe type IV hips was distinctively triangular; the centre of the acetabular component was not positioned at the centre of the acetabulum, but rather superior on the posterior bony wall. The point one-third from the top on the posterior bony wall was a useful landmark for surgeons to set the acetabular component in the precise position in Crowe IV hips. This avoids the risk of using a smaller acetabular component and destruction of the anterior wall. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 44 - 44
1 Aug 2013
Murphy W Werner S Kowal J Murphy S
Full Access

Introduction. The optimal acetabular component orientation in general or on a patient-specific basis is currently unknown. In order to answer this question, the current study uses CT to assess acetabular orientation in a group of unstable hips as compared to a control group of stable hips. Methods. Our institutional database of CT studies performed in the region of the hip beginning in February of 1998 (41,975 CT studies) was compared against our institutional database of revision total hip arthroplasties beginning in August of 2003 (2262 Revision THA) to identify CT studies of any hip treated for recurrent instability by revision of the acetabular component. Twenty hips in 20 patients with suitable CT studies were identified for the study group. Our control group consisted of 101 hips in patients who had CT studies either for computer-assisted surgery on the contralateral side or for assessment of osteolysis. Using the CT data, the AP plane (APP) was defined, supine pelvic tilt was measured, and cup orientation was calculated by fitting a best fit plane to 6 points on the rim of the acetabular component. Cup orientation was calculated in degrees of operative anteversion and operative inclination according to the definitions of Murray. Both absolute cup position relative to the APP and tilt-adjusted cup position were calculated. Results. The study group of 20 hips treated for instability showed a mean operative anteversion of 29.6 degrees (SD 14.3, range 1.8 to 58) and a mean operative inclination of 35.8 degrees (SD 8.3, range 25.1 to 55.9). The control group of 101 hips showed a mean operative anteversion of 26.7 degrees (SD 10.7, range 0.2 to 47.3) and a mean operative inclination of 37.7 degrees (SD 7.9, range 18.4 to 68.1). Most interestingly. all of the hips treated for instability had a tilt-adjusted operative anteversion of either 22.9 degrees or less or 38.6 degrees or more or operative inclination of either 28.9 degrees or less or 55.9 degrees or more, or both. The center of the safe zone in this study is 30.7 degrees of tilt-adjusted operative anteversion and 42.4 degrees of operative inclination. Discussion and Conclusion. Most conventionally placed acetabular components are malpositioned but not all malpositioned acetabular components are associated with dislocation. The hip dislocation safe zone appears to be narrower in operative anteversion than in operative inclination and so the safe zone is better represented graphically as an oval as opposed to a box. The safe zone identified in the current study relates only to instability. Optimal positioning for reducing wear may narrow the safe zone further, particularly as it relates to the upper limit of operative inclination. Improved methods of achieving better accuracy and reliability of acetabular component placement may reduce the incidence of cup malposition and its associated complications


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 3 - 3
1 May 2016
Lipman J Esposito C
Full Access

Introduction. Proper acetabular component orientation is an important part of successful total hip replacement surgery. Poorly positioned implants can lead to early complications, such as dislocation. Mal-positioned acetabular components can also generate increase wear debris due to edge loading which can cause pre-mature loosening. It is essential to be able to measure post-operative implant orientation accurately to assure that implants are positioned properly. It is difficult and potentially inaccurate to manually measure implant orientation on a post-op radiograph. This is particularly true for the immediate post-op radiograph where the patient is not as well aligned relative to the x-ray beam. However, the best time to determine if an acetabular component is mal-aligned is immediately following surgery so the patient could be taken back to the OR for immediate revision. Taking post-op CT scans is expensive and subjects the patient to increased radiation exposure, so using CT post-operatively is not done routinely. With the increased use of robotics and computer navigation at surgery there are often pre-op CT scans for total hip replacement patients. Current radiological tools do not take advantage of this pre-op CT scan for assessment of acetabular component orientation. A new software module for Mimics medical imaging software (Materialise, Leuven, Belgium) is able to overlay 3D CT data onto radiographs. We used this x-ray module to see if we could measure acetabular component orientation using the pre-op CT scan and the routine post-op x-ray that is taken immediately following total hip arthroplasty at our institution. Methods. From a prior study, we had pre-op, and post-op CT scans of a group of twenty patients who received a total hip replacement. The post-op scan was used to measure the actual acetabular component orientation, both inclination and anteversion (Figure 1). We then measured component orientation using only the pre-op CT scan and the initial post-op x-ray using the Mimics x-ray module. We created a 3D model of the pelvis from the pre-op CT using Mimics. Then, the x-ray module was used to import the post-op radiograph into the Mimics file. Using the software, the x-ray was registered to the pre-op 3D pelvis. A 3D .stl file of the acetabular component used at surgery was then imported into the Mimics file and also registered according to the post-op radiograph (Figures 2 and 3). Once the cup and pelvis were both registered to the post-op radiograph, they were exported as .stl files and the acetabular anteversion and inclination were measured using the same method we used for the post-op scan. We then compared the results of our measurements from the post-op 3D reconstruction to the 2D overlay method to determine the accuracy of this new measurement technique. Results. The average error for anteversion and inclination was 1.5±1.5 and −0.8±1.6 degrees respectively. Maximum error for anteversion and inclination was 5.7 and −5.0 degrees respectively. Conclusion. The x-ray module could be a powerful tool in the assessment of post-operative orientation of the acetabular component in total hip arthroplasty


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 25 - 25
1 Jul 2020
Galmiche R Beaulé P Salimian A Carli A
Full Access

Recently, new metallurgical techniques allowed the creation of 3D metal matrices for cementless acetabular components. Among several different products now available on the market, the Biofoam Dynasty cup (MicroPort Orthopedics® Inc., Arlington, TN, USA) uses an ultraporous Titanium technology but has never been assessed in literature. Coping with this lack of information, our study aims to assess its radiological osteointegration at two years in a primary total hip arthroplasty and compares it to a successful contemporary cementless acetabular cup. This monocentric retrospective study includes 96 Dynasty Biofoam acetabular components implanted between March 2010 and August 2014 with a minimum 2 years radiographic follow-up. Previous acetabular surgery, any septic issue or re-operation for component malposition were exclusion criteria. They were compared to 96 THA using the Trident PSL matched for age, gender, BMI and follow-up. Presence of radiolucencies and sclerotic lines were described on AP pelvis views using the classification of DeLee and Charnley. There was no statistical difference between the two groups concerning demographics and mean follow-up (p> 0.05). Shell's anteversion was similar but inclination was greater in the biofoam group (p=0.006). 27,17% of the Biofoam shells presented radiolucencies in 2 zones or more and 0% of the Trident shells. 11,96% of Biofoam cups showed radiolucencies in the 3 zones of DeLee comparing to 0% of the Trident cups. There was no statistical difference between the Biofoam group (n=54/96) and the Trident PSL group (n=57/96) in pre-operative functional scores for both WOMAC subscales and SF-12. When evaluating last follow-up PROM's, no significant differences were found comparing the entirety of both groups, 56 Biofoam and 51 Trident PSL. No difference was found either when comparing Biofoam patients with ³ 2 zones of radiolucencies (n=15) to the whole Trident group (n=51). This study raises concerns about radiologic evidence of osteointegration of the Biofoam acetabular cup. Nevertheless, these radiological findings do not find any clinical correlation considering clinical scores. Thus, it may question the real meaning of these high-rated radiolucencies, which at first sight reflect a poorer osteointegration. The first possible limitation with this study is an overinterpretation of the radiographs. Nevertheless, both observers were blinded regarding the patients groups and clinical outcomes and there was a strong inter-observer reliability. Although both cohorts were matched on their demographics and were similar on the cup anteversion, we noticed a slightly lower abduction angle in the Biofoam population. It could reduce the bone-implant coverage area and hence hinders the bony integration, but this difference was small and both groups remained in the Lewinneck security zone. Furthermore, even if patients were matched on age, gender, BMI and follow-up, other variables can influence early osteointegration (smoke status, osteoporosis) and have not been controlled even though we have no reasons to think their distribution could differ in the 2 groups. The real clinical meaning of these findings remains unknown but serious concerns are raised about the radiographic osteointegration of the Dynasty Biofoam acetabular components. Concerns are all the more lawful that this implants aim to enhance osteointegration


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 35 - 35
1 Feb 2020
Takegami Y Habe Y Seki T
Full Access

Introduction. Acetabular component loosening has been one of the factors of revision of total hip arthroplasty (THA). Inadequate mechanical fixation or load transfer may contribute to this loosening process. Several reports showed the load transfer in the acetabulum by metal components. However, there is no report about the influence of the joint surface on the load transfer. We developed a novel acetabular cross-linked polyethylene (CLPE) liner with graft biocompatible phospholipid polymer(MPC) on the surface. The MPC polymer surface had high lubricity and low friction. We hypothesized the acetabular component with MPC polymer surface (MPC-CLPE) may reduce load transfer in the acetabulum compared to that of the by CLPE acetabular component without MPC. Methods. We fixed the three cement cup with MPC-CLPE (Group M; sample No.1–3) and three cement cup with CLPE (Group C; sample No.4–6) placed in the synthetic bone block with bone cement with a 0.10mm thick arc-shaped piezoresistive force sensor, which can measure the dynamic load transfer(Tekscan K-scan 4400; Boston). (Fig 1) A hip simulator (MTS Systems Corp., Eden Prairie, MN) was used for the load transfer test performed according to the ISO Standard 14242-1. Both groups had same inner and outer diameter s of 28 and 50mm, respectively. A Co–Cr alloy femoral head with a diameter of 28 mm (K-MAXs HH-02; KYOCERA Medical Corp.) was used as the femoral component. A biaxial rocking motion was applied to the head/cup interface via an offset bearing assembly with an inclined angle of +20. Both the loading and motion were synchronized at 1 Hz. According to the double-peaked Paul-type physiologic hip load, the applied peak loads were 1793 and 2744 N described in a previous study. The simulator was run 3 cycles. We recorded both the peak of the contact force and the accumulation of the six times load in total. Secondly, we calculated the mean change of the load transfer. We used the Student t-test. P value < 0.05 was used to determine statistical significance. We used EZR for statistical analysis. Results. The mean of total accumulation of the load transfer in the group M is significantly lower than that of in the group C. (7037±508 N vs 11019±1290 N, P<0.0001). The peak of load in the group M was also significantly lower than that in the group C. (1024±166 N vs 1557±395 N) (Fig 2)The mean of the change of the load transfer in the group M is significantly lower than that of in the group C. (2913±112 N vs 4182±306 N) (Fig 3). Conclusion. The acetabular component with MPC surface could reduce and prevent the radical load transfer change toward to the acetabulum compared to CLPE acetabular component without MPC. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 155 - 155
1 Jan 2016
Ghosh R Paul S Rubel YSA Paul A Saha D
Full Access

Introduction. Long-term success of the cementless acetabular component has been depends on amount of bone ingrowth around porous coated surface of the implant, which is mainly depends on primary stability, i.e. amount of micromotion at the implant-bone interface. The accurate positioning of the uncemented acetabular component and amount of interference fit (press-fit) at the rim of the acetabulum are necessary to reduce the implant-bone micromotion and that can be enhancing the bone ingrowth around the uncemented acetabular component. However, the effect of implant orientations and amount of press-fit on implant-bone micromotion around uncemented acetabular component has been relatively under investigated. The aim of the study is to identify the effect of acetabular component orientation on implant-bone relative micromotion around cementless metallic acetabular component. Materials and Method. Three-dimensional finite element (FE) model of the intact and implanted pelvises were developed using CT-scan data [1]. Five implanted pelvises model, having fixed antiversion angle (25°) and different acetabular inclination angle (30°, 35°, 40°, 45° and 50°), were generated in order to understand the effect of implant orientation on implant-bone micromotion around uncemented metallic acetabular component. The CoCrMo alloy was chosen for the implant material, having 54 mm outer diameter and 48 mm bearing diameter [1]. Heterogeneous cancellous bone material properties were assigned using CT-scan data and power law relationship [1], whereas, the cortical bone was assumed homogeneous and isotropic [1]. In the implanted pelvises models, 1 mm diametric press-fit was simulated between the rim of the implant and surrounding bone. Six nodded surface-to-surface contact elements with coefficient of friction of 0.5 were assigned at the remaining portion of the implant–bone interface [1]. Twenty-one muscle forces and hip-joint forces corresponds to peak hip-joint force of a normal walking cycle (13%) were used for the applied loading condition. Fixed constrained was prescribed at the sacroiliac joint and pubis-symphysis [1]. A submodelling technique was implemented, in order to get more accurate result around implant-bone interface [1]. Results and Discussions. The peak implant-bone sliding interfacial micromotion was observed around 75 microns around superior and supero-posterior regions of the acetabulum, whereas, micromotion was below 50 microns around other regions (area). As compared to other regions, less implant-bone micromotions were observed at the central region of the acetabulum and anterior part of the acetabulum, where micromotions were varied in the range between 5 microns to 30 microns. Although, the generated peak implant-bone sliding micromotion around the uncemented acetabulum was not vary notably due to change in inclination angle of the acetabular component, changes in patterns of implant-bone micromotions were observed and as shown [Fig.1]. Results of the present study indicated that the positioning of the uncemented acetabular component have influence on patterns of implant-bone micromotion and that might have influence on bone ingrowth and long-term success of uncemented acetabular component


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 100 - 100
1 Aug 2017
Gehrke T
Full Access

The treatment of extensive bone loss and massive acetabular defects is a challenging procedure, especially the concomitant pelvic discontinuity (PD) can be compounded by several challenges and pitfalls. The appropriate treatment strategy is to restore a stable continuity between the ischium and the ilium and to reconstruct the anatomical hip center. Antiprotrusio cages, metal augments, reconstruction cages with screw fixation, structural allograft with plating, jumbo cups, oblong cups and custom-made triflange acetabular components have been reported as possible treatment options. Nevertheless, the survivorship following acetabular revision with extensive bone loss is still unsatisfactory. The innovation of three-dimensional printing (3DP) has become already revolutionary in engineering and product design. Nowadays, the technology is becoming part of surgical practice and suitable for the production of precise and bespoke implants. The technique of a 3D-printed custom acetabular component in the management of extensive acetabular defect is presented


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 161 - 161
1 Sep 2012
Waddell JP Edwards M Lutz M Keast-Butler O Escott B Schemitsch EH
Full Access

Purpose. To review prospectively collected data on patients undergoing primary total hip arthroplasty utilizing two different cementless acetabular components. Method. All patients undergoing primary total hip replacement surgery at our institution are entered prospectively into a database which includes history and physical examination, radiology, WOMAC and SF-36 scores. The patients are re-examined, re-x-rayed and re-scored at 3 months, 6 months and 1 year after surgery and yearly thereafter. Using this database we are able to identify patients who have undergone total hip replacement using one of two geometric variants of the acetabular component. The first design is hemispherical and the second design has a peripheral rim expansion designed to increase initial press-fit stability. Results. Five hundred and twenty-seven consecutive primary total hip replacements were identified using either of the geometric variants of the acetabular component. Results at a mean of 7 years revealed a 95.6% survivorship with no significant difference between the two component designs with revision for aseptic loosening as the end point. Functional scores between the two groups of patients also demonstrated no statistically significant difference. Radiologic assessment, however, showed a difference between the two designs. The hemispherical design which matches the reamer line-to-line had 80% complete osseointegration on final radiologic review while the second design with a peripheral rim expansion had only 57% complete osseointegration. This was statistically significant. The peripherally expanded components also had a greater number of screws inserted at the time of surgery, felt by us to be a reflection of initial surgeon dissatisfaction with component stability at the time of insertion of the component. The difference in screw numbers was also statistically significant. Conclusion. Cementless acetabular components in total hip replacement have become increasingly popular because of ease of insertion, use of differing bearing surfaces and ease of revision. Longevity of implanted acetabular components appears related to some extent to the quality and extent of bone ingrowth. This study demonstrates that a hemispherical design with line-to-line contact between the acetabular component surface and the acetabular bone is statistically superior in terms of bone ingrowth and probably statistically superior in terms of initial press-fit stability when compared to a peripherally expanded component. Peripherally expanded components appear to offer little advantage over hemispherical components in terms of clinical outcome and are statistically inferior to hemispherical components in radiologic parameters at 7 years follow-up


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 174 - 174
1 Mar 2013
Fujishiro T Nishiyama T Hayashi S Kanzaki N Hashimoto S Shibanuma N Kurosaka M
Full Access

Background. The cementless acetabular component fixed with several screws is one of the most widely used approaches in THA. These screws rely on contact pressure and the resultant friction between the screw head and the cup to control translation and angulation of the prosthesis. However, intraoperative change of the acetabular component alignment during screw fixation should be hardly detected. Acetabular component alignment can be assessed using computer-assisted navigation systems with realtime adjustments for component position. The purpose of the current study was to evaluate intraoperative change of acetabular component alignment during screw fixation using navigation system. Patients and Methods. Primary THAs were performed in 74 hips using CT based fluoroscopic matching navigation system (VectorVision, BrainLAB). The patients were 18 men and 56 women with a mean age of 64.4 years (range, 47–78 years) at operation. Intraoperative acetabular component inclination and anteversion were measured at the time of press-fit, and after screw fixation using the cup verification function in the system. Mean of the absolute difference between at the time of press-fit and after screw fixation was evaluated as intraoperative change of acetabular component. We measured the distance from the center of the femoral head to the inter-teardrop line as a horizontal and vertical reference on the postoperative radiograph. The number of screws was also investigated. Results. Mean inclination and anteversion at the time of press-fit were 40.6° ± 3.6° and 14.6° ± 9.3°, respectively. Mean inclination and anteversion after screw fixation were 40.7° ± 4.4° for inclination and 14.5° ± 9.6° for anteversion. Mean intraoperative change of acetabular component was 1.9° ± 1.7° for inclination and 1.9° ± 1.9° for anteversion. The use number of the screw was an average of 1.46 (1 to 4). The intraoperative change of acetabular component anteversion correlated with number of screws (r = 0.381, p = 0.017), and vertical distance(r = 0.265, p = 0.05). The intraoperative change of acetabular component inclination also correlated with horizontal distance (r = 0.313, p = 0.02). Discussion. Many studies have shown that multiple bone screws are very helpful aids for cementless acetabular cup fixation. The multiple-screw fixation could have an effect on micromotion of the acetabular component. However, the change of acetabular alignment during inserting screws has not been clearly reported. The current study showed mean intraoperative change of acetabular component was 1.9° for inclination and 1.9° for anteversion. However, maximum change of acetabular component was 5° for inclination and 13° for anteversion. These findings suggest that the alignment of acetabular component could change during screw fixation, and the change might cause malalignment of the acetabular component, and could increase the risks of impingement, dislocation, and accelerated wear. The change of acetabular alignment correlated with number of screws and radiographycal measurements in this series. Therefore, bone quality and bone stock could affect stability of acetabular component. In conclusion, navigation can show potential to help quantify intraoperative acetabular component alignment change during screw fixation and potentially reduce the risk for malpostion of acetabular components


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 58 - 58
1 Apr 2017
Parvizi J
Full Access

Revision of total hip arthroplasty (THA) is being performed with increasing frequency. However, outcomes of repeated revisions have been rarely reported in the literature, especially for severe defects. Cup revision can be a highly complex operation depending on the bone defect. In acetabular defects like Paprosky types 1 and 2 porous cementless cups maybe fixed with screws give good results. Modern trabecular metal designs improve these good results. Allografts are useful for filling cavitary defects. In acetabular defects Paprosky types 3A and 3B, impacted morselised allografts with a cemented cup technique produce good results. Difficult cases with pelvic discontinuity require reconstruction of the acetabulum with acetabular plates or large cup-cages to solve these difficult problems. However, there is still no consensus regarding the best option for reconstructing hips with bone loss. Although the introduction of ultraporous metals has significantly increased the surgeon's ability to reconstruct severely compromised hips, there remain some that cannot be managed readily using cups, augments, or cages. In such situations custom acetabular components may be required. Individual implants represent yet another tool for the reconstructive surgeon. These devices can be helpful in situations of catastrophic bone loss. Ensuring long-term outcome mechanical stability has a greater impact than restoring an ideal center of rotation. We have done so far 15 3D Printed Individual Implants. All of them where Paprosky Type 3B defects, 10 with a additional pelvis discontinuity. The mean follow-up is 18 months. All implanted devices are still in place, no infection, no loosening. However, despite our consecutive case series, there are no mid- to long-term results available so far. Re-revision for failed revision THA acetabular components is a technically very challenging condition. The 3D Printed Individual Implants have a lot of advantages, like excellent surgical planning and a very simple technique (operative time, blood loss, instruments). They are a very stable construct for extensive acetabular defects and pelvic discontinuity


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 101 - 101
1 Nov 2016
Gehrke T
Full Access

Revision of total hip arthroplasty (THA) is being performed with increasing frequency. However, outcomes of repeated revisions have been rarely reported in the literature, especially for severe defects. Cup revision can be a highly complex operation depending on the bone defect. In acetabular defects like Paprosky types 1 and 2 porous cementless cups fixed with screws give good results. Modern trabecular metal designs improve these good results. Allografts are useful for filling cavitary defects. In acetabular defects Paprosky types 3A and 3B, especially the use of trabecular metal cups, wedges, buttresses and cup-cage systems can produce good results. Difficult cases in combination with pelvic discontinuity require reconstruction of the acetabulum with acetabular plates or large cup-cages to solve these difficult problems. However, there is still no consensus regarding the best option for reconstructing hips with bone loss. Although the introduction of ultraporous metals has significantly increased the surgeon's ability to reconstruct severely compromised hips, there remain some that cannot be managed readily using cups, augments, or cages. In such situations custom acetabular components may be required. Individual implants represent yet another tool for the reconstructive surgeon. These devices can be helpful in situations of catastrophic bone loss. Ensuring long-term outcome, mechanical stability has a greater impact than restoring an ideal center of rotation. However, despite our consecutive case series there are no mid- to long-term results available so far. Re-revision for failed revision THA acetabular components is a technically very challenging condition


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 13 - 13
1 Jan 2016
Grosser D Benveniste S Bramwell D Krishnan J
Full Access

Background. Radiostereometric Analysis (RSA) is an accurate measure of implant migration following total joint replacement surgery. Early implant migration predicts later loosening and implant failure, with RSA a proven short-term predictor of long-term survivorship. The proximal migration of an acetabular cup has been demonstrated to be a surrogate measure of component loosening and the associated risk of revision. RSA was used to assess migration of the R3 acetabular component which utilises an enhanced porous ingrowth surface. Migration of the R3 acetabular component was also assessed when comparing the fixation technique of the femoral stems implanted. Methods. Twenty patients undergoing primary total hip arthroplasty were implanted with the R3 acetabular cup. The median age was 70 years (range, 53–87 years). During surgery tantalum markers were inserted into the acetabulum and the outer rim of the polyliner. RSA examinations were performed postoperatively at 4 to 5 days, 6, 12 and 24 months. Data was analysed for fourteen patients to determine the migration of the acetabular cup relative to the acetabulum. Of these fourteen patients, six were implanted with a cementless femoral stem and eight with a cemented femoral stem. Patients were clinically assessed using the Harris Hip Score (HHS) and Hip Disability and Osteoarthritis Outcome Score (HOOS) preoperatively and at 6, 12 and 24 months postoperatively. Results. RSA revealed no significant acetabular cup migration in all planes of translation and rotation with mean translations below 0.40 mm and mean rotations below 1 deg at 24 months. The data suggests that acetabular migration occurred primarily in the first 6 months postoperatively. We observed mean translations at 24 months of 0.36 mm (x-axis), 0.39 mm (y-axis) and 0.35 mm (z-axis). Mean rotations of 0.68 deg (x-axis), 0.99 deg (y-axis) and 0.77 deg (z-axis) were also observed at 24 months. Micromotion along the proximal-distal translation (y-axis) plane represented proximal migration of the acetabular component (Figure 1). On investigation of the femoral stems (cementless and cemented) implanted with the R3 acetabular cup, the mean proximal migration of the acetabular cup for both was 0.39 mm (CI 0.19–0.58). For cementless femoral stems a mean proximal migration of 0.45 mm (CI 0.09–0.98) and for cemented femoral stems a mean proximal migration of 0.35 mm (CI 0.24–0.45) were observed (Figure 1). A significant difference in the clinical assessment of patients when comparing pre-operative with 6, 12 and 24 months were also observed (p < 0.0001). All clinical assessments demonstrated equivalent results when comparing the post-operative follow-up time points and the R3 acetabular cup and stem combinations. Conclusions. Mean translations and rotations were higher than previously reported for acetabular components with the enhanced porous ingrowth surface. The magnitude of proximal migration 24 months postoperatively was within published ‘acceptable’ levels, albeit within the ‘at risk’ range of 0.2–1.0 mm. Comparison of the proximal migration for cementless and cemented femoral stems expressed similar outcomes, a trend also observed with the clinical assessments. These findings support further investigation and analysis of the R3 acetabular component