Advertisement for orthosearch.org.uk
Results 1 - 20 of 268
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 27 - 27
11 Apr 2023
Puente Reyna A Schwiesau J Altermann B Grupp T
Full Access

The purpose of the study was to compare the mechanical properties, oxidation and wear resistance of a vitamin E blended and moderately crosslinked polyethylene for total knee arthroplasty (MXE) in comparison with clinically established polyethylene materials. The following polyethylene materials were tested: CPE (30 kGy e-beam sterilized), XLPE (75 kGy gamma crosslinked @ 100°C), ViXLPE (0.1 % vitamin E blended, 80 kGy e-beam crosslinked @ 100°C), and MXE (0.1 % vitamin E blended polyethylene, 30 kGy gamma sterilized). For the different tests, the polyethylene materials were either unaged or artificially aged for two or six weeks according to ASTM F2003-02. The oxidation index was measured based on ASTM F2102 at a 1 mm depth. Small punch testing was performed based on ASTM F2977. Mechanical properties were measured on unaged materials according to ASTM D638. Wear simulation was performed on a load controlled 3 + 1 station knee wear simulator (EndoLab GmbH, Thansau, Germany) capable of reproducing loads and movement of highly demanding activities (HDA) as well as ISO 14243-1 load profiles. The load profiles were applied for 5 million cycles (mc) or delamination of the polyethylene components. Medium size AS e.motion. ®. PS Pro (Aesculap AG, Tuttlingen, Germany) femoral and tibial components with a ZrN-multilayer surface, as well as Columbus. ®. CR cobalt-chrome alloy femoral and tibial components were tested. Particle analysis was performed on the serum samples of the ISO 14243-1 wear simulations based on ISO 17853:2011 and ASTM F1877. The analysis of the mechanical properties show that moderately crosslinked polyethylene (MXE) might be a superior material for total knee arthroplasty applications [Schwiesau et al. 2021]. The addition of vitamin E in a moderately crosslinked polyethylene prevented its oxidation, kept its mechanical characteristics, and maintained a low wear, even under a HDA knee wear simulation


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 85 - 85
17 Apr 2023
Maas A Puente Reyna A Grupp T
Full Access

Aim of this study was the development of a dynamic FE-framework to identify worst-case size combinations and kinematics in a virtual wear simulator setup covering five daily activities and high, dynamic loads. Two cruciate sacrificing knee designs (D1 & D2) were tested physically on a wear-testing machine prior the model development using a high demanding, daily activity protocol (HDA) [1]. A simplified FE-setup was generated, reduced to the 3D geometries of the assembly whereas the representation of the mechanical wear simulator conditions and the load transmission was achieved by joint elements. Inertial and other time-related effects of the physical situation were compensated by a system of spring- and damper elements. Using a time-series signal optimization approach on the anterior-posterior translation and the internal-external rotation results for each activity, 38 variable parameters were varied in between pre-defined limits in a semiautomatic workflow. For each design, two consecutive cycles of a single activity were analysed and the results of the second cycle were used for the optimization. Based on the determined values, a single set of averaged parameter settings was identified that covers all activity cycles sufficiently. A total of 1010 dynamic analyses were carried out in order to find a sharable set of parameter values. In this study, an efficient simulation workflow for design evaluation was developed. Therefore, a HDA wear-testing machine was simplified to boundary conditions and stabilizing elements, using a single set of parameters for all activities. The calculated kinematics were in a comparable range to the machine output. Further applications of the method were found in systematic analyses of entire implant systems to achieve consistent kinematics over the size compatibility range in the design process of new implant systems


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 31 - 31
1 Mar 2021
Hopwood J Redmond A Chapman G Richards L Collins S Brockett C
Full Access

Abstract. Objectives. Implant loosening remains a common cause of total ankle replacement (TAR) revision, and has been associated with wear-mediated osteolysis. Limited pre-clinical studies for TARs have been reported and the variety of experiment settings make it difficult to compare wear rates. Factors such as simulator control mechanism; whether pneumatic or electromechanical, may influence the integrity of the simulator outputs with respect to input profiles. This study compares the wear of a TAR, tested in electromechanical and pneumatic experimental simulators under identical input conditions. Methods. Twelve medium BOX® (MatOrtho Ltd) TARs (n=6 for each simulator) were tested in an electromechanical and pneumatic knee simulator (Simulation Solutions, UK) for 3 million cycles (Mc). Standard ‘Leeds’ displacement-controlled inputs were used. Kinematic performance was investigated by comparing the output profiles against the maximum demanded input values. The lubricant used was 25% new-born calf serum and wear was determined gravimetrically. Results. There was no significant difference (P=0.66) in wear rate between simulators (electromechanical = 15.96 ± 6.37mm. 3. /Mc; pneumatic = 14.51 ± 5.27mm. 3. /Mc). The electromechanical simulator (3157.06 ± 1.52N) achieved the maximum load (3150N), but the pneumatic simulator was unable to attain the demand (2542.34 ± 86.52N). Maximum AP displacement from the electromechanical simulator was 3.27 ± 0.07mm (3.1mm input), compared to 3.62 ± 0.95mm from the pneumatic simulator. Internal/external rotation angle was 7.97° ± 0.00 (8° input) and 7.24° ± 0.12 from the electromechanical and pneumatic simulators respectively. Both simulators achieved the demanded flexion angle (±15°). Conclusions. The outputs from the electromechanical simulator followed the input profiles more closely than the pneumatic simulator. Despite these differences, there was no significant influence on wear rate. The variation in kinematics between simulators was not sufficient to significantly change the tribological conditions of the TAR. The authors recommend the use of electromechanical simulators for future studies where more demanding and adverse conditions may be applied. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 92 - 92
4 Apr 2023
Li S Ding Y Wu C Lin S Wen Z
Full Access

For patients who took joint replacement, one of the complications, aseptic joint loosening, could cause a high risk of revision surgery. Studies have shown that MSCs have the ability of homing and differentiating, and also have highly effective immune regulation and anti-inflammatory effects. However, few studies had focused on the stem cells in preventing the occurrence and development of aseptic loosening. In this research, we aimed to clarify whether human umbilical cord mesenchymal stem cells could inhibited the aseptic joint loosening caused by wear particles. A Cranial osteolysis mice model was established on mice to examine the effect of hUC-MSCs on the Titanium particles injection area through micro-CT. The amount of stem cells injected was 2 × 10 5 cells. One week later, the mouse Cranial were obtained for micro-CT scan, and then stained with HE analysis immunohistochemical analysis of TNF-α, CD68, CCL3 and Il-1β. All mice were free of fever and other adverse reactions, and there was no death occurred. Titanium particles caused the osteolysis at the mice cranial, while local injection of hUC-MSCs did inhibit the cranial osteolysis, with a lower BV/TV and a higher porosity. Immunohistochemical results suggested that the expression of TNF-α, CD68, CCL3 and Il-1β in the cranial in Titanium particles mice increased significantly, but was significantly reduced in mice injected with hUC-MSCs. The inhibited CD68 expression indicated that the number of macrophage was lower, which might be a result of the inhibition of CCL3. According to the studies above, HUC-MSCs treatment of mouse cranial osteolysis model can significantly reduce osteolysis, inhibit macrophage recruitment, alleviate inflammatory response, without causing adverse reactions. It may become a promising treatment of aseptic joint loosening


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 31 - 31
1 Jan 2019
Wang L Beedall D Thompson J
Full Access

Mismatch of bearing component centres and tension of soft tissues surrounding the hip joint can lead to component separation during gait cycle and cause the femoral head to contact the rim of an acetabular liner, which could increase wear and shorten lifespan of an implant. This study aims to investigate the contact and wear mechanics of a metal-on-polyethylene hip joint under dynamic separation by using Finite Element Analysis (FEA). A Pinnacle® cup with a Marathon neutral liner 36×56mm with a 45° inclination was constrained by a spring element in the medial-lateral axis. The spring was pre-compressed by 4mm to represent the corresponding translational mismatch of a simulator testing. Archard's law was used to predict wear over one ISO 14242-1 gait cycle. Contact pressure is proportional to the load input during the stance phase, associated with concentric contact condition; it increases threefold just before the swing phase (time C), reaching 46.2MPa, where edge loading occurs. Consequently, separation climbs to 3.54mm, which is comparable to the mathematical prediction (3.34mm) and dynamic FEA (3.2mm). The predicted volumetric wear after this gait cycle is 1.22 × 10–5 mm3. Dynamic separation between femoral head and acetabular liner can result in edge loading, consequently high contact pressure on the edge of a liner. In combination with cyclic loading, fatigue damage could take place and may be worth investigating in the future


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 2 | Pages 273 - 279
1 Feb 2007
Chuter GSJ Cloke DJ Mahomed A Partington PF Green SM

There are many methods for analysing wear volume in failed polyethylene acetabular components. We compared a radiological technique with three recognised ex vivo methods of measurement. We tested 18 ultra-high-molecular-weight polyethylene acetabular components revised for wear and aseptic loosening, of which 13 had pre-revision radiographs, from which the wear volume was calculated based upon the linear wear. We used a shadowgraph technique on silicone casts of all of the retrievals and a coordinate measuring method on the components directly. For these techniques, the wear vector was calculated for each component and the wear volume extrapolated using mathematical equations. The volumetric wear was also measured directly using a fluid-displacement method. The results of each technique were compared. The series had high wear volumes (mean 1385 mm. 3. ; 730 to 1850) and high wear rates (mean 205 mm. 3. /year; 92 to 363). There were wide variations in the measurements of wear volume between the radiological and the other techniques. Radiograph-derived wear volume correlated poorly with that of the fluid-displacement method, co-ordinate measuring method and shadowgraph methods, becoming less accurate as the wear increased. The mean overestimation in radiological wear volume was 47.7% of the fluid-displacement method wear volume. Fluid-displacement method, coordinate measuring method and shadowgraph determinations of wear volume were all better than that of the radiograph-derived linear measurements since they took into account the direction of wear. However, only radiological techniques can be used in vivo and remain useful for monitoring linear wear in the clinical setting. Interpretation of radiological measurements of acetabular wear must be done judiciously in the clinical setting. In vitro laboratory techniques, in particular the fluid-displacement method, remain the most accurate and reliable methods of assessing the wear of acetabular polyethylene


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 63 - 63
1 Nov 2018
Utzschneider S
Full Access

Improvements in arthroplasty design and materials led to superior lifetime of the implants. Nevertheless, aseptic loosening due to particulate debris is still one of the most frequent late reasons for revision of hip and knee replacements. The complex process of inflammation and osteolysis due to wear particles is not understood in detail so far. A cellular and receptor mediated response to wear particles results in a release of pro-inflammatory cytokines and induces an inflammatory reaction causing periprosthetic osteolysis. The overall cellular response is influenced by particle volume as well as characteristics. But there is still a lack of data concerning all signalling pathways that are involved. To answer some open questions appropriate in vivo models are shown closing the loop between wear simulation, particle analysis, generation of sterile particles and biological evaluation. Beyond that, new aspects of particle effects and deposits in retrieved human tissue are given


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 33 - 33
1 Jan 2019
Hopwood J Chapman G Redmond A Richards L Brockett C
Full Access

Total ankle replacement (TAR) is a substitute to ankle fusion, replacing the degenerated joint with a mechanical motion-conserving alternative. Compared with hip and knee replacements, TARs remain to be implanted in much smaller numbers, due to the surgical complexity and low mid-to-long term survival rates. TAR manufacturers have recently explored the use of varying implant sizes to improve TAR performance. This would allow surgeons a wider scope for implanting devices for varying patient demographics. Minimal pre-clinical testing has been demonstrated to date, while existing wear simulation standards lack definition. Clinical failure of TARs and limited research into wear testing defined a need for further investigation into the wear performance of TARs to understand the effects of the kinematics on varying implant sizes. Six medium and six extra small BOX® (MatOrtho) TARs will be tested in a modified knee simulator for 5 million cycles (Mc). The combinations of simulator inputs that mimic natural gait conditions were extracted from ankle kinematic profiles defined in previous literature. The peak axial load will be 3.15 kN, which is equivalent to 4.5 times body weight of a 70kg individual. The flexion profile ranges from 15° plantarflexion to 15° dorsiflexion. Rotation about the tibial component will range from −2.3° of internal rotation to 8° external rotation, while the anterior/posterior displacement will be 7mm anterior to −2mm posterior throughout the gait cycle. The components will be rotated through the simulation stations every Mc to account for inter-station variability. Gravimetric measurements of polyethylene wear will be taken at every Mc stage. A contact profilometer will also be used to measure average surface roughness of each articulating surface pre-and-post simulation. The development of such methods will be crucial in the ongoing improvement of TARs, and in enhancing clinical functionality, through understanding the envelope of TAR performance


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 68 - 68
1 Nov 2018
Sánchez-Abella L Loinaz I Grande H Dupin D
Full Access

In 2011, approximately 1.6 million total hip arthroplasties (THAs) were conducted in 27 of the 34 member countries in the Organization for Economic Cooperation and Development (OECD) However, approximately 10–15% of patients still require revision surgery every year. Therefore, new technologies are required to increase the life-spam of the prosthesis from the current 10–15 years to at least 20–30 years. Our strategy focuses on surface modification of the bearing materials with a hydrophilic coating to improve their wear behaviour. These coatings are biocompatible, with high swelling capacity and antifouling properties, mimicking the properties of natural cartilage, i.e. wear resistance with permanent hydrated layer that prevents prosthesis damage. Clear beneficial advantages of this coating have been demonstrated in different conditions and different materials, such as UHMWPE, PEEK, CrCo, Stainless steel, ZTA and Alumina. Using routine tribological experiments, the wear for UHMWPE substrate was decreased by 75% against alumina, ZTA and stainless steel. For PEEK-CFR substrate coated, the amount of material lost against ZTA and CrCo was at least 40% lower. Further experiments on hip simulator adding abrasive particles (1-micron sized aluminium particles) during 3 million cycles, on a total of 6 million, showed a wear decreased of around 55% compared to uncoated UHMWPE and XLPE. In conclusion, CIDETEC‘s coating technology is versatile and can be adapted to protect and improve the tribological properties of different types of surfaces used for prosthesis, even in abrasive conditions


Bone & Joint Research
Vol. 4, Issue 3 | Pages 29 - 37
1 Mar 2015
Halim T Clarke IC Burgett-Moreno MD Donaldson TK Savisaar C Bowsher JG

Objectives. Third-body wear is believed to be one trigger for adverse results with metal-on-metal (MOM) bearings. Impingement and subluxation may release metal particles from MOM replacements. We therefore challenged MOM bearings with relevant debris types of cobalt–chrome alloy (CoCr), titanium alloy (Ti6Al4V) and polymethylmethacrylate bone cement (PMMA). Methods. Cement flakes (PMMA), CoCr and Ti6Al4V particles (size range 5 µm to 400 µm) were run in a MOM wear simulation. Debris allotments (5 mg) were inserted at ten intervals during the five million cycle (5 Mc) test. . Results. In a clean test phase (0 Mc to 0.8 Mc), lubricants retained their yellow colour. Addition of metal particles at 0.8 Mc turned lubricants black within the first hour of the test and remained so for the duration, while PMMA particles did not change the colour of the lubricant. Rates of wear with PMMA, CoCr and Ti6Al4V debris averaged 0.3 mm. 3. /Mc, 4.1Â mm. 3. /Mc and 6.4 mm. 3. /Mc, respectively. . Conclusions. Metal particles turned simulator lubricants black with rates of wear of MOM bearings an order of magnitude higher than with control PMMA particles. This appeared to model the findings of black, periarticular joint tissues and high CoCr wear in failed MOM replacements. The amount of wear debris produced during a 500 000-cycle interval of gait was 30 to 50 times greater than the weight of triggering particle allotment, indicating that MOM bearings were extremely sensitive to third-body wear. Cite this article: Bone Joint Res 2015;4:29–37


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 7 | Pages 977 - 982
1 Jul 2009
Terrier A Merlini F Pioletti DP Farron A

Wear of polyethylene is associated with aseptic loosening of orthopaedic implants and has been observed in hip and knee prostheses and anatomical implants for the shoulder. The reversed shoulder prostheses have not been assessed as yet. We investigated the volumetric polyethylene wear of the reversed and anatomical Aequalis shoulder prostheses using a mathematical musculoskeletal model. Movement and joint stability were achieved by EMG-controlled activation of the muscles. A non-constant wear factor was considered. Simulated activities of daily living were estimated from in vivo recorded data. After one year of use, the volumetric wear was 8.4 mm. 3. for the anatomical prosthesis, but 44.6 mm. 3. for the reversed version. For the anatomical prosthesis the predictions for contact pressure and wear were consistent with biomechanical and clinical data. The abrasive wear of the polyethylene in reversed prostheses should not be underestimated, and further analysis, both experimental and clinical, is required


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 9 - 9
1 Apr 2018
Garcia-Rey E Carbonell R Cordero J Gomez-Barrena E
Full Access

Introduction. Durable bone fixation of uncemented porous-coated acetabular cups can be observed at a long-term, however, polyethylene (PE) wear and osteolysis may affect survivorship. Accurate wear measurements correlated with clinical data may offer unique research information of clinical interest about this highly debated issue. Objetive. We assessed the clinical and radiological outcome of a single uncemented total hip replacement (THR) system after twenty years analysing polyethylene wear and the appearance of osteolysis. Materials and Methods. 82 hips implanted between 1992 and 1995 were prospectively evaluated. The mean follow-up was 20.6 years (range, 18 to 23). A hemispherical porous-coated acetabular cup matched to a proximally hydroxyapatite-coated anatomic stem and a 28 mm standard PE liner, sterilised by gamma irradiation in air, was used in all hips. Radiological position and the possible appearance of loosening and osteolysis were recorded over time. Penetration of the prosthetic head into the liner was measured by the Roentgen Monographic Analysis (ROMAN) Tool at 6 weeks, 6 months, one year and yearly thereafter. Results. Six cups were revised due to wear and four due to late dislocation. All cups were radiographically well-fixed and all stems showed radiographic ingrowth. Six un-revised hips showed osteolysis on the acetabular side and two on the proximal femoral side. Creep at one year was 0.30 (±0.23) mm. Mean total femoral head penetration was 1.23 mm at 10 years, 1.52 mm at 15 years and 1.92 mm at 23 years. Overall mean wear was 0.12 (± 0.1) mm/year and 0.09 (±0.06) mm/year after the creep period. Mean wear was 0.08 (± 0.06) mm/year in hips without osteolysis and 0.14 (±0.03) mm/year in revised hips or with osteolysis (p<0.001). Conclusions. Although continued durable fixation can be observed with a porous-coated cups and a proximally hydroxyapatite-coated anatomic stem, true wear continues to increase at a constant rate over time. PE wear remains as the main reason for revision surgery and osteolysis in uncemented THR and does not stop after twenty years


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 83 - 83
1 Nov 2018
Paulus AC Ebinger K Haßelt S Kretzer JP Bader R Utzschneider S
Full Access

The biological reaction in metallosis and pseudotumor generation after metal on metal total hip arthroplasty or corroding metal implants remains unsettled. Clinically, still lethal cases appear with massive bone loss and metal ions are suspected to be responsible for this inflammatory reaction, solid metal wear particles instead are usually not observed in the common literature. The aim of this study was to compare the biological reactions of metal ions and metal wear particles in a murine in vivo model. Metal ions (CoCr), metal particles (CoCr), polyethylene particles (UHMWPE) and phosphate buffered saline (PBS) were injected into the left knee joint of female BALB/c mice. 7 days after injection, the microcirculation was observed using intravital fluorescence microscopy, followed by euthanasia of the animals. After the assessment of the knee diameter, the knees underwent histological evaluations of the synovial layer. Throughout all recorded data, CoCr particles caused higher inflammatory reactions compared to metal ions and UHMWPE particles. The mice treated with the solid particles showed enlarged knee diameters, more intensive leukocyte–endothelial cell interactions and an elevated functional capillary density. Pseudotumor-like tissue formations in the synovial layer of the mice were only seen after the exposition to solid CoCr particles. Even if the focus of several national guidelines concerning metallosis and pseudotumor generation is on metal ions, the present data reveal that solid CoCr particles have the strongest inflammatory activity compared with metal ions and UHMWPE particles in vivo


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 143 - 143
1 Jul 2014
Schroeder D Durham S Elliott M
Full Access

Summary Statement. A new 28mm-diameter ceramic-on-ceramic (COC) acetabular bearing couple (Biomet Orthopedics) showed extremely low wear, even under adverse microseparation conditions∗. The wear results are similar or more favorable than those reported for clinical retrievals and wear testing of similar ceramic bearings. Introduction. A new acetabular shell and ceramic insert design (Biomet) incorporates features to help prevent malalignment during implantation, while still providing secure fixation within the acetabular shell. The incorporation of Biolox. ®. Delta (zirconia toughened alumina, CeramTec) material should provide improved wear resistance over pure alumina ceramics. The goal of this study is to evaluate the wear durability of this system for standard and microseparation testing. Materials & Methods. The 28 mm diameter ceramic heads and inserts (CeramTec) were seated on taper spigots and within acetabular shells (Biomet), respectively. Six sets of parts were tested for 5M cycles of standard hip wear testing (ISO 14242) and an additional six sets of parts for 2M cycles of microseparation testing. The microseparation testing protocol included a steep cup angle (60° in-vivo), side load, and reduced axial load to induce head-liner separation. The lateral displacement was increased from 0.5mm, to 1mm, and then to 2mm in order to replicate wear features observed in extreme situations of clinical retrievals. [1]. The parts were weighed (gravimetric wear rates) and photographed throughout the test. SEM, transformation, and wear debris analyses were completed. Results. The steady-state wear rate throughout standard testing was 0.0094 +/− 0.0029 mm. 3. /10. 6. cycles (+/-95% CI). The initial 0.5mm microseparation distance (0–1M cycles) showed no signs of wear. Most heads showed wear stripes after increasing to 1.0mm (1–1.5M cycles), and then all test parts showed stripes after increasing to 2mm. The increased visibility in wear stripes correlated with an increased level of measured wear. For the 2mm separation-distance testing interval, the wear rate was 0.178 +/− 0.052mm. 3. /10. 6. cycles. Discussion/Conclusion. The lack of wear stripes during 0.5mm of microseparation is an indication of the strength of the implants. A distance of 1–2mm is an extreme level of microseparation and the 60° in-vivo cup inclination created an even worse-case situation for wear; however, the implants showed excellent mechanical strength and low wear rates. SEM and transformation analyses showed minimal wear and evidence of stress-induced ceramic toughening. Microseparation testing at another lab . [2]. has shown a similarly low wear rate (0.5 mm. 3. /10. 6. cycles) for Biolox. ®. Delta ceramic, with Biolox. ®. Forte (alumina ceramic, without zirconia) showing a considerably higher wear rate (6.3mm. 3. /10. 6. cycles). The standard testing wear rate (0.0094+/-0.0029 mm. 3. /10. 6. cycles) was much lower than the average wear rate (0.69+/-0.63 mm. 3. /10. 6. cycles) of several COC implant retrievals by Walter . [1]. The 28mm steady-state wear rate of this test is better than or equal to the wear rate (0.0101 mm. 3. /10. 6. cycles) observed in other 28mm COC systems.∗∗. ∗Ceramic-on-Ceramic articulation is not cleared for use in the United States. ∗∗Laboratory results are not necessarily indicative of clinical performance


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 48 - 48
1 Jan 2017
Pegg E Alotta G Barrera O
Full Access

Polyethylene wear of joint replacements can cause severe clinical complications, including; osteolysis, implant loosening, inflammation and pain. Wear simulator testing is often used to assess new designs, but it is expensive and time consuming. It is possible to predict the volume of polyethylene implant wear from finite element models using a modification of Archard's classic wear law [1–2]. Typically, linear elastic isotropic, or elasto-plastic material models are used to represent the polyethylene. The purpose of this study was to investigate whether use of a viscoelastic material model would significantly alter the predicted volumetric wear of a mobile-bearing unicompartmental knee replacement. Tensile creep-recovery experiments were performed to characterise the creep and relaxation behaviour of the polyethylene (moulded GUR 4150 samples machined to 180×20×1 mm). Samples were loaded to 3 MPa stress in 4 minutes, and then held for 6 hours, the tensile stress was removed and samples were left to relax for 6 hours. The mechanical test data was used fit to a validated three–dimensional fractional Maxwell viscoelastic constitutive material model [3]. An explicit finite element model of a mobile–bearing unicompartmental knee replacement was created, which has been described previously [4]. The medial knee replacement was loaded to 1200 N over a period of 0.2 s. The bearing was meshed using quadratic tetrahedral elements (1.5 mm seeding size based on results of a mesh convergence study), and the femoral component was represented as an analytical rigid body. Wear predictions were made from the contact stress and sliding distance using Archard's law, as has been described in the literature [1–2]. A wear factor of 5.24×10. −11. was used based upon the work by Netter et al. [2]. All models were created and solved using ABAQUS finite element software (version 6.14, Simulia, Dassault Systemes). The fractional viscoelastic material model predicted almost twice as much wear (0.119 mm. 3. /million cycles) compared to the elasto-plastic model (0.069 mm. 3. /million cycles). The higher wear prediction was due to both an increased sliding distance and higher contact pressures in the viscoelastic model. These preliminary findings indicate the simplified elasto-plastic polyethylene material representation can underestimate wear predictions from numerical simulations. Polyethylene is known to be a viscoelastic material which undergoes creep clinically, and it is not surprising that it is necessary to represent that viscoelastic behaviour to accurately predict implant wear. However, it does increase the complexity and run time of such computational studies, which may be prohibitive


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 35 - 35
1 Jan 2019
Zaribaf F Gill HR Pegg E
Full Access

Ultra-high molecular weight polyethylene (UHMWPE) is a commonly used as bearing material in joint replacement devices. UHMWPE implants can be hard to see on a standard X-ray because UHMWPE does not readily attenuate X-rays. Radiopaque UHMWPE would enable direct imaging of the bearing both during and after surgery, providing in vivo assessment of bearing position, dislocation or fracture, and potentially a direct measure of wear. The X-ray attenuation of UHMWPE was increased by diffusing an FDA approved contrast agent (Lipiodol) into UHMWPE parts (Zaribaf et al, 2018). The aim of this study was to evaluate the optimal level of radiopacity for a UHMWPE bearing. Samples of un-irradiated medical grade UHMWPE (GUR 1050) were machined into 4mm standard medium Oxford Unicompartmental bearings. Samples were immersed in Lipiodol Ultra Fluid (Guerbert, France) at elevated temperatures (85 °C, 95 °C and 105 °C) for 24 h to achieve three different levels of radiopacity. A phantom set-up was used for X-ray imaging; the phantom contained two perspex rods to represent bone, with the metallic tibial tray and polyethylene bearing fixed to the end of one rod and the metallic femoral component fixed to the other rod. Radiographs of the samples were taken (n=5) with the components positioned in full extension. To ensure consistency, the images of all the samples were taken simultaneously alongside an untreated part. The results of our ongoing study demonstrate that the radiopacity of UHMWPE can be enhanced using Lipiodol and the parts are visible in a clinical radiographs. The identification of the optimal treatment from a clinical perspective is ongoing; we are currently running a survey with clinicians to find the consensus on the optimal radiopacity taking into account the metallic components and alignment. Future work will involve a RSA study to assess the feasibility of measuring wear directly from the bearing


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 42 - 42
1 Oct 2016
Pasko K Hall R Neville A Tipper J
Full Access

Surgical interventions for the treatment of chronic neck pain, which affects 330 million people globally [1], include fusion and cervical total disc replacement (CTDR). Most of the currently clinically available CTDRs designs include a metal-on-polymer (MoP) bearing. Numerous studies suggest that MoP CTDRs are associated with issues similar to those affecting other MoP joint replacement devices, including excessive wear and wear particle-related inflammation and osteolysis [2,3]. A device with a metal-on-metal (MoM) bearing has been investigated in the current study. Six MoM CTDRs made from high carbon cobalt-chromium (CoCr) were tested in a six-axis spine simulator, under standard ISO testing protocol (ISO-18192-1) for a duration of 4 million cycles (MC). Foetal bovine calf serum (25%v/v), used as a lubricant, was changed every 3.3×10. 5. cycles and saved for particle analysis. Components were taken down for measurements after each 10. 6. cycles; surface roughness, damage modes and gravimetric wear were assessed. The mean wear rate of the MoM CTDRs was 0.24mm. 3. /MC (SD=0.03), with the total volume of 0.98mm. 3. (SD=0.01) lost over the test duration. Throughout the test, the volumetric wear was linear; no significant bedding-in period was observed. The mean pre-test surface roughness decreased from 0.019μm (SD=0.005) to 0.012μm (SD=0.002) after 4MC of testing. Prior to testing, fine polishing marks on the bearing surfaces were observed using light microscopy. Following 4MC of testing, these polishing marks had been removed. Consistently across all components, surface discolouration and multidirectional, criss-crossing, circular wear tracks, caused by abrasive wear, were observed. The wear results showed low wear rates exhibited by MoM CTDRs (0.24mm. 3. /MC), when compared CTDR designs incorporating metal-on-polymer bearings (0.56mm. 3. /MC) [4] as well as MoM lumbar CTDRs [5,6] (0.76mm3/MC – 6.2mm. 3. /MC). These findings suggest that MoM CTDRs are more wear resistant than MoP CTDRs, however the particle characterisation and biological consequences of wear remain to be determined


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 52 - 52
1 Jan 2017
Chua W De SD Teo A Nee P
Full Access

Highly cross-linked polyethylene (HXLPE) is now a common used bearing surface in total hip arthroplasty. Current studies report superior wear rates with the use of HXLPE in total hip arthroplasty. However, there are few studies to support its long term use. The aim of this study is to measure the long term wear of HXLPE and evaluate patient satisfaction at more than 10 years follow up. 44 total hip arthroplasties were performed through a direct lateral approach by a single surgeon. All patients received the same uncemented acetabular component, mean liner thickness was 6.91mm (SD= 0.68). 16 of the femur components were cemented. Outcomes analysed include wear rates, osteolysis, revision rates, SF12 and Oxford hip scores. Wear rate was calculated using computer software (Polyware®) using edge detection software. Mean age at surgery was 58.9 years (SD= 11.67). The mean follow up was 11.3 years (SD= 1.19). There was no evidence of osteolysis and none had undergone revision surgery. Mean two dimensional wear was 0.38mm (SD= 0.25) and mean wear rate per year was 0.03mm (SD= 0.02, range 0.009 to 0.078). Oxford hip score at last follow up indicated satisfactory joint function (mean= 42 SD= 6.2). Our results support the use of highly cross-linked polyethylene in primary total hip replacements. The absence of osteolysis and need for revision surgery over a mean of 11.3 years is very encouraging


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 256 - 256
1 Jul 2014
Bulgakov V Gavryushenko N Shal'nev A
Full Access

Summary. Understanding of the role of the radical-generating ability of wear particles of the existing and new implant materials as well as application of efficient antioxidants is one of the necessary conditions for improvement of the results of joint replacements. Introduction. Functioning of joint prostheses is accompanied by a continuous formation of wear particles and their accumulation in surrounding tissues. The impact of microroughnesses of joint prosthesis friction units may bring about chemical bond breakage and free-radical generation on a newly-formed wear surface. Wear particles of orthopedic alloys are capable to produce free radicals, and Co-Cr-Mo alloy particles are especially active. Free radicals generated by wear particles can cause oxidation and reduced wear resistance of polyethylene. Oxidised polyethylene particles stimulate the activity and release of bone-resorbing cytokines by human monocytes/macrophages. The ability of free radicals to cause damage to surrounding tissues and implant components makes it necessary to estimate comprehensively the radical-generating activity of wear particles of different orthopedic materials and develop the ways of its inhibition. Methods. Artificial Co-Cr-Mo alloy wear particles were obtained using dry friction of a ball against a disk. The radical-generating ability of orthopedic alloy wear particles was estimated by oxygen consumption using the model reaction of cumene oxidation. The radical-generating ability of wear particles was determined at different moments after their formation and storage at room temperature and humidity. In the experiments, a pro-inflammatory action of wear particles during their continuous formation was also simulated. Fresh cobalt alloy wear particles were used for a consecutive triple oxidation of 2 ml of cumene at a particle concentration of 0.3 mg/ml. After the first 40 min oxidation, a suspension of particles in cumene was centrifuged, and the used particles were removed. Fresh particles were added to oxidised cumene, and the second and third oxidations were carried out in a similar way. The ability of some antioxidants to inhibit the radical-generating ability of cobalt alloy wear particles was also determined. Results. Fresh cobalt alloy wear particles demonstrated an expressed radical-generating ability which remained practically at the initial level after a one-week storage. The ability gradually reduced in the process of storage. After a one-month storage the particles’ radical-generating ability decreased 2.6 times. A six-month storage of cobalt alloy particles resulted in a tenfold reduction of the radical-generating ability as compared to that of fresh particles. The intensification of radical formation was studied during three consecutive oxidations of cumene by wear particles. It was established that each consecutive oxidation of cumene by fresh wear particles occurred with a growing radical-generation ability. That parameter of the newly-formed particles increased more than two- and threefold during a consecutive double and triple cumene oxidation, respectively. Synthetic antioxidant BHT and natural antioxidant alpha-tocopherol were used for inhibition of wear particles-initiated free-radical reactions. Introduction of the antioxidants inhibited cumene oxidation with an antioxidant dose-dependent duration of this effect. In a mixture of alloy and orthopedic polyethylene particles, alpha-tocopherol completely inhibited the radical-generating activity of alloy particles thus preventing the polymer's oxidative destruction. Conclusion. The use of commercially available particles of orthopedic alloys with an uncontrolled duration storage in experiments considerably reduce or do not reveal the negative effects conditioned by their radical-generating ability. A proper study of the effect of the radical- generating ability of wear particles on the properties of implant components and surrounding tissues is possible only with the use of fresh particles. Permanent generation of free radicals in the process of wear of joint prosthesis metal components creates conditions for self-potentiation of negative free radical reactions during joint replacement. This requires the necessity of a preclinical estimation of the radical-generating ability of orthopedic materials and application of efficient antioxidants during the post-implantation period


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 51 - 51
1 Aug 2012
Scholes S Joyce T
Full Access

Although bovine serum is the lubricant recommended by several international standards for the wear testing of orthopedic biomaterials there are issues over its use. The inherent batch variation in protein content means that two bovine serum lubricants can give different wear rates. Due to degradation, the lubricant needs to be changed regularly, so that any third body wear particles are removed, thus potentially influencing wear regimes. There are also cost and safety issues with the use of bovine serum. For these reasons, alternative lubricants were investigated. A 50-station wear test rig was used, which applied multi-directional motion to each ultra-high molecular weight polyethylene (UHMWPE) test pin. Each pin articulated against a cobalt chrome plate polished to better than 0.05 microns Ra. The following lubricants were used: 50% dilute bovine serum; soy protein; olive oil; wheatgerm oil; soya oil; albumin and globulin (AG) mix; albumin, globulin and chondroitin sulphate (AGC) mix; whole milk; Channel Island milk; 11 mg/ml protein egg white; 20 mg/ml egg white; and 40 mg/ml egg white. A minimum of 6 UHMWPE pins per lubricant were wear tested and the tests ran to 2.5 million cycles. Gravimetric measurements were taken throughout the test to determine the volume of wear and at the end of the test the samples were examined using a SEM. The lubricants giving the closest results to bovine serum were 20 and 40 mg/ml egg white, with mean UHMWPE total wear volumes of 17.4 mm3 and 17.8 mm3 compared to bovine serum which gave 20.7 mm3. Surface topographies showed similar features too. The 11 mg/ml egg white lubricant and the AG and AGC lubricants were next closest in terms of wear. An UV absorbance assay found that all the protein based lubricants suffered from a high degradation rate, and the rate increased with increasing protein content. Egg white may offer a less expensive alternative to dilute bovine serum as a test lubricant although it is likely that it too would need to be changed as regularly as bovine serum