Advertisement for orthosearch.org.uk
Results 1 - 20 of 24
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 113 - 113
14 Nov 2024
Giger N Schröder M Arens D Gens L Zeiter S Stoddart M Wehrle E
Full Access

Background. The molecular mechanisms underlying non-union bone fractures largely remain elusive. Recently, spatial transcriptomics approaches for musculoskeletal tissue samples have been developed requiring direct placement of histology sections on barcoded slides. However, Formalin-Fixed-Paraffin-Embedded (FFPE) bone sections have been associated with limited RNA quality and read depth compared to soft tissue. Here, we test spatial transcriptomics workflows based on transcriptomic probe transfer to characterize molecular features discriminating non-union and union bone fractures in mice. Method. Histological sections (n=8) used for spatial transcriptomics (Visium CytAssist FFPE; 10x Genomics, n=4 on glass slides, n=4 on hydrogel-coated slides) were obtained from a fracture healing study in female 20-week-old C57BL/6J mice receiving either a femur osteotomy (0.7mm) or a segmental defect (2.4mm) (license 22/2022, Grisons CH). Sequence alignment and manual segmentation of different tissues (bone, defect region/callus, bone marrow, muscle) were performed using SpaceRanger and LoupeBrowser (10x Genomics). Differential gene expression was performed using DESeq2 (Seurat) followed by Gene-Set-Enrichment-Analysis (GSEA) of Gene Ontology (ClusterProfiler). Group comparison of quality measures was done using a Welch's t-test. Results are given as mean±standard deviation. Result. The quality measures, mean counts, and genes per spot, were significantly ~10× higher for sections on hydrogel slides (counts: 4700±1796, genes: 2389±1170) compared to glass slides (counts: 463±415, genes: 250±223). In challenging tissues like cortical bone, we reached high counts+genes in comparison to published data. Direct comparison of a non-union and union section showed a total of 432 differentially regulated genes, 538 in the defect region/callus. GSEA revealed differential regulation of pathways involved in muscle organ morphogenesis, cartilage development and endochondral ossification. Conclusions. Optimized spatial transcriptomics workflows based on transcriptomic probe transfer enable for improved read depth in musculoskeletal tissue enabling the characterization of molecular features discriminating non-union and union bone fractures. Acknowledgements. AO Foundation (AOTRAUMA), SNSF (PhD salary)


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 8 - 8
11 Apr 2023
Piet J Vancleef S Mielke F Van Nuffel M Orozco G Korhonen R Lories R Aerts P Van Wassenbergh S Jonkers I
Full Access

Altered mechanical loading is a widely suggested, but poorly understood potential cause of cartilage degeneration in osteoarthritis. In rodents, osteoarthritis is induced following destabilization of the medial meniscus (DMM). This study estimates knee kinematics and contact forces in rats with DMM to gain better insight into the specific mechanisms underlying disease development in this widely-used model. Unilateral knee surgery was performed in adult male Sprague-Dawley rats (n=5 with DMM, n=5 with sham surgery). Radio-opaque beads were implanted on their femur and tibia. 8 weeks following knee surgery, rat gait was recorded using the 3D²YMOX setup (Sanctorum et al. 2019, simultaneous acquisition of biplanar XRay videos and ground reaction forces). 10 trials (1 per rat) were calibrated and processed in XMALab (Knörlein et al. 2016). Hindlimb bony landmarks were labeled on the XRay videos using transfer learning (Deeplabcut, Mathis et al. 2019; Laurence-Chasen et al. 2020). A generic OpenSim musculoskeletal model of the rat hindlimb (Johnson et al. 2008) was adapted to include a 3-degree-of-freedom knee. Inverse kinematics, inverse dynamics, static optimization of muscle forces, and joint reaction analysis were performed. In rats with DMM, knee adduction was lower compared to sham surgery. Ground reaction forces were less variable with DMM, resulting in less variability in joint external moments. The mediolateral ground reaction force was lower, resulting in lower hip adduction moment, thus less force was produced by the rectus femoris. Rats with DMM tended to break rather than propel, resulting in lower hip flexion moment, thus less force was produced by the semimembranosus. These results are consistent with lower knee contact forces in the anteroposterior and axial directions. These preliminary data indicate no overloading of the knee joint in rats with DMM, compared with sham surgery. We are currently expanding our workflow to finite element analysis, to examine mechanical cues in the cartilage of these rats (Fig1G)


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 79 - 79
1 Jan 2017
Zaffagnini S Signorelli C Bontempi M Bragonzoni L Raggi F Marchiori G Lopomo N Marcacci M
Full Access

Anterior cruciate ligament (acl) reconstruction is one of the most commonly performed procedures in orthopedics for acl injury. While literature suggest short-term good-to-excellent functional results, a significant number of long-term studies report unexplained early oa development, regardless type of reconstruction. The present study reports the feasibility analysis and development of a clinical protocol, integrating different methodologies, able to determine which acl reconstruction technique could have the best chance to prevent oa. It gives also clinicians an effective tool to minimize the incidence of early oa. A prospective clinical trial was defined to evaluate clinical outcome, biochemical changes in cartilage, biomechanical parameters and possible development of oa. The most common reconstruction techniques were selected for this study, including hamstring single-bundle, single-bundle with extraarticular tenodesis and anatomical double-bundle. Power analysis was performed in terms of changes at cartilage level measurable by mri with t2 mapping. A sample size of 42 patients with isolated traumatic acl injury were therefore identified, considering a possible 10% to follow-up. Subjects presenting skeletal immaturity, degenerative tear of acl, other potential risk factors of oa and previous knee surgery were excluded. Included patients were randomized and underwent one of the 3 specified reconstruction techniques. The patients were evaluated pre-operatively, intra-operatively and post-operatively at 4 and 18 months of follow-up. Clinical evaluation were performed at each time using subjective scores (koos) and generic health status (sf-12). The activity level were documented (marx) as well as objective function (ikdc). Preliminary results allow to verify kinematic patterns during active tasks, including level walking, stair descending and squatting using dynamic roentgen sterephotogrammetric analysis (rsa) methodology before and after the injured ligament reconstruction. Intra-operative kinematics was also available by using a dedicated navigation system, thus to verify knee laxity at the time of surgery. Additionally, non-invasive assessment was possible both before the reconstruction and during the whole follow-up period by using inertial sensors. Integrating 3d models with kinematic data, estimation of contact areas of stress patterns on cartilage was also possible. The presented integrate protocol allowed to acquired different types of information concerning clinical assessment, biochemical changes in cartilage and biomechanical parameters to identify which acl reconstruction could present the most chondroprotective behavior. Preliminary data showed all the potential of the proposed workflow. The study is on-going and final results will be shortly provided


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 27 - 27
2 Jan 2024
Dei A Hills M Chang W Wagey R Eaves A Louis S Zeugolis D Sampaio A
Full Access

Cell-based therapies offer a promising strategy to treat tendon injuries and diseases. Both mesenchymal stromal cells (MSCs) and pluripotent stem cells (PSCs) are good candidates for such applications due to their self-renewing and differentiation capacity. However, the translation of cell-based therapies from bench to bedside can be hindered by the use of animal-derived components in ancillary materials and by the lack of standardised media and protocols for in vitro tenogenic differentiation. To address this, we have optimized animal component-free (ACF) workflows for differentiating human MSCs and PSCs to tenocyte-like cells (TLCs) respectively. MSCs isolated from bone marrow (n = 3) or adipose tissue (n = 3) were expanded using MesenCult™-ACF Plus Culture Kit for at least 2 passages, and differentiated to TLCs in 21 days using a step-wise approach. Briefly, confluent cultures were treated with an ACF tenogenic induction medium for 3 days, followed by treatment with an ACF maturation medium for 18 days. Monolayer cultures were maintained at high density without passaging for the entire duration of the protocol, and the medium was changed every 2 – 3 days. In a similar fashion, embryonic (n = 3) or induced PSCs (n = 3) were first differentiated to acquire a mesenchymal progenitor cell (MPC) phenotype in 21 days using STEMdiff™ Mesenchymal Progenitor Kit, followed by the aforementioned tenogenic protocol for an additional 21 days. In all cases, the optimized workflows using ACF formulations consistently activated a tenogenic transcriptional program, leading to the generation of elongated, spindle-shaped tenomodulin-positive (TNMD+) cells and deposition of an extracellular matrix predominantly composed of collagen type I. In summary, here we describe novel workflows that can robustly generate TLCs from MSCs and hPSC-derived MPCs for potential translational applications


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 85 - 85
17 Apr 2023
Maas A Puente Reyna A Grupp T
Full Access

Aim of this study was the development of a dynamic FE-framework to identify worst-case size combinations and kinematics in a virtual wear simulator setup covering five daily activities and high, dynamic loads. Two cruciate sacrificing knee designs (D1 & D2) were tested physically on a wear-testing machine prior the model development using a high demanding, daily activity protocol (HDA) [1]. A simplified FE-setup was generated, reduced to the 3D geometries of the assembly whereas the representation of the mechanical wear simulator conditions and the load transmission was achieved by joint elements. Inertial and other time-related effects of the physical situation were compensated by a system of spring- and damper elements. Using a time-series signal optimization approach on the anterior-posterior translation and the internal-external rotation results for each activity, 38 variable parameters were varied in between pre-defined limits in a semiautomatic workflow. For each design, two consecutive cycles of a single activity were analysed and the results of the second cycle were used for the optimization. Based on the determined values, a single set of averaged parameter settings was identified that covers all activity cycles sufficiently. A total of 1010 dynamic analyses were carried out in order to find a sharable set of parameter values. In this study, an efficient simulation workflow for design evaluation was developed. Therefore, a HDA wear-testing machine was simplified to boundary conditions and stabilizing elements, using a single set of parameters for all activities. The calculated kinematics were in a comparable range to the machine output. Further applications of the method were found in systematic analyses of entire implant systems to achieve consistent kinematics over the size compatibility range in the design process of new implant systems


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 97 - 97
11 Apr 2023
Milakovic L Dandois F Fehervary H Scheys L
Full Access

This study aims to create a novel computational workflow for frontal plane laxity evaluation which combines a rigid body knee joint model with a non-linear implicit finite-element model wherein collateral ligaments are anisotropically modelled using subject-specific, experimentally calibrated Holzpfel-Gasser-Ogden (HGO) models. The framework was developed based on CT and MRI data of three cadaveric post-TKA knees. Bones were segmented from CT-scans and modelled as rigid bodies in a multibody dynamics simulation software (MSC Adams/view, MSC Software, USA). Medial collateral and lateral collateral ligaments were segmented based on MRI-scans and are modelled as finite elements using the HGO model in Abaqus (Simulia, USA). All specimens were submitted varus/valgus loading (0-10Nm) while being rigidly fixed on a testing bench to prevent knee flexion. In subsequent computer simulations of the experimental testing, rigid bodies kinematics and the associated soft-tissue force response were computed at each time step. Ligament properties were optimised using a gradient descent approach by minimising the error between the experimental and simulation-based kinematic response to the applied varus/valgus loads. For comparison, a second model was defined wherein collateral ligaments were modelled as nonlinear no-compression spring elements using the Blankevoort formulation. Models with subject-specific, experimentally calibrated HGO representations of the collateral ligaments demonstrated smaller root mean square errors in terms of kinematics (0.7900° +/− 0.4081°) than models integrating a Blankevoort representation (1.4704° +/− 0.8007°). A novel computational workflow integrating subject-specific, experimentally calibrated HGO predicted post-TKA frontal-plane knee joint laxity with clinically applicable accuracy. Generally, errors in terms of tibial rotation were higher and might be further reduced by increasing the interaction nodes between the rigid body model and the finite element software. Future work should investigate the accuracy of resulting models for simulating unseen activities of daily living


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 63 - 63
2 Jan 2024
Charbonnier B Guyon L Touya N Dutilleul M Véziers J Maitre P Gauthier O Corre P Weiss P
Full Access

Developments in the field of additive manufacturing have allowed significant improvements in the design and production of scaffolds with biologically relevant features to treat bone defects. Unfortunately, the workflow to generate personalized scaffolds is source of inaccuracies leading to a poor fit between the implant and patients' bone defects. In addition, scaffolds are often brittle and fragile, uneasing their handling by surgeons, with significant risks of fracture during their insertion in the defect. Consequently, we developed organo-mineral cementitious scaffolds displaying evolutive mechanical properties which are currently being evaluated to treat maxillofacial bone deformities in veterinary clinics. Treatment of dog patients was approved by ethic and welfare committees (CERVO-2022-14-V). To date, 8 puppies with cleft palate/lip deformities received the following treatment. Two weeks prior surgery, CT-scan of patient's skull was performed to allow for surgical planning and scaffold designing. Organo-mineral printable pastes were formulated by mixing an inorganic cement precursor (α-Ca3(PO4)2) to a self-reticulating hydrogel (silanized hyaluronic acid) supplemented with a viscosifier (hydroxymethylpropylcellulose). Scaffolds were produced by robocasting of these pastes. Surgical interventions included the reconstruction of soft tissues, and the insertion of the scaffold soaked with autologous bone marrow. Bone formation was monitored 3 and 6 months after reconstruction, and a biopsy at 6 months was performed for more detailed analyses. Scaffolds displayed great handling properties and were inserted within bone defects without significant issue with a relevant bone edges/scaffold contact. Osteointegration of the scaffolds was observed after 3 months, and regeneration of the defect at 6 months seemed quite promising. Preliminary results have demonstrated a potential of the set-up strategy to treat cleft lip/palate deformities in real, spontaneous clinical setting. Translation of these innovative scaffolds to orthopedics is planned for a near future


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 129 - 129
2 Jan 2024
Doyle S Winrow D Aregbesola T Martin J Pernevik E Kuzmenko V Howard L Thompson K Johnson M Coleman C
Full Access

In 2021 the bone grafting market was worth €2.72 billion globally. As allograft bone has a limited supply and risk of disease transmission, the demand for synthetic grafting substitutes (BGS) continues to grow while allograft bone grafts steadily decrease. Synthetic BGS are low in mechanical strength and bioactivity, inspiring the development of novel grafting materials, a traditionally laborious and expensive process. Here a novel BGS derived from sustainably grown coral was evaluated. Coral-derived scaffolds are a natural calcium carbonate bio-ceramic, which induces osteogenesis in bone marrow mesenchymal stem cells (MSCs), the cells responsible for maintaining bone homeostasis and orchestrating fracture repair. By 3D printing MSCs in coral-laden bioinks we utilise high throughput (HT) fabrication and evaluation of osteogenesis, overcoming the limitations of traditional screening methods. MSC and coral-laden GelXA (CELLINK) bioinks were 3D printed in square bottom 96 well plates using a CELLINK BIO X printer with pneumatic adapter Samples were non-destructively monitored during the culture period, evaluating both the sample and the culture media for metabolism (PrestoBlue), cytotoxicity (lactose dehydrogenase (LDH)) and osteogenic differentiation (alkaline phosphatase (ALP)). Endpoint, destructive assays used included qRT-PCR and SEM imaging. The inclusion of coral in the printed bioink was biocompatable with the MSCs, as reflected by maintained metabolism and low LDH release. The inclusion of coral induced osteogenic differentiation in the MSCs as seen by ALP secretion and increased RUNX2, collagen I and osteocalcin transcription. Sustainably grown coral was successfully incorporated into bioinks, reproducibly 3D printed, non-destructively monitored throughout culture and induced osteogenic differentiation in MSCs. This HT fabrication and monitoring workflow offers a faster, less labour-intensive system for the translation of bone substitute materials to clinic. Acknowledgements: This work was co-funded by Enterprise Ireland and Zoan Biomed through Innovation Partnership IP20221024


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 82 - 82
14 Nov 2024
Kühl J Grocholl J Seekamp A Klüter T Fuchs S
Full Access

Introduction. The surgical treatment of critical-sized bone defects with complex three-dimensional (3D) geometries is a challenge for the treating surgeon. Additive manufacturing such as 3D printing enables the production of highly individualized bone implants meeting the shape of the patient's bone defect and including a tunable internal structure. In this study, we showcase the design process for patient-specific implants with critical-sized tibia defects. Methods. Two clinical cases of patients with critical tibia defects (size 63×20×21 mm and 50×24×17 mm) were chosen. Brainlab software was used for segmentation of CT data generating 3D models of the defects. The implant construction involves multiple stages. Initially, the outer shell is precisely defined. Subsequently, the specified volume is populated with internal structures using Voronoi, Gyroid, and NaCl crystal structures. Variation in pore size (1.6 mm and 1.0 mm) was accomplished by adjusting scaffold size and material thickness. Results. An algorithmic design process in Rhino and Grasshopper was successfully applied to generate model implants for the tibia from Ct data. By integrating a precise mesh into an outer shell, a scaffold with controlled porosity was designed. In terms of the internal design, both Voronoi and Gyroid form macroscopically homogeneous properties, while NaCl, exhibits irregularities in density and consequently, in the strength of the structure. Data implied that Voronoi and Gyroid structures adapt more precisely to complex and irregular outer shapes of the implants. Conclusion. In proof-of-principle studies customized tibia implants were successfully generated and printed as model implants based on resin. Further studies will include more patient data sets to refine the workflows and digital tools for a broader spectrum of bone defects. The algorithm-based design might offer a tremendous potential in terms of an automated design process for 3D printed implants which is essential for clinical application


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 4 - 4
2 Jan 2024
Han S Yoo Y Choi H Lee K Korhonen R Esrafilian A
Full Access

It is known that the gait dynamics of elderly substantially differs from that of young people. However, it has not been well studied how this age-related gait dynamics affects the knee biomechanics, e.g., cartilage mechanical response. In this study, we investigated how aging affects knee biomechanics in a female population using subject-specific computational models. Two female subjects (ages of 23 and 69) with no musculoskeletal disorders were recruited. Korea National Institute for Bioethics Policy Review Board approved the study. Participants walked at a self-selected speed (SWS), 110% of SWS, and 120% of SWS on 10 m flat ground. Three-dimensional marker trajectories and ground reaction forces (Motion Analysis, USA), and lower limbs’ muscle activities were measured (EMG, Noraxon USA). Knee cartilage and menisci geometries were obtained from subjects’ magnetic resonance images (3T, GE Health Care). An EMG-assisted musculoskeletal finite element modeling workflow was used to estimate knee cartilage tissue mechanics in walking trials. Knee cartilage and menisci were modeled using a transversely isotropic poroviscoelastic material model. Walking speed in SWS, 110%, and 120% of SWS were 1.38 m/s, 1.51 m/s, and 1.65 m/s for the young, and 1.21 m/s, 1.34 m/s and 1.46 m/s for the elderly, respectively. The maximum tensile stress in the elderly tibial cartilage was ~25%, ~33%, and ~32% lower than the young at SWS, 110%, and 120% of SWS, respectively. These preliminary results suggest that the cartilage in the elderly may not have enough stimulation even at 20% increases in walking speed, which may be one reason for tissue degeneration. To enhance these findings, further study with more subjects and different genders will investigate how age-related gait dynamics affects knee biomechanics. Acknowledgments: Australian NHMRC Ideas Grant (APP2001734), KITECH (JE220006)


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 53 - 53
17 Apr 2023
Woodhead J Paxton J
Full Access

While the COVID-19 pandemic highlighted the need for more accessible anatomy instruction tools, it is also well known that the time allocated to practical anatomy teaching has reduced in the past decades. Notably, the opportunity for anatomy students to learn osteology is not prioritised, nor is the ability of students to appreciate osteological variation. As a potential method of increasing accessibility to bone models, this study describes the process of developing 3D-printed replicas of human bones using a combination of structured light scanning (SLS) technology and 3D printing. Human bones were obtained from the Anatomy Lab at the University of Edinburgh and were digitised using SLS via an Einscan H scanner. The resulting data was then used to print multiple replicas of varying materials, colours, scales and resolutions on an Ultimaker S3 3D printer. To gather opinion on these models and their variables, surveys were completed by anatomy students and educators (n=57). Data was collected using a Likert scale response, as well as free-text answers to gather qualitative information. 3D scans of the scapula, atlas (C1 vertebrae) and femur were successfully obtained. Plastic replicas were produced with defined variables in 4 separate stations e.g. different colours, to obtain results from survey respondents. For colour, 87.7% of survey respondents preferred white models, with 7% preferring orange and 5.3% preferring blue. For material, 47.4% of respondents preferred PLA (Polylactic acid), while 33.3% preferred ABS (Acrylonitrile butadiene styrene), 12.3% preferred Pet-G (Polyethylene terephthalate glycol), 3.5% preferred Glassbend and 3.5% had no preference. Additional results based on scale and resolution were also collected. This initial study has demonstrated a proof-of-concept workflow for SLS technology to be combined with 3D printing to produce plastic replicas of human bones. Our study has provided key information about the colour, scale, material and resolution required for these models. Our future work will focus on determining accuracy of the models and their use as teaching aids for osteology education


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 81 - 81
2 Jan 2024
Vautrin A Aw J Attenborough E Varga P
Full Access

Although 3D-printed porous dental implants may possess improved osseointegration potential, they must exhibit appropriate fatigue strength. Finite element analysis (FEA) has the potential to predict the fatigue life of implants and accelerate their development. This work aimed at developing and validating an FEA-based tool to predict the fatigue behavior of porous dental implants. Test samples mimicking dental implants were designed as 4.5 mm-diameter cylinders with a fully porous section around bone level. Three porosity levels (50%, 60% and 70%) and two unit cell types (Schwarz Primitive (SP) and Schwarz W (SW)) were combined to generate six designs that were split between calibration (60SP, 70SP, 60SW, 70SW) and validation (50SP, 50SW) sets. Twenty-eight samples per design were additively manufactured from titanium powder (Ti6Al4V). The samples were tested under bending compression loading (ISO 14801) monotonically (N=4/design) to determine ultimate load (F. ult. ) (Instron 5866) and cyclically at six load levels between 50% and 10% of F. ult. (N=4/design/load level) (DYNA5dent). Failure force results were fitted to F/F. ult. = a(N. f. ). b. (Eq1) with N. f. being the number of cycles to failure, to identify parameters a and b. The endurance limit (F. e. ) was evaluated at N. f. = 5M cycles. Finite element models were built to predict the yield load (F. yield. ) of each design. Combining a linear correlation between FEA-based F. yield. and experimental F. ult. with equation Eq1 enabled FEA-based prediction of F. e. . For all designs, F. e. was comprised between 10% (all four samples surviving) and 15% (at least one failure) of F. ult. The FEA-based tool predicted F. e. values of 11.7% and 12.0% of F. ult. for the validation sets of 50SP and 50SW, respectively. Thus, the developed FEA-based workflow could accurately predict endurance limit for different implant designs and therefore could be used in future to aid the development of novel porous implants. Acknowledgements: This study was funded by EU's Horizon 2020 grant No. 953128 (I-SMarD). We gratefully acknowledge the expert advice of Prof. Philippe Zysset


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 37 - 37
1 Jan 2017
Fantini M De Crescenzio F Brognara L Baldini N
Full Access

A complete design-manufacturing process for delivering customized foot orthoses by means of digital technologies is presented. Moreover, this feasibility study aims to combine a semi-automatic modelling approach with the use of low-cost devices for 3D scanning and 3D printing. In clinical practice, traditional methods for manufacturing customized foot orthoses are completely manual, mainly based on plaster casting plus hand fabrication, and are widely used among practitioners. Therefore, results depend on skills and expertise of individual orthoptists and podiatrists that need considerable training and practice in order to obtain optimal functional devices. On the other side, novel approaches for design and manufacturing customized foot orthoses by means of digital technologies (generally based on 3D scanning, 3D modelling and 3D printing) are recently reported as a valid alternative method to overcome these limitations. This study has been carried out in an interdisciplinary approach between the staff of Design and Methods in Industrial Engineering and the staff of Podology with the aim to assess the feasibility of a novel user-friendly and cost-effective solution for delivering customized functional foot orthoses. More specifically, a Generative Design (GD) workflow has been developed to enable practitioners without enough CAD skills to easily 3D modelling and interactively customize foot orthoses. Additionally, low-cost devices for 3D scanning and 3D printing that have been acquired by the Podology Lab, were also tested and compared with the high-cost ones of the Department of Industrial Engineering. The complete process is divided into three main steps. The first one regards the digitization of the patient's foot by means of 3D laser scanner devices. Then a user-friendly 3D modelling approach, developed for this purpose as GD workflow, allows interactively generating the customized foot orthosis, also adjusting several features and exporting the watertight mesh in STL format. Finally, the last step involves Additive Manufacturing systems to obtain the expected physical item ready to use. First, for what concerns the digitizing step, the acquired data resulting from 3D scanning by means of the low-cost system (Sense 3D scanner) appears accurate enough for the present practical purposes. Then, with respect to the 3D modelling step, the proposed GD workflow in Grasshopper is intuitive and allows easily and interactively customizing the final foot orthosis. Finally, regarding the Additive Manufacturing step, the low cost 3D printer (Wasp Delta 40 70) is capable to provide adequate results for the shell of the foot orthosis. Moreover, this system appears really versatile in reason of the capability to print in a wide range of different filaments. Therefore, since the market of 3D printing filaments is rapidly growing, building sessions with different materials (both flexible and rigid such, for example, PLA, AB and PETG) were completed. This study validated, in terms of feasibility, that the use of a GD modelling approach, in combination with low-cost devices for 3D scanning and 3D printing, is a real alternative to conventional processes for providing customized foot orthosis. Moreover, the interdisciplinary approach allowed the transfer of skills and knowledge to the practitioners involved and, also, the low-cost devices Sense 3D scanner and Wasp Delta 40 70 that have been acquired by the Podology Lab, were demonstrated suitable for this kind of applications


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 2 - 2
1 Dec 2020
Carbone V Palazzin A Bisotti M Bursi R Emili L
Full Access

Regulatory bodies impose stringent pre-market controls to certify the safety and compatibility of medical devices. However, internationally recognized standard tests may be expensive, time consuming and challenging for orthopedic implants because of many possible sizes and configurations. In addition, cost and time of standard testing may endanger the feasibility of custom-device production obtained through innovative manufacturing technologies like 3d printing. Modeling and simulation (M&S) tools could be used by manufactures and at point-of-care to improve design confidence and reliability, accelerate design cycles and processes, and optimize the amount of physical testing to be conducted. We propose an integrated cloud platform to perform in silico testing for orthopedic devices, assessing mechanical safety and electromagnetic compatibility, in line with recognized standards and regulatory guidelines. The . InSilicoTrials.com. platform contains two M&S tools for orthopedic devices: CONSELF and NuMRis. CONSELF (. conself.com. ) uses Salome-Meca 2017 to compute static implant stresses and strains on metallic orthopedic devices, following the requirements and considerations of ASTM F2996-20 for non-modular hip femoral stems and ASTM F3161-16 for total knee femoral components. Simulation results were consistent with those reported in the two standards. NuMRis (. numris.insilicomri.com. ) uses ANSYS HFSS and ANSYS Mechanical 2019R3 to compute radio-frequency energy absorption and induced heating in 1.5T and 3T MRI coils, replicating the ASTM F2182-19e2 Standard Test Method. Simulation results were validated against in vitro measurements. The integrated M&S workflow on the cloud platform allows the user to upload the 3D geometry and the material properties of the orthopedic device to be tested, automatically set up the standard testing scenarios, run simulations and process outcome, with the option to summarize the results in accordance with current FDA guidance on M&S reporting. The easy-to-use interfaces of InSilicoTrials tools run through commercial web browsers, requiring no specific expertise in computational methods or additional on-premise software and hardware resources, since all simulations are run remotely on cloud infrastructure. The integrated cloud platform can be used to evaluate design alternatives, test multi-configuration devices, perform multi-objective design optimization and identify worst-case scenarios within a family of implant sizes, or to assess the safety and compatibility of custom-made orthopedic devices. InSilicoTrials.com. is the first cloud platform offering a collection of M&S tools to perform in silico standard testing for orthopedic devices. The proposed tools allow to assess mechanical safety and electromagnetic compatibility before prototyping, preventing risks and criticalities for the patient, and helping manufacturers and point-of-care to accelerate time and reduce costs during the device development. The proposed platform promotes the broader adoption of digital evidence in preclinical trials, supporting the device submission process and pre-market regulatory evaluation, and helping secure regulatory approval


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 32 - 32
1 Jan 2017
Curto M Pani M Tozzi G Barber A Parwani R
Full Access

The human musculoskeletal system is a biological composite of hard and soft material phases organized into a complex 3D structure. The replication of mechanical properties in 3-dimensional space, so called ‘4D’ techniques, therefore promises next-generation of prosthetics and engineering structures for the musculoskeletal system. Approaches using in situ indentation of tissue correlated with micro computed tomography (μCT) are used here to provide a 4D data set that is representative of the native tissue at high fidelity. Multi-material 3D printing is exploited to realize the collected 4D data set by using materials with a wide range of mechanical properties and printing structures representative of native tissue. We demonstrate this correlative approach to reproduce bone structures and highlight a workflow approach of indentation, μCT and 3D printing to potentially mimic any structure found in the musculoskeletal system. Structures in the human musculoskeletal system, such as bone [1] and tendon-bone connective tissue [2], can be considered as complex composites of hard and soft materials. Development of prosthetics capable of replacing body parts lost to trauma, disease or congenital conditions requires the accurate replication of the required body part. 3D printing promises considerable advantages over other manufacturing methods in mimicking native tissue, including the ability to produce complex structures [3]. However, accurate representation of whole body parts down to tissue microstructures requires correlative approaches where mechanical properties in 3-dimensional space are known. The objective of this study is to apply in situ indentation, correlate to 3D imaging of bone using μCT and finally 3D print mimicked structures. Samples of bovine compact bone were imaged at high resolution using μCT (Xradia Versa 510, Zeiss, USA). A custom build in situ micro indentation setup within the μCT was used to map the mechanical properties of the bone at multiple positions. Correlation between sample x-ray attenuation and corresponding elastic modulus found from indentation was established. Data was converted to a 4D data set of elastic modulus values in 3D space, segmented and exported to the 3D printer. An inkjet 3D printer (Projet 5500X, 3D Systems, USA) was used to print materials with a range of mechanical properties that approach those found in the native bone material. Macroscopic testing on both bone samples and 3D printed samples were carried out using standard compression (Instron, UK). Preliminary results indicated similarity between 3D printed structures and native bone tissue. Macroscopic testing of bone samples and 3D printed equivalents showed additional similarities in stress-strain behaviour. Our preliminary work presented here indicates that the workflow of 3D imaging correlated to point mechanical measurements using indentation is suitable to give a 4D dataset that is representative of the native bone tissue. 3D printing is able to produce structures that start to mimick bone but are critically dependent on the data segmentation, particularly averaging imaging data to a resolution that is appropriate for the 3D printer


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 132 - 132
1 Nov 2018
Eglin D Geven M Schmid T Grijpma D Bos R Richards G Alini M Guillaume O
Full Access

Orbital floor (OF) fractures are commonly treated by implanting either bioinert titanium or polyethylene implants, or by autologous grafts. A personalized implant made of biodegradable and osteopromotive poly(trimethylene carbonate) loaded with hydroxyapatite (PTMC-HA) could be a suitable alternative for patients where a permanent implant could be detrimental. A workflow was developed from the implant production using stereolithography (SLA) based on patient CT scan to the implantation and assessment its performance (i.e. implant stability, orbit position, bone formation) compared to personalised titanium implants in a repair OF defect sheep model. Implants fabrication was done using SLA of photo-crosslinkable PTMC mixed with HA [1–3]. Preclinical study: (sheep n=12, ethic number 34_2016) was conducted by first scanning the OF bone of each sheep in order to design and to fabricate patient specific implants (PSI) made of PTMC-HA. The fabricated PSI was implanted after creating OF defect. Bone formation and defect healing was compared to manually shaped titanium mesh using time-laps X-ray analyses, histology (Giemsa-Eosin staining) and sequential fluorochrome staining over 3-months. Additionally, the osteoinductive property of the biomaterials was assessed by intramuscular implantation (IM). In this study, we showed that the composite PTMC-HA allowed for ectopic bone formation after IM implantation, without requiring any biotherapeutics. In addition, we could repair OF defect on sheep using SLA-fabricated PTMC-HA with a good shape fidelity (compared to the virtual implant) and a better bone integration compared to the titanium mesh. This study opens the field of patient-specific implants made of degradable and osteoinductive scaffolds fabricated using additive manufacturing to replace advantageously autologous bone and titanium implants


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 13 - 13
1 Apr 2018
Van Houcke J Galibarov PE Fauconnier S Pattyn C Audenaert EE
Full Access

Introduction. A deep squat (DS) is a challenging motion at the level of the hip joint generating substantial reaction forces (HJRF). During DS, the hip flexion angle approximates the functional range of hip motion. In some hip morphologies this femoroacetabular conflict has been shown to occur as early as 80° of hip flexion. So far in-vivo HJRF measurements have been limited to instrumented hip implants in a limited number of older patients performing incomplete squats (< 50° hip flexion and < 80° knee flexion). Clearly, young adults have a different kinetical profile with hip and knee flexion ranges going well over 100 degrees. Since hip loading data on this subgroup of the population is lacking and performing invasive measurements would be unfeasible, this study aimed to report a personalised numerical model solution based on inverse dynamics to calculate realistic in silico HJRF values during DS. M&M. Fifty athletic males (18–25 years old) were prospectively recruited for motion and morphological analysis. DS motion capture (MoCap) acquisitions and MRI scans of the lower extremities with gait lab marker positions were obtained. The AnyBody Modelling System (v6.1.1) was used to implement a novel personalisation workflow of the AnyMoCap template model. Bone geometries, semi-automatically segmented from MRI, and corresponding markers were incorporated into the template human model by an automated nonlinear morphing. Furthermore, a state-of-the-art TLEM 2.0 dataset, included in the Anybody Managed Model Repository (v2.0), was used in the template model. The subject-specific MoCap trials were processed to compute squat motion by resolving an overdeterminate kinematics problem. Inverse dynamics analyses were carried out to compute muscle and joint reaction forces in the entire body. Resulting hip joint loads were validated with measured in-vivo data from Knee bend trials in the OrthoLoad library. Additionally, anterior pelvic tilt, hip and knee joint angles were computed. Results. A preliminary set of results (20 out of 50 subjects) was analysed. The average HJRF was 3.42 times bodyweight at the peak of DS (95% confidence interval: 2.99 – 3.85%BW). Maximal hip and knee flexion angles were 113° (109.7°–116.8°) and 116° (109.4 – 123.0°) respectively. The anterior pelvic tilt demonstrated a biphasic profile with peak value of 33° (28.1° – 38.4°). Discussion. A non-invasive and highly personalised alternative for determining hip loading was presented. Consistently higher HJR forces during DS in young adults were demonstrated as opposed to the Orthoload dataset. Similarly, knee and hip flexion angles were much higher, which could support the increase in HJRF. We can conclude that DS hip kinetics in young adults clearly differ from the typical total hip arthroplasty population


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 45 - 45
1 Jan 2017
Valente G Pitto L Schileo E Piroddi S Leardini A Manfrini M Taddei F
Full Access

Biomechanical interpretations of bone adaptation in biological reconstructions following bone tumors would be crucial for orthopedic oncologists, particularly if based on quantitative observations. This would help to plan for surgical treatments, rehabilitative programs and communication with the patients. In particular, outcomes of the Capanna technique, which combines bone allograft and vascularized fibula autograft, lead to stable and durable reconstructions [1, 2], and different remodeling patterns have been described [3] as a response to mechanical loading. However, there are several events that are not understood and require a biomechanical interpretation, as the evolution patterns can evolve towards conditions that threaten the strength of the reconstruction. We aimed to (i) analyze the biomechanical adaptation of a femoral reconstruction after Ewing sarcoma, in terms of morphological and densitometric evolution of bone from CT data, internal loads acting on the bone during movement, mechanical competence of the reconstruction, and (ii) relate in-progress bone resorption to the mechanical stimulus induced by different motor activities. Eight CT datasets of a patient (8 yrs at surgery using the Capanna technique) during 76-month follow-up were available. The evolution of bone morphology, density and moments of inertia was quantified. At the last control, the patient underwent gait analysis (walking, chair rise/sit, stair ascent/descent, squat). We created a multiscale musculoskeletal and finite element model from CT scans and motion analysis data at the end of follow-up, using state-of-the-art modeling workflows [4, 5], to analyze muscle and joint loads, and to compare the mechanical competence of the reconstructed bone with the contralateral limb, in the current real condition and in a possible revision surgery that removed proximal screws. Although there were no reconstruction complications and osteo-fusion with intense remodeling between allograft and autograft was shown, there was a progressive decrease in allograft cortical thickness and density. There were strategies of muscle coordination that led to differences in joint loads between limbs more marked in more demanding motor activities, and generally larger in the contralateral limb. The operated femur presented a markedly low ratio of physiological strain due to load-sharing with the metal implant, particularly in the lateral aspect. A possible revision surgery removing the three most proximal screws would help restore a physiological strain configuration, while the safety of the reconstruction would not be threatened. We suggest that bone resorption is related to load-sharing and to the internal forces exerted during movement, and the mechanical stimulus should be improved by adopting modifications in the surgical treatment and by promoting physical therapy aimed at specific muscle strengthening


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 49 - 49
1 Jan 2017
Pegg E Gill H
Full Access

Using Python scripting it is possible to automate the pre-processing, solving and post-processing stages of finite element analysis using ABAQUS software. This is particularly useful when running multiple models parametrically. When the model involves a bony part, it is necessary to assign material properties based on the CT scan to represent bone heterogeneity, and unfortunately this cannot currently be done from within ABAQUS using software such as Bonemat [1]. To address this issue a Python package was written called ‘py_bonemat_abaqus’ to assign material properties from within ABAQUS. The purpose of this study was to compare the material assignments of py_bonemat_abaqus and Bonemat, to compare the processing speed, and to describe the workflow. The software packages were compared using a CT scan of a half pelvis downloaded from the VAKHUM database, and the associated hexahedral finite element mesh of the left half pelvis. To examine different element types, the hexahedral mesh was converted to linear and quadratic tetrahedral elements by dividing each hexahedron into 5 tetrahedral elements. The equations used to convert the Hounsfield Unit (HU) values to apparent density (papp), and to convert the apparent density to elastic modulus (E) are shown in Equations 1&2 [2]. Equation 1: papp = −0.021075 + 0.000786 HU. Equation 2 E = 2.0173 papp. 2.46. The time taken to analyse the models by each software was assessed using a Windows 7 PC with a 64-bit operating system, 4 CPUS, 8 GB of RAM and an Intel Core I5-3470 processor. The mean difference between the moduulus assignment made by py_bonemat_abaqus and Bonemat was −0.05 kPa (range −10.19 to 4.50 kPa, standard deviation 0.62 kPa). The Python package took a similar time to run for all element types; this was between 109 and 126 s. Bonemat software was significantly faster, and took between 5 and 20 s. Finally, the Python package was successfully used from within a Python script to perform material assignment from within ABAQUS software in a fully automated manner. Material assignments were almost equivalent between the two software packages, with any differences explainable by rounding effects. To put the differences into context, a difference of −0.05 kPa is 0.00000002% of the typical modulus of cortical bone (20.7 GPa), and 0.00000003% of the modulus of trabecular bone (14.8 GPa) [3]. The Python package was slower to process the models, but was successfully able to assign material properties from within ABAQUS software as part of an automated script


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 53 - 53
1 Jan 2017
Devivier C Roques A Taylor A Heller M Browne M
Full Access

There is a critical need for safe innovation in total joint replacements to address the demands of an ageing yet increasingly active population. The development of robust implant designs requires consideration of uncertainties including patient related factors such as bone morphology but also activity related loads and the variability in the surgical procedure itself. Here we present an integrated framework considering these sources of variability and its application to assess the performance of the femoral component of a total hip replacement (THR). The framework offers four key features. To consider variability in bone properties, an automated workflow for establishing statistical shape and intensity models (SSIM) was developed. Here, the inherent relationship between shape and bone density is captured and new meshes of the target bone structures are generated with specific morphology and density distributions. The second key feature is a virtual implantation capability including implant positioning, and bone resection. Implant positioning is performed using automatically identified bone features and flexibly defined rules reflecting surgical variability. Bone resection is performed according to manufacturer guidelines. Virtual implantation then occurs through Boolean operations to remove bone elements contained within the implant's volume. The third feature is the automatic application of loads at muscle attachment points or on the joint contact surfaces defined on the SSIM. The magnitude and orientation of the forces are derived from models of similar morphology for a range of activities from a database of musculoskeletal (MS) loads. The connection to this MS loading model allows the intricate link between morphology and muscle forces to be captured. Importantly, this model of the internal forces provides access to the spectrum of loading conditions across a patient population rather than just typical or average values. The final feature is an environment that allows finite element simulations to be run to assess the mechanics of the bone-implant construct and extract results for e.g. bone strains, interface mechanics and implant stresses. Results are automatically processed and mapped in an anatomically consistent manner and can be further exploited to establish surrogate models for efficient subsequent design optimization. To demonstrate the capability of the framework, it has been applied to the femoral component of a THR. An SSIM was created from 102 segmented femurs capturing the heterogeneous bone density distributions. Cementless femoral stems were positioned such that for the optimal implantation the proximal shaft axis of the femurs coincided with the distal stem axis and the position of the native femoral head centre was restored. Here, the resection did not affect the greater trochanter and the implantations were clinically acceptable for 10000 virtual implantations performed to simulate variability in patient morphology and surgical variation. The MS database was established from musculoskeletal analyses run for a cohort of 17 THR subjects obtaining over 100,000 individual samples of 3D muscle and joint forces. An initial analysis of the mechanical performance in 7 bone-implant constructs showed levels of bone strains and implant stresses in general agreement with the literature