Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 9 - 9
1 Jan 2017
Pegg E Gill H MacLeod A
Full Access

Femoral head collapse is a possible complication after surgical treatment of femoral neck fractures. The purpose of this study was to examine whether implantation of a Sliding Hip Screw (SHS) or an X-Bolt could increase the risk of femoral head collapse. Similar to traditional hip screws, the X-Bolt is implanted through the femoral neck; however, it uses an expanding cross-shape to improve rotational stability. The risk of collapse was investigated alongside patient factors, such as osteonecrosis. This numerical study assessed the risk of femoral head collapse using linear eigenvalue buckling (an established method [1]), and also from the maximum von Mises stress within the cortical bone. The femoral head was loaded using the pressures reported by Yoshida et al. for a patient sitting down (reported to put the femoral head at greatest risk of collapse [2]), with a peak pressure of 9.4 MPa and an average pressure of 1.59 MPa. The femur was fixed in all degrees of freedom at a plane through the femoral neck. The X-Bolt and SHS were implanted in accordance with the operative techniques. The femoral head and implants were meshed with quadratic tetrahedral elements, and cortical bone was meshed with triangular thin shell elements. A converged mesh seeding density of 1.2 mm was used. All models were create and solved using ABAQUS finite element software (version 6.12, Simulia, Dassault Systèmes, France). The influence of implant type and presence was examined alongside a variety of patient factors:. Osteonecrosis, modelled as a cone of bone of varying angle, and varying modulus values. Cortical thinning. Reduced cortical modulus. Femoral head size. Twenty-two finite element models were run for each implant condition (intact; implanted with the X-Bolt; implanted with a SHS), resulting in a total of 66 models. The finite element models were validated using experimental tests performed on five 4. th. generation composite Sawbones femurs (Malmö, Sweden), and verified against previously published results [1]. No significant difference was found between the X-Bolt and the SHS, for either critical buckling pressure (p=0.964), or the maximum von Mises stress (p=0.274), indicating no difference in the risk of femoral head collapse. The maximum von Mises stress (and therefore the risk of collapse) within the cortical bone was significantly higher for the intact femoral head compared to both implants (X-Bolt: p=0.048, SHS: p=0.002). Of the factors examined, necrosis of the femoral head caused the greatest increase in risk. The study by Volokh et al. [1] concluded that deterioration of the cancellous bone underneath the cortical shell can greatly increase the risk of femoral head collapse, and the results of the present study support this finding. Interestingly the presence of either an X-Bolt or SHS implant appeared to reduce the risk of femoral head collapse


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 38 - 38
1 Oct 2016
MacLeod R Whitehouse M Gill HS Pegg EC
Full Access

Femoral head collapse due to avascular necrosis (AVN) is a relatively rare occurrence following intertrochanteric fractures; however, with over thirty-thousand intertrochanteric fractures per year in England and Wales alone, and an incidence of up to 1.16%, it is still significant. Often patients are treated with a hip fixation device, such as a sliding hip screw or X-Bolt. This study aimed to investigate the influence of three factors on the likelihood of head collapse: (1) implant type; (2) the size of the femoral head; and (3) the size of the AVN lesion. Finite element (FE) models of an intact femur, and femurs implanted with two common hip fixation designs, the Compression Hip Screw (Smith & Nephew) and the X-Bolt (X-Bolt Orthopaedics), were developed. Experimental validation of the FE models on 4. th. generation Sawbones composite femurs (n=5) found the peak failure loads predicted by the implanted model was accurate to within 14%. Following validation on Sawbones, the material modulus (E) was updated to represent cancellous (E=500MPa) and cortical (E=1GPa) bone, and the influence of implant design, head size, and AVN was examined. Four head sizes were compared: mean male (48.4 mm) and female (42.2 mm) head sizes ± two standard deviations. A conical representation of an AVN lesion with a lower modulus (1MPa) was created, and four different radii were studied. The risk of head collapse was assessed from (1) the critical buckling pressure and (2) the peak failure stress. The likelihood of head collapse was reduced by implantation of either fixation device. Smaller head sizes and greater AVN lesion size increased the risk of femoral head collapse. These results indicate the treatment of intertrochanteric fractures with a hip fixation device does not increase the risk of head collapse; however, patient factors such as small head size and AVN severity significantly increase the risk


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 72 - 72
1 May 2017
MacLeod A Rose H Gill H
Full Access

Background. A large proportion of the expense incurred due to hip fractures arises due to secondary factors such as duration of hospital stay and additional theatre time due to surgical complications. Studies have shown that the use of intramedullary (IM) nail fixation presents a statistically higher risk of re-fracture than plating, which has been attributed to the stress riser at the end of the nail. It is not clear, however, if this situation also applies to unstable fractures, for which plating has a higher fixation failure rate. Moreover, biomechanical studies to date have not considered newer designs of IM nails which have been specifically designed to better distribute weight-bearing loads. This aim of this experimental study was to evaluate the re-fracture risk produced by a newer type of nailing system compared to an equivalent plate. Methods. Experimental testing was conducted using fourth generation Sawbones composite femurs and X-Bolt IM hip nail (n=4) and fracture plate (n=4) implants. An unstable pertrochanteric fracture pattern was used (AO classification: 31-A1 / 31-A2). Loading was applied along the peak loading vector experienced during walking, up to a maximum load of 500N. The risk of re-fracture was evaluated from equivalent strains measured using four rosette strain gauges on the surface of the bone at known stress riser locations. Results. Strain gauge readings determined that the equivalent strains in the femoral diaphysis were approximately 25% larger for the nail than the plate (p < 0.005). The strain levels at the location coinciding with the end of the plate were also larger for the nail, but not significantly (p > 0.26). Conclusions. Although the risk of re-fracture for displaced tronchantaric fractures was found to be larger for nailing than plating, measured strains were substantially lower than the failure strain of cortical bone (even when scaled for full weight-bearing loads of 1800N). This indicates that fracture risk is not present in either implant for bone of healthy quality, but may still become problematic in highly osteoporotic patients. Level of Evidence. IIb - Evidence from at least one well designed experimental trial