Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 56 - 56
2 Jan 2024
Zderic I Warner S Stoffel K Woodburn W Castle R Penman J Saura-Sanchez E Helfet D Gueorguiev B Sommer C
Full Access

Treatment of both simple and complex patella fractures is a challenging clinical problem. The aim of this study was to investigate the biomechanical performance of recently developed lateral rim variable angle locking plates versus tension band wiring used for fixation of simple and complex patella fractures. Twelve pairs of human anatomical knees were used to simulate either two-part transverse simple AO/OTA 34C1 or five-part complex AO/OTA 34C3 patella fractures by means of osteotomies, with each fracture model created in six pairs. The complex fracture pattern was characterized by a medial and a lateral proximal fragment, together with an inferomedial, an inferolateral, and an inferior fragment mimicking comminution around the distal patellar pole. The specimens with simple fractures were pairwise assigned for fixation with either tension band wiring through two parallel cannulated screws, or a lateral rim variable angle locking plate. The knees with complex fractures were pairwise treated with either tension band wiring through two parallel cannulated screws plus circumferential cerclage wiring, or a lateral rim variable angle locking plate. Each specimen was tested over 5000 cycles by pulling on the quadriceps tendon, simulating active knee extension and passive knee flexion within the range of 90° flexion to full knee extension. Interfragmentary movements were captured via motion tracking. For both fracture types, the longitudinal and shear articular displacements measured between the proximal and distal fragments at the central patella aspect between 1000 and 5000 cycles, together with the relative rotations of these fragments around the mediolateral axis were all significantly smaller following the lateral rim variable angle locked plating compared with tension band wiring, p<0.01. Lateral rim locked plating of both simple and complex patella fractures provides superior construct stability versus tension band wiring under dynamic loading


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVIII | Pages 5 - 5
1 Jun 2012
Higgs Z Sianos G
Full Access

The study looked at early outcomes of 55 patients who underwent open reduction and internal fixation of distal radius fracture with a single variable angle volar locking plate (Variax, Stryker), by a single surgeon (GS), between May 2007 and December 2008. A retrospective review of notes and radiographs was performed. Twenty-nine women and 26 men were included. The mean age was 52 years. Mean follow up time was 3 months. The dominant wrist was involved in 38 patients. The mechanism of injury was of low energy in 38 patients and of high energy in 17 patients. All patients had comminuted fractures and 52 patients had intraarticular fractures. Seven patients underwent intraoperative carpal tunnel decompression. At latest follow up, active wrist motion averaged 37° extension, 40° flexion, 70° pronation, and 56° supination. Grip strength averaged 64% and pinch grip 77% of the contralateral wrist. Postoperative complications included one flexor pollicis longus rupture, one malunion and three patients with loosening of screws. There was a higher rate of complications seen in patients with high energy injuries. These early results suggest that volar plating with a variable angle plate is an effective treatment option, especially for complex intraarticular distal radius fractures. A medium term outcomes study of a larger number of patients is planned


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 107 - 107
2 Jan 2024
Pastor T Zderic I Berk T Souleiman F Vögelin E Beeres F Gueorguiev B Pastor T
Full Access

Recently, a new generation of superior clavicle plates was developed featuring the variable-angle locking technology for enhanced screw positioning and optimized plate-to-bone fit design. On the other hand, mini-fragment plates used in dual plating mode have demonstrated promising clinical results. However, these two bone-implant constructs have not been investigated biomechanically in a human cadaveric model. Therefore, the aim of the current study was to compare the biomechanical competence of single superior plating using the new generation plate versus dual plating with low-profile mini-fragment plates. Sixteen paired human cadaveric clavicles were assigned pairwise to two groups for instrumentation with either a 2.7 mm Variable Angle Locking Compression Plate placed superiorly (Group 1), or with one 2.5 mm anterior plate combined with one 2.0 mm superior matrix mandible plate (Group 2). An unstable clavicle shaft fracture AO/OTA15.2C was simulated by means of a 5 mm osteotomy gap. All specimens were cyclically tested to failure under craniocaudal cantilever bending, superimposed with bidirectional torsion around the shaft axis and monitored via motion tracking. Initial stiffness was significantly higher in Group 2 (9.28±4.40 N/mm) compared to Group 1 (3.68±1.08 N/mm), p=0.003. The amplitudes of interfragmentary motions in terms of craniocaudal and shear displacement, fracture gap opening and torsion were significantly bigger over the course of 12500 cycles in Group 1 compared to Group 2; p≤0.038. Cycles to 2 mm shear displacement were significantly lower in Group 1 (22792±4346) compared to Group 2 (27437±1877), p=0.047. From a biomechanical perspective, low-profile 2.5/2.0 dual plates demonstrated significantly higher initial stiffness, less interfragmentary movements, and higher resistance to failure compared to 2.7 single superior variable-angle locking plates and can therefore be considered as a useful alternative for diaphyseal clavicle fracture fixation especially in unstable fracture configurations


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 26 - 26
11 Apr 2023
Kowalski E Pelegrinelli A Ryan N Dervin G Lamontagne M
Full Access

This study examined pre-operative measures to predict post-operative biomechanical outcomes in total knee arthroplasty (TKA) patients. Twenty-eight patients (female=12/male=16, age=63.6±6.9, BMI=29.9±7.4 kg/m2) with knee osteoarthritis scheduled to undergo TKA were included. All surgeries were performed by the same surgeon (GD) with a subvastus approach. Patients visited the gait lab within one-month prior to surgery and 12 months following surgery. At the gait lab, patients completed the knee injury and osteoarthritis outcome score (KOOS), a timed up and go (TUG), maximum knee flexion and extension strength evaluation, and a walking task. Variables of interest included the five KOOS sub-scores, TUG time, maximum knee flexion and extension strength normalized to body weight, walking speed, and peak knee biomechanics variables (flexion angle, abduction moment, power absorption). A Pearson's correlation was used to identify significantly correlated variables which were then inputted into a multiple regression. No assumption violations for the multiple regression existed for any variables. Pre-operative knee flexion and extension strength, TUG time, and age were used in the multiple regression. The multiple regression model statistically significantly predicted peak knee abduction moment, post-operative walking speed, and post-operative knee flexion strength. All four variables added statistically significantly to the prediction p<.05. Pre-operative KOOS values did not correlate with any biomechanical indicators of post-operative success. Age, pre-operative knee flexion and extension strength, and TUG times predicted peak knee abduction moment, which is associated with medial knee joint loading. These findings stress the importance of pre-surgery condition, as stronger individuals achieved better post-operative biomechanical outcomes. Additionally, younger patients had better outcomes, suggesting that surgeons should not delay surgery in younger patients. This delay in surgery may prevent patients from achieving optimal outcomes. Future studies should utilize a hierarchical multiple regression to identify which variables are most predictive


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 61 - 61
1 Mar 2013
Hachem M Hardwick T Pimple M Tavakkolizadeh A Sinha J
Full Access

Tightrope fixation is known method for reconstructing acromioclavicular joint and the presence of good bone stock around the two drillholes is the most important determining factor for preventing failure. Aim. Arthroscopic-assisted tightrope stabilisation involve drilling clavicle and coracoids in a straight line. This leads to eccentric drillholes with inadequate bone around it. Open tightrope fixation involves drilling holes under direct vision, independently and leading to centric hole with adequate bone around it. Our study assesses the hypothesis of tightrope fixation in relation to location of drillholes using CT-scan and cadaveric models for arthroscopic and open technique for ACJ fixation. Methods. CT-scans of 20 shoulders performed. Special software used to draw straight line from distal end of clavicle to coracoid. Bone volume around coracoid drillhole was calculated. Cadaveric shoulder specimens were dissected. The arthroscopic technique was performed under vision by drilling both clavicle and base of coracoid holes in one direction. Same specimens were used for open technique. Base of coracoid crossectioned and volume calculated. Results. 40 shoulders were included(20 cadaveric specimens&20 CT). Bone stock was adequate in both techniques. Variable angle for insertion of drillholes using arthroscopic technique were needed depending on shape of shoulder. Conclusion. Tightrope allows nonrigid anatomic fixation of acromioclavicular joint. Published studies showed high rate of fixation failure with tightrope system but with patient satisfaction and high functional results. Our study showed adequate bone stock around coracoid in both open and arthroscopic technique. Mode of failure remains unclear and we recommend further biomechanical studies to assess failure factors


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XI | Pages 13 - 13
1 Apr 2012
Al-Janabi Z Basanagoudar P Nunag P Springer T Deakin AH Sarungi M
Full Access

The routine use of a fixed distal femoral resection angle in total knee arthroplasty (TKA) assumes little or no variation in the angle between the anatomical and mechanical femoral axes (FMA angle) in different patients. The aims of this study were threefold, firstly to investigate the distribution of FMA angle in TKA patients, secondly to identify any correlation between the FMA angle and the pre-operative coronal mechanical femoro-tibial (MFT) angle and in addition to assess post-operative MFT angle with fixed or variable distal femoral resection angles. 277 primary TKAs were performed using either fixed or variable distal femoral resection angles (174 and 103 TKAs respectively), with intramedullary femoral and extramedullary tibial jigs. The variable distal femoral resection angles were equal to the FMA angle measured on pre-operative Hip-Knee-Ankle (HKA) digital radiographs for each patient. Outcomes were assessed by measuring the FMA angle and the pre- and post-operative MFT angles on HKA radiographs. The FMA angle ranged from 2° to 9° (mean 5.9°). Both cohorts showed a correlation between FMA and pre-operative MFT angles (fixed: r = -0.499, variable: r = -0.346) with valgus knees having lower FMA angles. Post-operative coronal alignment within ±5° increased from 86% in the fixed angle group to 96% when using a variable angle, p = 0.025. For post-operative limb alignment within ±3°, accuracy improved from 67% (fixed) to 85% (variable), p = 0.002. These results show that the use of a fixed distal femoral resection angle is a source of error regarding post-operative coronal limb malalignment. The correlation between the FMA angle and pre-operative varus-valgus alignment supports the rational of recommending the adjustment of the resection angle according to the pre-operative deformity (3°-5° for valgus, 6°-8° for varus) in cases where HKA radiographs are not available for pre-operative planning