header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

CELL THERAPY FOR TENDON REPAIR AND REGENERATION

Australian Orthopaedic Association Limited (AOA)



Abstract

Autologous cell therapy using stem cells and progenitor cells is considered to be a popular approach in regenerative medicine for the repair and regeneration of tissue and organs. In orthopaedic practice, autologous cell therapy has become a major focus, particularly, as a feasible treatment for tendon injury.

Tendons are dense connective tissue that bridge bone to muscle and transmit forces between muscle and bone to maintain mechanical movement. Tendons are poorly vascularised and have very little capacity to self-regenerate. Degeneration of tendon is often caused by injury. The pathogenesis of tendon injury, commonly known as tendinosis, is not an inflammatory condition but is secondary to degenerative changes, including disruption of the collagen matrix, calcification, vascularisation and adipogenesis. The aetiology of tendinosis is considered to be multifactorial and the pathogenesis is still unclear. Intrinsic factors such as a lack of blood and nutrition supply and extrinsic factors such as acute trauma and overuse injury caused by repetitive strain, have been implicated as contributors to the pathogenesis of tendinosis. More recent studies suggest that programmed tendon cell death (tenocyte apoptosis) may play a major role in the development of tendinosis. Such cellular abnormalities may influence the capacity of tendon to maintain its integrity.

Traditional treatments such as anti-inflammatory drugs, steroid injections and physiotherapy are aimed at symptom relief and do not address the underlying pathological changes of degeneration. Here, we propose that autologous cell therapy may be an innovative and promising treatment for tendon injury. We will present evidence that suggest that autologous tendon cell therapy may be feasible to repair and regenerate tendon.

We will also present data summarising the preclinical evaluation of autologous tendon cell therapy in animal models and the safety and tolerability of autologous tendon cell therapy in humans in studies, which are currently conducted at the Centre for Orthopaedic Research at the University of Western Australia.