Autogenous bone grafting limitations have motivated the development of Tissue-Engineered (TE) biomaterials that offer an alternative as bone void fillers. However, the lack of a blood supply within implanted constructs may result in avascular necrosis and construct failure. 1. The aim of this project was to investigate the potential of novel TE constructs to promote
Introduction. Autologous fat grafting has favourable potential as a regenerative strategy and is the current gold-standard to repair large contour defects, as needed in breast reconstruction after mastectomy and traumatic soft tissue reconstruction. Clinically, there is a limit on the volume of lipoaspirate which can be utilised to repair a soft-tissue defect. Surgical complications are the result of poor structural fidelity of lipoaspirate and graft resorption as a filling material and are hindered further by poor graft
Infection is a common complication of severe open fractures and compromises bone healing. The present standard of care is a two-stage approach comprising of initial placement of antibiotic-impregnated PMMA beads to control infection followed later by bone grafting. Although the systemic antibiotics and PMMA/antibiotic beads control the infection initially, there are often residual bacteria within the wound. After grafting and definitive closure, the implanted graft is placed in an avascular defect and could function as a nidus for infection. Bioactive porous polyurethane (PUR) scaffolds have been shown to improve bone healing by delivering recombinant human bone morphogenetic protein-2 (BMP-2) and reduce infection by delivering antibiotics. The release kinetics of the BMP-2 were an initial burst to recruit cells and sustained release to induce the migrating cells. The Vancomycin (Vanc) release kinetics were designed to protect the graft from contamination until
Autologous cell therapy using stem cells and progenitor cells is considered to be a popular approach in regenerative medicine for the repair and regeneration of tissue and organs. In orthopaedic practice, autologous cell therapy has become a major focus, particularly, as a feasible treatment for tendon injury. Tendons are dense connective tissue that bridge bone to muscle and transmit forces between muscle and bone to maintain mechanical movement. Tendons are poorly vascularised and have very little capacity to self-regenerate. Degeneration of tendon is often caused by injury. The pathogenesis of tendon injury, commonly known as tendinosis, is not an inflammatory condition but is secondary to degenerative changes, including disruption of the collagen matrix, calcification,
Currently, there is no animal model in which
to evaluate the underlying physiological processes leading to the heterotopic
ossification (HO) which forms in most combat-related and blast wounds.
We sought to reproduce the ossification that forms under these circumstances
in a rat by emulating patterns of injury seen in patients with severe
injuries resulting from blasts. We investigated whether exposure
to blast overpressure increased the prevalence of HO after transfemoral
amputation performed within the zone of injury. We exposed rats
to a blast overpressure alone (BOP-CTL), crush injury and femoral
fracture followed by amputation through the zone of injury (AMP-CTL)
or a combination of these (BOP-AMP). The presence of HO was evaluated
using radiographs, micro-CT and histology. HO developed in none
of nine BOP-CTL, six of nine AMP-CTL, and in all 20 BOP-AMP rats.
Exposure to blast overpressure increased the prevalence of HO. This model may thus be used to elucidate cellular and molecular
pathways of HO, the effect of varying intensities of blast overpressure,
and to evaluate new means of prophylaxis and treatment of heterotopic
ossification. Cite this article: