Advertisement for orthosearch.org.uk
Results 1 - 20 of 20
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 112 - 112
23 Feb 2023
Deng Y Zhang D Smith P Li R
Full Access

Hip and knee arthroplasty (HKA) are two of the most successful orthopaedic procedures. However, one major complication necessitating revision surgery is osteolysis causing aseptic loosening of the prosthesis. JAK-STAT has been demonstrated to influence bone metabolism and can be regulated by microRNA (miRNA). Adult patients with osteolysis or aseptic loosening undergoing revision HKA were recruited. Age and gender matched patients undergoing primary hip or knee arthroplasty were our controls. Samples of bone, tissue and blood were collected and RNA isolation was performed. The best quality samples were used for RNA-sequencing. Data analysis was performed using RStudio and Galaxy to identify differentially expressed genes. Western blotting of IL6 was used to confirm protein expression. Five circulating miRNA were identified which had 10 differentially expressed genes in bone and 11 differentially expressed genes in tissue related to the JAK-STAT pathway. IL6 in bone and EpoR in bone were highly significant and IL6 in tissue, MPL in bone, SOCS3 in tissue, JAK3 in bone and SPRED1 in bone were borderline significant. Western blot results demonstrated up-expression of IL6 in bone tissue of revision patients. Periprosthetic osteolysis and aseptic loosening can be attributed to miRNA regulation of the JAK-STAT pathway in osteoblasts and osteoclasts, leading to increased bone resorption. These findings can be used for further experiments to determine utility in the clinical setting for identifying diagnostic markers or therapeutic targets


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 59 - 59
1 Jul 2020
Qiu H Cheng T Chim SM Zhu S Xu H Qin A Wang C Teguh D Zhang G Tickner J Yao F Vrielink A Smithers L Pavlos N Xu J
Full Access

Bone is a connective tissue that undergoes constant remodeling. Any disturbances during this process may result in undesired pathological conditions. A single nucleotide substitution (596T-A) in exon eight which leads to a M199K mutation in human RANKL was found to cause osteoclast-poor autosomal recessive osteopetrosis (ARO). Patients with ARO cannot be cured by hematopoietic stem cell transplantation and, without proper treatments, will die in their early age. To date, how this mutation alters RANKL function has not been characterized. We thus hypothesized that hRANKL M199 residue is a structural determinant for normal RANKL-RANK interaction and osteoclast differentiation. By sharing our findings, we aim to achieve an improved clinical outcome in treating bone-related diseases such as osteoporosis, ARO and osteoarthritis. Site-directed mutagenesis was employed to create three rat RANKL mutants, replacing the methionine 200 (human M199 equivalent residue) with either lysine (M200K), alanine (M200A) or glutamic acid (M200E). Recombinant proteins were subsequently purified through affinity chromatography and visualized by Coomassie blue staining and western blot. MTS was carried out before osteoclastogenesis assay in vitro to measure the cellular toxicity. Bone resorption pit assay, immuno-fluorescent staining, luciferase reporter assay, RT-PCR, western blot and calcium oscillation detection were also conducted to explore the biological effect of rRANKL mutants. Computational modeling, thermal Shift Assay, western blot and protein binding affinity experiments were later carried out for structural analyses. rRANKL mutants M200K/A/E showed a drastically reduced ability to induce osteoclast formation and did not demonstrate features of competitive inhibition against wild-type rRANKL. These mutants are all incapable of supporting osteoclastic polarization and bone resorption or activating RANKL-induced osteoclast marker gene transcription. Consistently, they were unable to induce calcium flux, and also showed a diminished induction of IκBa degradation and activation of NF-kB and NFATc1 transcriptional activity. Furthermore, the transcriptional activation of the antioxidant response element (ARE) crucial in modulating oxidative stress and providing cytoprotection was also unresponsive to stimulation with rM200s. Structural analyses showed that rM200 is located in a hydrophobic pocket critical for protein folding. Thermal shift and western blot assays suggested that rM200 mutants formed unstructured proteins, with disturbed trimerisation and the loss of affinity to its intrinsic receptors RANK and OPG. Taken together, we first demonstrates the underlying cause of M199-meidated ARO in a cellular and molecular level by establishing a phenotype in BMMs similar to observed in human samples. Further investigation hints the structural significance of a hydrophobic pocket within the TNF-like region. Combined with pharmaceutical studies on small-molecule drugs, this finding may represent a therapeutic target motif for future development of anti-resorptive treatments


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 41 - 41
10 Feb 2023
Fryer C Jackson C Mckelvey K Lin H Xue. M
Full Access

Tendinopathy is a tendon pathology often resulting from a failed healing response to tendon injury. Activated protein C (APC) is a natural anti-coagulant with anti-inflammatory and wound healing promoting functions, which are mainly mediated by its receptors, endothelial protein C receptor (EPCR) and protease activated receptors (PARs). This study aimed to determine whether APC stimulates tenocyte healing and if so, to assess the involvement of the receptors. Mouse-tail tenocytes were isolated from 3-week-old wild type (WT), PAR- 1 knockout (KO) and PAR-2 KO mice. The expression of EPCR, PAR-1 and −2 and the effect of APC on tenocytes tendon healing and the underlying mechanisms were investigated by Reverse transcription real time PCR, western blot, 3- (4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay, zymography, and scratch wound healing/ migration assay. When compared to WT cells, PAR-1 KO tenocytes showed increased cell proliferation (3.3-fold, p<0.0001), migration (2.7-fold, p<0.0001) and wound healing (3-fold, p<0.0001), whereas PAR-2 KO cells displayed decreased cell proliferation (0.6-fold, p<0.05) and no change in cell migration or wound healing. APC at 1 μg/ml stimulated WT and PAR-1 KO tenocyte proliferation (~1.3, respectively, p<0.05) and wound healing (~1.3-fold, respectively, p<0.05), and additionally promoted PAR1-KO cell migration (1.4-fold, p<0.0001). APC only increased the migration (2-fold, p<0.05) of PAR-2 KO tenocytes. The activation of AKT, extracellular signal-regulated kinase (ERK)-2, and glycogen synthase kinase (GSK)-β3, the intracellular molecules that are associated with cell survival/growth, and matrix metalloproteinase (MMP)-2 that is related to cell migration and wound healing, were increased in all three cell lines in response to APC treatment. These findings show that PAR-1 and PAR-2 act differentially in tenocyte proliferation/migration/wound healing. APC likely promotes tenocyte proliferation/ wound healing via PAR-2, not PAR-1


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 86 - 86
1 Dec 2022
Grant M Bokhari R Alsaran Y Epure LM Antoniou J Mwale F
Full Access

Degenerative disc disease (DDD) is a common cause of lower back pain. Calcification of the intervertebral disc (IVD) has been correlated with DDD, and is especially prevalent in scoliotic discs. The appearance of calcium deposits has been shown to increase with age, and its occurrence has been associated with several other disorders such as hyperparathyroidism, chondrocalcinosis, and arthritis. Trauma, vertebral fusion and infection have also been shown to increase the incidence of IVD calcification. Our data indicate that Ca. 2+. and expression of the extracellular calcium-sensing receptor (CaSR) are significantly increased in mild to severely degenerative human IVDs. In this study, we evaluated the effects of Ca. 2+. and CaSR on the degeneration and calcification of IVDs. Human donor lumbar spines of Thompson grade 2, 3 and 4 through organ donations within 24 hs after death. IVD cells, NP and AF, were isolated from tissue by sequential digestion with Pronase followed by Collagenase. Cells were expanded for 7 days under standard cell culture conditions. Immunohistochemistry was performed on IVD tissue to validate the grade and expression of CaSR. Free calcium levels were also measured and compared between grades. Immunocytochemistry, Western blotting and RT-qPCR were performed on cultured NP and AF cells to demonstrate expression of CaSR, matrix proteins aggrecan and collagen, catabolic enzymes and calcification markers. IVD cells were cultured in increasing concentrations of Ca. 2+. [1.0-5.0 mM], CaSR allosteric agonist (cincalcet, 1 uM), and IL-1b [5 ng/mL] for 7 days. Ex vivo IVD organ cultures were prepared using PrimeGrowth Disc Isolation System (Wisent Bioproducts, Montreal, Quebec). IVDs were cultured in 1.0, 2.5 mM Ca. 2+. or with cinacalcet for 21 days to determine effects on disc degeneration, calcification and biomechanics. Complex modulus and structural stiffness of disc tissues was determined using the MACH-1 mechanical testing system (Biomomentum, Laval, Quebec). Ca. 2+. dose-dependently decreased matrix protein synthesis of proteoglycan and Col II in NP and AF cells, similar to treatment with IL-1b. (n = 4). Contrarily to IL-1b, Ca. 2+. and cincalcet did not significantly increase the expression of catabolic enzymes save ADAMTS5. Similar effects were observed in whole organ cultures, as Ca. 2+. and cinacalcet decreased proteoglycan and collagen content. Although both Ca. 2+. and cinacalcet increased the expression of alkaline phosphatase (ALP), only in Ca. 2+. -treated IVDs was there evidence of calcium deposits in NP and AF tissues as determined by von Kossa staining. Biomechanical studies on Ca. 2+. and cinacalcet-treated IVDs demonstrated decreases in complex modulus (p<0.01 and p<0.001, respectively; n=5), however, only Ca. 2+. -treated IVDs was there significant increases stiffness in NP and AF tissues (p<0.001 and p<0.05, respectively; n=3). Our results suggest that changes in the local concentrations of calcium and activation of CaSR affects matrix protein synthesis, calcification and IVD biomechanics. Ca. 2+. may be a contributing factor in IVD degeneration and calcification


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 55 - 55
1 Jul 2020
Epure LM Grant M Alaqeel M Antoniou J Mwale F
Full Access

Osteoarthritis (OA) is a chronic degenerative joint disorder that affects millions of people. There are currently no therapies that reverse or repair cartilage degradation in OA patients. Link N (DHLSDNYTLDHDRAIH) is a naturally occurring peptide that has been shown to increase both collagen and proteoglycan synthesis in chondrocytes and intervertebral disc cells [1,2]. Recent evidence indicates that Link N activates Smad1/5 signaling in cultured rabbit IVD cells presumably by interacting with the bone morphogenetic protein (BMP) type II receptor [3], however, whether a similar mechanism exists in chondrocytes remains unknown. In this study we determined whether Link N can stimulate matrix production and reverse degradation of human OA cartilage under inflammatory conditions. OA cartilage was obtained from donors undergoing total knee arthroplasty with informed consent. OA cartilage/bone explants and OA chondrocytes were prepared from each donor. Cells were prepared in alginate beads (2×106 cells/mL) for gene expression analysis using qPCR. Cells and cartilage explants were exposed to IL-1β (10ng/ml), human Link N (hLN) (1μg/ml) or co-incubated with IL-1β+hLN for 7 and 21 days, respectively. Media was supplemented every three days. Cartilage/bone explants were measured for total glycosaminoglycan (GAG) content (retained and released) using the dimethylmethylene blue (DMMB) assay. Western blotting was performed to determine aggrecan and collagen expression in cartilage tissue. To determine NFκB activation, Western blotting was performed for detection of P-p65 in chondrocytes cultured in 2D following 10 min exposure of IL-1β in the presence of 10, 100, or 1000 ng/mL hLN. Link N significantly decreased in a dose-dependent manner IL-1β-induced NFκB activation in chondrocytes. Gene expression profiling of matrix proteins indicated that there was a trend towards increased aggrecan and decreased collagen type I expression following hLN and IL-1β co-incubation. HLN significantly decreased the IL-1β-induced expression of catabolic enzymes MMP3 and MMP13, and the neuronal growth factor NGF (p < 0 .0001, n=3). In OA cartilage/bone explants, hLN reversed the loss of proteoglycan in cartilage tissue and significantly increased its synthesis whilst in the presence of IL-1β. Link N stimulated proteoglycan synthesis and decreased MMP expression in OA chondrocytes under inflammatory conditions. One mechanism for Link N in preserving matrix protein synthesis may, in part, be due to its ability in rapidly suppressing IL-1β-induced activation of NF-κB. Further work is needed to determine whether Link N directly inhibits the IL-1β receptor or interferes with NFκB activation through an independent pathway(s)


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 56 - 56
1 Jul 2020
Epure LM Grant M Salem O Huk OL Antoniou J Mwale F
Full Access

Osteoarthritis (OA) is a multifactorial debilitating disease that affects over four million Canadians. Although the mechanism(s) of OA onset is unclear, the biological outcome is cartilage degradation. Cartilage degradation is typified by the progressive loss of extracellular matrix components - aggrecan and type II collagen (Col II) – partly due to the up-regulation of catabolic enzymes - aggrecanases a disintegrin and metalloprotease with thrombospondin motifs (ADAMTS-) 4 and 5 and matrix metalloproteinases (MMPs). There is currently no treatment that will prevent or repair joint damage, and current medications are aimed mostly at pain management. When pain becomes unmanageable arthroplastic surgery is often performed. Interest has developed over the presence of calcium crystals in the synovial fluid of OA patients, as they have been shown to activate synovial fibroblasts inducing the expression of catabolic agents. We recently discovered elevated levels of free calcium in the synovial fluid of OA patients and raised the question on its role in cartilage degeneration. Articular cartilage was isolated from 5 donors undergoing total hip replacement. Chondrocytes were recovered from the cartilage of each femoral head or knee by sequential digestion with Pronase followed by Collagenase and expanded in DMEM supplemented with 10% heat-inactivated FBS. OA and normal human articular chondrocytes (PromoCell, Heidelberg, Germany) were transferred to 6-well plates in culture medium containing various concentrations of calcium (0.5, 1, 2.5, and 5 mM CaCl2), and IL-1β. Cartilage explants were prepared from the same donors and included cartilage with the cortical bone approximately 1 cm2 in dimension. Bovine articular cartilage explants (10 months) were used as a control. Explants were cultured in the above mentioned media, however, the incubation period was extended to 21 days. Immunohistochemistry was performed on cartilage explants to measure expression of Col X, MMP-13, and alkaline phosphatase. The sulfated glycosaminoglycan (GAG, predominantly aggrecan) content of cartilage was analyzed using the 1,9-dimethylmethylene blue (DMMB) dye-binding assay, and aggregan fragmentation was determined by Western blotting using antibody targeted to its G1 domain. Western blotting was also performed on cell lysate from both OA and normal chondrocytes to measure aggrecan, Col II, MMP-3 and −13, ADAMTS-4 and −5. Ca2+ significantly decreased the proteoglycan content of the cartilage explants as determined by the DMMB assay. The presence of aggrecan and Col II also decreased as a function of calcium, in both the human OA and bovine cartilage explants. When normal and OA chondrocytes were cultured in medium supplemented with increasing concentrations of calcium (0.5–5 mM Ca2+), aggrecan and Col II expression decreased dose-dependently. Surprisingly, increasing Ca2+ did not induce the release of MMP-3, and −13, or ADAMTS-4 and-5 in conditioned media from OA and normal chondrocytes. Interestingly, inhibition of the extracellular calcium-sensing receptor CaSR) reversed the effects of calcium on matrix protein synthesis. We provide evidence that Ca2+ may play a direct role in cartilage degradation by regulating the expression of aggrecan and Col II through activation of CaSR


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 65 - 65
1 Nov 2016
Grant M Bokhari R Epure L Antoniou J Mwale F
Full Access

Calcification of the intervertebral disc (IVD) has been correlated with degenerative disc disease (DDD), a common cause of low back pain. The appearance of calcium deposits has been shown to increase with age, and its occurrence has been associated with several other disorders such as hyperparathyroidism, chondrocalcinosis, and arthritis. Trauma, vertebral fusion and infection have also been shown to increase the incidence of IVD calcification. The role of IVD calcification in the development DDD is unknown. Our preliminary data suggest that ionic calcium content and expression of the extracellular calcium-sensing receptor (CaSR), a G protein-coupled receptor (GPCR) and regulator of calcium homeostasis, are increased in the degenerated discs. However, its role in DDD remains unclear. IVD Cells: Bovine and normal human IVD cells were incubated in PrimeGrowth culture medium (Wisent Bioproducts, Canada; Cat# 319–510-CL, −S1, and S2) and supplemented with various concentrations of calcium (1.0, 1.5, 2.5, 5.0 mM), a CaSR agonist [5 µM], or IL-1β [10 ng/ml] for 7 days. Accumulated matrix protein was quantitated for aggrecan and type II collagen (Col II) by Western blotting. Conditioned medium was also collected from cells treated for 24h and measured for the synthesis and release of total proteoglycan using the DMMB assay and Western blotting for Col II content. IVD Cultures: Caudal IVDs from tails of 20–24 month old steers were isolated with the PrimeGrowth Isolation kit (Wisent Bioproducts, Canada). IVDs were cultured for 4 weeks in PrimeGrowth culture medium supplemented with calcium (1.0, 2.5, or 5.0 mM), or a CaSR agonist [5 µM]. Cell viability was measured in NP and AF tissue using Live/Dead Imaging kit (ThermoFisher, Waltham, MA), to determine if Ca2+ effects cell viability end the expression of aggrecan and Col II was evaluated in the IVD tissue by Western blotting. Histological sections were prepared to determine total proteoglycan content, alkaline phosphatase expression and degree of mineralisation by von Kossa staining. The accumulation of aggrecan and Col II decreased dose-dependently in IVD cells following supplementation with calcium or the CaSR agonist. Conditioned medium also demonstrated decreases in the synthesis and release of proteoglycan and collagen with increasing Ca2+ dose or direct activation of the CaSR with agonist. A similar phenomenon was observed for total proteoglycan and aggrecan and Col II in IVDs following calcium supplementation or the CaSR agonist. In addition to decreases in Col II and aggrecan, increases in alkaline phosphatase expression and mineralisation was observed in IVDs cultured in elevated Ca2+ concentrations without affecting cell viability. Our results suggest that changes in the local concentrations of calcium are not benign, and that activation of the CaSR may be a contributing factor in IVD degeneration. Determining ways to minimise Ca2+ infiltration into the disc may mitigate disc degeneration


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 73 - 73
1 Mar 2021
Lazarides A Somarelli J Altunel E Rao S Hoskinson S Cheng S Eward C Hsu D Eward W
Full Access

Osteosarcoma (OSA) is a rare, but disproportionately lethal cancer that predominantly affects children. Sadly, discovery of new therapies for OSA has largely been unsuccessful in the past 30 years; there is an urgent need to identify new treatments for OSA. Pet dogs with naturally-occurring OSA represent a unique comparative “model” to discover new treatments for OSA. Unlike humans, in which fewer than 1,000 cases of OSA occur each year, there are nearly 50,000 new cases each year of OSA in dogs. In addition, dogs have an intact immune system, a shared environment with humans, and more rapid progression of disease. Together these factors make dogs an important comparative model for new therapies for OSA. The purpose of this study was: 1) to validate this mouse-dog-human pipeline for drug discovery and 2) to validate CRM1 as a novel target for ostesoarcoma treatment. We developed patient-derived cell lines and xenografts of OSA from both dogs and humans and applied these models to identify new therapies for OSA using high-throughput drug screens in vitro followed by in vivo validation. Whole exome sequencing was performed on the patient-derived models and original tumors to identify potential driver mutations. A high-throughput screen in both dog and human OSA identified CRM1 inhibitors as effective at killing dog and human OSA patient-derived cell lines in vitro. In vivo, CRM1 inhibition led to significant tumor growth inhibition in patient-derived xenografts from dogs and humans. Western blotting demonstrated increased levels of CRM1 protein expression across nine different dog and human OSA cell lines compared to non-transformed human osteoblasts. CRM1 upregulation in OSA cells was further verified by immunofluorescence staining. Increased CRM1 expression was prognostic for poorer metastasis-free survival and poorer overall survival. Our cross-species personalized medicine pipeline identified CRM1 as a potential therapeutic target to treat OSA in both dogs and humans. Future studies are focused on testing CRM1 inhibitors in canine clinical trials


Bone & Joint Research
Vol. 13, Issue 8 | Pages 411 - 426
28 Aug 2024
Liu D Wang K Wang J Cao F Tao L

Aims

This study explored the shared genetic traits and molecular interactions between postmenopausal osteoporosis (POMP) and sarcopenia, both of which substantially degrade elderly health and quality of life. We hypothesized that these motor system diseases overlap in pathophysiology and regulatory mechanisms.

Methods

We analyzed microarray data from the Gene Expression Omnibus (GEO) database using weighted gene co-expression network analysis (WGCNA), machine learning, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to identify common genetic factors between POMP and sarcopenia. Further validation was done via differential gene expression in a new cohort. Single-cell analysis identified high expression cell subsets, with mononuclear macrophages in osteoporosis and muscle stem cells in sarcopenia, among others. A competitive endogenous RNA network suggested regulatory elements for these genes.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 1 - 1
1 Jul 2020
Xiong L Hu Y Ding F Shao Z Wang W Liu G Cai X
Full Access

The purpose of this study was to evaluate whether AGEs induce annulus fibrosus (AF) cell apoptosis and to further explore the mechanism by which this process occurs. AF cells were treated with various concentrations of AGEs for 3 days. Cell proliferation was measured by the Cell Counting Kit-8 (CCK-8) and EdU incorporation assays. Cell apoptosis was examined by the Annexin V/PI apoptosis detection kit and Hoechst 33342. The expression of apoptosis-related proteins, including Bax, Bcl-2, cytochrome c, caspase-3 and caspase-9, was detected by western blotting. In addition, Bax and Bcl-2 mRNA expression levels were detected by RT-PCR. Mitochondrial membrane potential (MMP) and intracellular reactive oxygen species (ROS) production of AF cell were examined by JC-1 staining and DCFH-DA fluorescent probes, respectively. Our results indicated that AGEs had inhibitory effects on AF cell proliferation and induced AF cell apoptosis. The molecular data showed that AGEs significantly up-regulated Bax expression and inhibited Bcl-2 expression. In addition, AGEs increased the release of cytochrome c into the cytosol and enhanced caspase-9 and caspase-3 activation. Moreover, treatment with AGEs resulted in a decrease in MMP and the accumulation of intracellular ROS in AF cells. The antioxidant N-acetyl-L-cysteine significantly reversed AGE-induced MMP decrease and AF cell apoptosis. These results suggest that AGEs induce rabbit AF cell apoptosis and mitochondrial pathways may be involved in AGE-mediated cell apoptosis, which may provide a theoretical basis for diabetic IVD degeneration


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 56 - 56
1 Jul 2020
Tsiapalis D De Pieri A Sallent I Galway N Zeugolis D Galway N Korntner S
Full Access

Cellular therapies play an important role in tendon tissue engineering with tenocytes being described as the most prominent cell population if available in large numbers. However, in vitro expansion of tenocytes in standard culture leads to phenotypic drift and cellular senescence. Recent work suggests that maintenance of tenogenic phenotype in vitro can be achieved by recapitulating different aspects of the native tendon microenvironment. One approach used to modulate the in vitro microenvironment and enhance extracellular matrix (ECM) deposition is macromolecular crowding (MMC). MMC is based on the addition of inert macromolecules to the culture media mimicking the dense extracellular matrix. In addition, as tendon has been described to be a relatively avascular and hypoxic tissue and low oxygen tension can stimulate collagen synthesis and cross-linking, we venture to assess the synergistic effect of MMC and low oxygen tension on human tenocyte phenotype maintenance by enhancing synthesis and deposition of tissue-specific ECM. Human tendons were kindly provided from University Hospital Galway, after obtaining appropriate licenses, ethical approvals and patient consent. Afterwards, tenocytes were extracted using the migration method. Experiments were conducted at passage three. Optimization of MMC conditions was assessed using 50 to 500 μg/ml carrageenan (Sigma Aldrich, UK). For variable oxygen tension cultures, tenocytes were incubated in a Coy Lab (USA) hypoxia chamber. ECM synthesis and deposition were assessed using SDS-PAGE (BioRad, UK) and immunocytochemistry (ABCAM, UK) analysis. Protein analysis for Scleraxis (ABCAM, UK) was performed using western blot. Gene analysis was conducted using a gene array (Roche, Ireland). Cell morphology was assessed using bright-field microscopy. All experiments were performed at least in triplicate. MINITAB (version 16, Minitab, Inc.) was used for statistical analysis. Two-sample t-test for pairwise comparisons and ANOVA for multiple comparisons were conducted. SDS-PAGE and immunocytochemistry analysis demonstrated that human tenocytes treated with the optimal MMC concentration at 2% oxygen tension showed increased synthesis and deposition of collagen type I, the major component of tendon ECM. Moreover, immunocytochemistry for the tendon-specific ECM proteins collagen type III, V, VI and fibronectin illustrated enhanced deposition when cells were treated with MMC at 2% oxygen tension. In addition, protein analysis revealed elevated dexpression of the tendon-specific protein Sclearaxis, while a detailed gene analysis revealed upregulation of tendon-related genes and downregulation of trans-differentiation markers again when cells cultured with MMC at 2% oxygen tension. Finally, low oxygen tension and MMC did not affect the metabolic activity, proliferation and viability of human tenocytes. Collectively, results suggest that the synergistic effect of MMC and low oxygen tension can accelerate the formation of ECM-rich substitutes, which stimulates tenogenic phenotype maintenance. Currently, the addition of substrate aligned topography together with MMC and hypoxia is being investigated in this multifactorial study for the development of an implantable device for tendon regeneration


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 54 - 54
1 Jul 2020
Epure LM Grant M Mwale F Antoniou J Bolt A Mann K Chou H
Full Access

Tungsten has been increasing in demand for use in manufacturing and recently, medical devices, as it imparts flexibility, strength, and conductance of metal alloys. Given the surge in tungsten use, our population may be subjected to elevated exposures. For instance, embolism coils made of tungsten have been shown to degrade in some patients. In a cohort of breast cancer patients who received tungsten-based shielding for intraoperative radiotherapy, urinary tungsten levels remained over tenfold higher 20 months post-surgery. In vivo models have demonstrated that tungsten exposure increases tumor metastasis and enhances the adipogenesis of bone marrow-derived mesenchymal stem cells while inhibiting osteogenesis. We recently determined that when mice are exposed to tungsten [15 ppm] in their drinking water, it bioaccumulates in the intervertebral disc tissue and vertebrae. This study was performed to determine the toxicity of tungsten on intervertebral disc. Bovine nucleus pulposus (bNP) and annulus fibrosus (bAF) cells were isolated from bovine caudal tails. Cells were expanded in flasks then prepared for 3D culturing in alginate beads at a density of 1×10. ∧. 6 cells/mL. Beads were cultured in medium supplemented with increasing tungsten concentrations in the form of sodium tungstate [0, 0.5, 5, 15 ug/mL] for 12 days. A modified GAG assay was performed on the beads to determine proteoglycan content and Western blotting for type II collagen (Col II) synthesis. Cell viability was determined by counting live and dead cells in the beads following incubation with the Live/Dead Viability Assay kit (Thermo Fisher Scientific). Cell numbers in beads at the end of the incubation period was determined using Quant-iT dsDNA Assay Kit (Thermo Fisher Scientific). Tungsten dose-dependently decreased the synthesis of proteoglycan in IVD cells, however, the effect was significant at the highest dose of 15 ug/mL. (n=3). Furthermore, although tungsten decreased the synthesis of Col II in IVD cells, it significantly increased the synthesis of Col I. Upregulation of catabolic enzymes ADAMTS4 and −5 were also observed in IVD cells treated with tungsten (n=3). Upon histological examination of spines from mice treated with tungsten [15 ug/mL] in their drinking water for 30 days, disc heights were diminished and Col I upregulation was observed (n=4). Cell viability was not markedly affected by tungsten in both bNP and bAF cells, but proliferation of bNP cells decreased at higher concentration. Surprisingly, histological examination of IVDs and gene expression analysis demonstrated upregulation of NGF expression in both NP and AF cells. In addition, endplate capillaries showed increases in CGRP and PGP9.5 expression as determined on histological sections of mouse IVDs, suggesting the development of sensory neuron invasion of the disc. We provide evidence that prolonged tungsten exposure can induce disc fibrosis and increase the expression of markers associated with pain. Tungsten toxicity may play a role in disc degeneration disease


Full Access

An established rabbit model was used to preliminarily investigate the effect of acellular triphase, namely bone-cartilage-tendon, scaffold (ATS) sandwiched with autologous bone mesenchymal stem cells (BMSCs) sheets on tendon-bone interface healing. Bone, fibrocartilage and tendon tissue were harvested from the rabbits and sectioned into a book-type scaffold. The scaffolds were decellularized and their characterization was presented. BMSCs were isolated and co-cultured with the scaffolds to verify their cytocompatibility. BMSCs sheets were fabricated and inserted into the book page of the scaffold to construct an autologous BMSCs-sheets/book-type ATS complex. The complex was implated in the right knee of rabbits which operated standard partial patellectomy for TBI regeneration using Imaging, histological and biomechanical examinations. The bone, fibrocartilage and tendon tissue were sectioned into a book-type scaffold before decellularization. Then we decellularized the above tissue and mostly preserved their microstructure and composition of the natural extracellular matrix, including collagen and proteoglycan. After the physicochemical and biological properties of the book-type ATS were evaluated, autologous BMSCs sheets were inserted into the book page of the scaffold to construct an autologous BMSCs-sheets/book-type ATS implants for TBI regeneration. In addition, the ATS has the advantages of non-toxicity, suitable for cell adhesion and growth as well as low immunogenicity while co-cultured with the BMSCs. At the same time, different scaffolds has the ability to induce the osteogenic, chondrogenic and tenogenic differentiation of BMSCs by immunofluorescence, reverse transcription-polymerase chain reaction and western blot analysis. To determine the efficacy of the tissue-engineered implants for TBI regeneration, we transplanted it into a rabbit patella-patellar tendon (PPT) injury model, and the rabbits were sacrificed at postoperative week 8 or 16 for the radiological, histological, and mechanical evaluation. Radiologically, Synchrotron radiation micro-computed tomography (SR-μCT) showed that BMSCs/ATS group significantly increased bone area, BV/TV, trabecular thickness and trabecular number at the healing interface as compared with other groups at postoperative week 8 or 16. Histologically, the BMSCs/ATS group showed more woven bone, and a more robust fibrocartilaginous junction with a characteristic matrix rich in proteoglycans was seen at the PPT healing interface in comparison with other groups after 8 weeks. At week 16, the healing interface in 3 groups displayed better remodeling with respect to postoperative week 8. Healing and remodeling at the PPT junction were almost complete, with a resemblance to a healthy BTI consisting of the characteristic 4 zones in all groups. At last, we used biomechanical test as functional parameters to evaluate the quality of tendon-bone healing. Biomechanical testing indicated that BMSCs/ATS group showed significantly higher failure load and stiffness than other groups at postoperative week 8 and 16. The complex composed of acellular triphase, namely bone-cartilage-tendon, scaffold (ATS) sandwiched with autologous bone mesenchymal stem cells (BMSCs) sheets can simulate the gradient structure of tendon-bone interface, inducing stem cell directional differentiation, so as to promote patella-patellar tendon interface healing effectively after injury


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 13 - 13
1 Nov 2016
Nam D Wang Y Whetstone H Alman B
Full Access

The T-lymphocyte secreted pro-inflammatory cytokine, interleukin-17F (IL-17F), was found to be a key mediator in the cellular response of the immune system in the early phase of fracture repair but its intracellular signaling processes are currently not known in osteoblasts. The objective of this study was to identify the signaling proteins and crucial gene targets involved in osteoblast activation via IL-17F. It was hypothesised that IL-17F stimulated osteoblast maturation through a novel GSK3beta / beta-catenin independent pathway. Mouse pre-osteoblast cell line (MC3T3-E1) was used for IL-17F or Wnt3a treatment. Desired proteins were detected using western blot analysis (antibodies: Phospho-GSK-3beta (Tyr 216), Phospho-GSK-3beta (Ser9), Runx2/cbfa1, TRAF6, Act1, p-ERK2, p-JNK and p-MAPK, C/EBP-beta and & delta). Gene-specific siRNAs of mouse IL-17Ra, IL-17Rc and a non-targeting siRNA (control) were utilised. MC3T3-E1 were transfected with IL-17Ra, IL-17Rc or Negative Control and treated with IL-17F. Chromatin Immunoprecipitation (ChIP-qPCR) was used to evaluate the mouse Runx2 P1 promoter region. IL-17F increased expression of Col1, BSP, Runx2/cbfa1 and osteocalcin in MC3T3-E1 cells. Western blot analysis confirmed expression of known Wnt signaling proteins TRAF6, Act1, p-ERK2, p-JNK and p-MAPK in both IL-17F and Wnt3a treated cultures, including up-regulation of Runx2/cbfa1, a key transcription factor associated with osteoblast differentiation. IL-17F up-regulation of Runx2/cbfa1 appears independent of the Wnt/beta-catenin pathway as phosphorylated GSK-3beta at the Ser9 site was not detected with IL-17F treatment. Despite this, IL-17F treatment still increased expression of Runx2/cbfa1 downstream, lending evidence for a GSK3beta/beta-catenin independent manner of IL-17F stimulated osteogenesis. While IL-17F and Wnt3a both induced expression of C/EBP-delta, only IL-17F treatment induced expression of C/EBP-beta, an upstream transcription factor of Runx2/cbfa1. Further, siRNA knock down of the IL-17 receptors directly decreased Act1, C/EBP-beta and Runx2/cfba1 expression. By ChIP analysis, IL-17F was shown to upregulate C/EBP-beta expression and stimulated its binding to the P1 Promoter of the Runx2/cbfa1 gene. The C/EBP-beta transcription factor was shown to be a key regulator of early osteogenesis. C/EBP-beta up-regulates Runx2/cbfa1 expression by directly binding to the Runx2/cbfa1 P1 promoter in osteoblasts. C/EBP-beta was activated in the osteoblast by IL-17F but not by Wnt3a adding further support to a novel GSK3beta/beta-catenin independent pathway. Our data shows that IL-17F, a cytokine secreted by T-lymphocytes, stimulates osteoblast maturation through a novel GSK3beta/beta-catenin independent pathway and reveals a crucial interaction between C/EBP-beta and the Runx2/cbfa1 P1 promoter not previously been shown in osteogenesis signaling further


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 48 - 48
1 Nov 2016
Albesher M Grant M Epure L Huk O Antoniou J Mwale F
Full Access

Osteoarthritis (OA) is a multifactorial disease that affects millions of Canadians. Although, there is not one specific mechanism that causes OA, the biological outcome is cartilage degradation. The articular cartilage in joints is composed primarily of the proteoglycan aggrecan and type II collagen (Col II) which together provide cartilage with functional properties. In OA, the imbalance of the anabolic and catabolic activities of chondrocytes favors cartilage catalysis. The main inflammatory cytokine involved in cartilage degradation is interleukin (IL) 1β. It has previously been demonstrated that Link N, a 16 residue peptide derived from proteolytic cleavage of link protein, can stimulate matrix proteins in normal cartilage and intervertebral discs (IVDs). Recently, we showed that a shorter sequence of Link N (sLink N), consisting of the first 8 residues of the peptide, has the potential to increase synthesis of matrix proteins in IVD cells in vitro and stimulate repair in ex vivo IVD organ culture. There are currently no treatments that actively repair cartilage in OA joints. In the present study, we aimed to evaluate the potential of sLink N as a therapeutic agent in the repair of OA cartilage. OA cartilage was isolated from four donors undergoing total knee replacement (50–70 y). Cells were recovered from the cartilage of each knee by sequential digestion with Pronase followed by Collagenase, and expanded in PrimeGrowth culture medium (Wisent Bioproducts, Canada; Cat# 319–510-CL, −S1, and −S2). After 7 days in culture, cells were treated for 24h with sLink N (0.5, 5, 50, 500 or 5000 ng/ml) or sLink N in combination with IL-1β (1 ng/ml) to mimic an inflammatory milieu. Conditioned media was collected and measured for proteoglycan (GAG) release using the safranin O and for Col II synthesis by Western blotting. Human articular cartilage explants including cartilage with subchondral bone were prepared from the same donors using the PrimeGrowth Isolation kit (Wisent, Canada) and cultured for 21 days in presence of IL-1β (1ng/ml) and sLink N (0.5, 5, 50, 500 or 5000 ng/ml). Aggrecan and Col II were extracted with guanidine buffer and measured by Western blotting. Treatment of OA chondrocytes significantly increased the GAG and Col II synthesis. The EC50 dose-response of sLink N on GAG synthesis was 67 ± 41 nM [65 ± 40 ng/ml] and the GAG synthesis reached a maximum of 194 ± 30% with the highest dose above control. When chondrocytes were cultured in the presence of IL-1β, GAG synthesis was also elevated by sLink N above control. Treatment of OA cartilage explants with sLink N increased the content of aggrecan and Col II even in the presence of IL-1β. Our results suggest that sLink N is a growth factor supplement that can increase cartilage matrix protein synthesis, and a chondroprotective agent, by modulating the catabolic effects of IL-1β. sLink N is the first small-peptide to demonstrate potential in cartilage repair of OA joints


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 209 - 209
1 May 2012
Clark J Akiyama T Dass C Choong P
Full Access

Chondrosarcoma responds poorly to adjuvant therapy and therefore, new targeted therapy is required. Animal models have been utilised to test therapeutic candidates, however clinically relevant, orthotopic models are lacking. The aim of this study was to develop such a model. In vitro: two human chondrosarcoma cell lines, JJ012 and FS090, were compared with respect to proliferation, colony formation, invasion, MMP-2 and MMP-9 secretion, osteoclastogenesis, endothelial tube stimulation, and expression of the angiogenic factor VEGF, and the anti-angiogenic factor RECK on western blotting. In vivo: 20,000 cells (JJ012 or FS090) were injected either into the intramedullary canal of the mouse tibia (n=5 for each cell line), or into the tibial periosteum (n=5 for each cell line). Animals were measured, and x-rayed weekly. Once euthanised, tibias and lungs were preserved, embedded and sectioned to determine the presence of tumour and lung metastases. In vitro: compared with FS090, JJ012 demonstrated significantly higher proliferative capacity at both day two and day four (p=0.017, and p=0.01). JJ012 had a significantly greater ability to invade Matrigel with an average number of 812.5 invading cells, versus 140.8 FS090 cells (p=0.0005). JJ012 readily formed colonies in collagen I, while FS090 formed none. JJ012 conditioned medium stimulated endothelial tube formation and osteoclastogenesis with a greater potency than FS090 conditioned medium. In vivo: tumours formed in the intratibial and periosteal groups injected with JJ012, whilst no mice injected with FS090 cells developed discernable tumours on physical inspection, caliper measurement or histological section. Periosteal tumours grew to three times the non-injected limb size by seven weeks, whereas intratibial injected limbs required 10 weeks to achieve the same extent of tumour growth. All JJ012 periosteal tumours resulted in lung micrometastases, while only 2/4 JJ012 intratibial tumours demonstrated metastases. Lung metastases stained positive with Von Kossa and alizarin red stains, indicating a tendency for calcification, which is similar to metastases in the human disease. Sectioned tumour tissue demonstrated features of grade II-III chondrosarcoma. Similarities with the human disease were also noted on the X-ray, including endosteal scalloping, and cortical thickening. Both intratibial and periosteal JJ012 models replicate the site, morphology, and many behavioural characteristics of human chondrosarcoma. Local tumour invasion of bone and spontaneous lung metastasis offer valuable assessment tools to test the potential of novel agents for future chondrosarcoma therapy


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 31 - 31
1 Sep 2012
Gawri R Mwale F Ouellet JA Steffen T Roughley PJ Antoniou J Haglund L
Full Access

Purpose. Disc degeneration is known to occur early in adult life, but at present there is no medical treatment to reverse or even retard the problem. Development of medical treatments is complicated by the lack of a validated long term organ culture model in which therapeutic candidates can be studied. The objective of this study was to optimize and validate an organ culture system for intact human intervertebral disc (IVD), which could be used subsequently to determine whether synthetic peptide growth factors can stimulate disc cell metabolism and initiate a repair response. Method. Seventy lumbar IVDs, from 14 individuals, were isolated within 24 h after death. Discs were prepared for organ culture by removing bony endplates but retaining cartilaginous endplates (CEP). Discs were cultured with no external load applied. The effects of glucose and FBS concentrations were evaluated. Dulbeccos Modified Eagle Media (DMEM) was supplemented with glucose, 4.5g/L or 1g/L, referred to as high and low (physiological) glucose, and FBS, 5% or 1%, referred to as high and low FBS, respectively. After a four week culture period, samples were taken across the disc using a 4 mm biopsy punch. Cell viability was analyzed using a live/dead fluorescence assay (Live/Dead, Invitrogen) and visualized by confocal microscopy. CEP discs were also placed in long term culture for four months, and cell viability was assessed. Western bolt analysis for the G1 domain of aggrecan was also performed to assess the effect of nutritional state on disc catabolism. Results. Cell viability in CEP isolated discs was evaluated after four weeks and four months of organ culture under high and physiological nutritional state. Previous studies have shown that high glucose levels are needed to maintain cell viability in organ culture, but in our model 96–98% live cells were present throughout the disc independent of FBS and glucose levels and the duration of culture tested. Western blot probing for the G1 domain of aggrecan showed no difference with the change of nutritional state across all regions indicating that low nutritional state had no detrimental effect on disc metabolism. Conclusion. We have developed a novel technique for isolation and culturing of intact IVDs. The described CEP system maintained sufficient nutrient supply and high cell survival in all regions of the disc for up to four months of culture also under physiological culturing condition. As the CEP system maintains high cell viability in long term cultures, it is a suitable model in which the regenerative effect of various bioactive peptides can be studied. The availability of an intact disc organ culture system has considerable advantage over the culture of isolated disc cells, as it maintains the cells in their unique microenvironment, so making any response to catabolic or anabolic agents more physiologically relevant


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 34 - 34
1 Sep 2012
Gawri R Mwale F Ouellet J Steffen T Roughley P Haglund L Antoniou J
Full Access

Purpose. Disc degeneration is known to occur early in adult life, but at present there is no medical treatment to reverse or even retard the problem. Development of medical treatments is complicated by the lack of a validated long term organ culture model in which therapeutic candidates can be studied. The objective of this study was to optimize and validate an organ culture system for intact human intervertebral disc (IVD), which could be used subsequently to determine whether synthetic peptide growth factors can stimulate disc cell metabolism and initiate a repair response. Method. Seventy lumbar IVDs, from 14 individuals, were isolated within 24 h after death. Discs were prepared for organ culture by removing bony endplates but retaining cartilaginous endplates (CEP). Discs were cultured with no external load applied. The effects of glucose and FBS concentrations were evaluated. Dulbeccos Modified Eagle Media (DMEM) was supplemented with glucose, 4.5g/L or 1g/L, referred to as high and low (physiological) glucose, and FBS, 5% or 1%, referred to as high and low FBS, respectively. After a four week culture period, samples were taken across the disc using a 4 mm biopsy punch. Cell viability was analyzed using a live/dead fluorescence assay (Live/Dead, Invitrogen) and visualized by confocal microscopy. CEP discs were also placed in long term culture for four months, and cell viability was assessed. Western bolt analysis for the G1 domain of aggrecan was also performed to assess the effect of nutritional state on disc catabolism. Results. Cell viability in CEP isolated discs was evaluated after four weeks and four months of organ culture under high and physiological nutritional state. Previous studies have shown that high glucose levels are needed to maintain cell viability in organ culture, but in our model 96–98% live cells were present throughout the disc independent of FBS and glucose levels and the duration of culture tested. Western blot probing for the G1 domain of aggrecan showed no difference with the change of nutritional state across all regions indicating that low nutritional state had no detrimental effect on disc metabolism. Conclusion. We have developed a novel technique for isolation and culturing of intact IVDs. The described CEP system maintained sufficient nutrient supply and high cell survival in all regions of the disc for up to four months of culture also under physiological culturing condition. As the CEP system maintains high cell viability in long term cultures, it is a suitable model in which the regenerative effect of various bioactive peptides can be studied. The availability of an intact disc organ culture system has considerable advantage over the culture of isolated disc cells, as it maintains the cells in their unique microenvironment, so making any response to catabolic or anabolic agents more physiologically relevant


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 67 - 67
1 Sep 2012
Mwale F Petit A Yao G Antoniou J
Full Access

Purpose. Whilst it is known that oxidative stress can cause early degenerative changes observed in experimental osteoarthritis and that a major drawback of current cartilage and intervertebral disc tissue engineering is that human mesenchymal stem cells (MSCs) from osteoarthritis (OA) patients express type X collagen, a marker of late-stage chondrocyte hypertrophy (associated with endochondral ossification), little is known whether the expression of type X collagen in MSCs from OA patients can be related to oxidative stress or inflammatory reactions that occur during this disease. Method. Human MSCs were obtained from aspirates from the intramedullary canal of donors undergoing total hip replacement for OA. Bone marrow aspirates were processed essentially as previously described. Briefly, non-adherent cells were discarded after 72h of culture and the adherent ones were expanded for 2–3 passages. MSCs from normal donor (control) were obtained from Lonza. Cells were then lysed and protein expression was detected by Western blot using specific antibodies directed against type X collagen, as well as the antioxidant enzymes Mn-superoxide dismutase (MnSOD), catalase (CAT) and glutathione peroxidase-1 (GPx-1) and inflammation related proteins cyclooxygenase-1 (COX-1) and intercellular adhesion molecule-1 (ICAM-1). GAPDH was used as a housekeeping gene and served to normalize the results. Correlations between the expressions of the different proteins were realized using the correlation Z test with StatView (SAS Institute). Results. Results confirmed that type X collagen was over-expressed in MSCs from OA patients when compared to expression in cells of normal donors. MnSOD, CAT, and COX-1 were also over-expressed. Results showed that the expression of MnSOD strongly correlated to the expression of type X collagen (r=0.79; p=0.03). The expression of CAT weakly correlated to the expression of type X collagen (r=0.67; p=0.10) whereas GPx was not expressed in MSCs from OA patients. Regarding inflammatory reaction, results showed that COX-1 expression strongly correlated to type X collagen expression (r=0.77; p=0.004). ICAM-1 was weakly expressed and no correlation with the expression of type X collagen was observed. Interestingly, COX-1 expression was highly correlated to the expression MnSOD (r=0.92; p=0.0001) and the expression of CAT (r=−0.82; p=0.02). Conclusion. We showed that the level of anti-oxidant enzymes correlates with type X collagen expression in MSCs from OA patients. This suggests that oxidative stress may lead to the up-regulation of stem cell hypertrophy. Results also suggest that prostaglandin production though COX-1 activity is associated with anti-oxidant enzyme expression (MnSOD) and hypertrophy (type X collagen expression). Further studies are however necessary to better understand whether the increased expression of these proteins is the cause or the effect of type X collagen over-expression in MSCs from OA patients


Bone & Joint Research
Vol. 4, Issue 5 | Pages 84 - 92
1 May 2015
Hamamura K Nishimura A Iino T Takigawa S Sudo A Yokota H

Objectives

Salubrinal is a synthetic agent that elevates phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) and alleviates stress to the endoplasmic reticulum. Previously, we reported that in chondrocytes, Salubrinal attenuates expression and activity of matrix metalloproteinase 13 (MMP13) through downregulating nuclear factor kappa B (NFκB) signalling. We herein examine whether Salubrinal prevents the degradation of articular cartilage in a mouse model of osteoarthritis (OA).

Methods

OA was surgically induced in the left knee of female mice. Animal groups included age-matched sham control, OA placebo, and OA treated with Salubrinal or Guanabenz. Three weeks after the induction of OA, immunoblotting was performed for NFκB p65 and p-NFκB p65. At three and six weeks, the femora and tibiae were isolated and the sagittal sections were stained with Safranin O.