Recent findings about
INTRODUCTION. Surgical correction of spinal deformities in the growing child can be applied with or without fusion. Sublaminar wiring, first described by Luque, allows continuation of growth of the non-fused spine after correction of the deformity. Neurological complications and wire breakage are the main clinical problems during the introduction and removal of currently used sublaminar wires. In this pilot study a posterior hybrid construction with the use of a medical-grade
INTRODUCTION. The lifetime of
INTRODUCTION. Cementless Total Hip Replacement surgery is a well established procedure for relative young patients with severe hip disease. Excellent long term clinical results have been published on the performance of the femoral component. With growing clinical experience, our concern focused on excessive wear of the Ultra High Molecular Weight Polyethylene (UHMWPE) ringloc liner of the Mallory Head cementless Total Hip Prosthesis. After its introduction in our clinic in 1997, this implant is still in use without any modification. We were concerned that due to premature liner wear, the performance of this implant would not be compliant with the international guideline on implant survival (NICE guidelines: at 10 year follow up, 90% of all implants should still be in situ). Our objective was to establish the amount of liner wear in our first 200 MH implants. METHODS. Our first 200 patients consecutively treated with Mallory Head prostheses were followed up to obtain a recent digital image. Follow up was complete for 181 (90.5%) of our 200 patients. Ten had died and nine were not able or willing to come for follow up. The mean duration of follow up was 8.3 years (range: 8–13). The 181 recent digital images were classified as either excessive wear or no excessive wear by two independent orthopedic surgeons. Next, liner wear was measured in the 2D frontal plane using PolyWare Pro/3D Digital Version Rev 5.1 software (Draftware Developers, Conway, USA). A threshold for excessive liner wear was set at 0.2mm/year, according to literature. RESULTS. Using software for measuring PE wear, 46.7% of all patients had excessive
Introduction. Vitamin E stabilization of radiation crosslinked
Introduction. Cobalt chrome on polyethylene remains a widely used bearing combination in total joint replacement. However wear induced osteolysis, bulk material property degradation of highly cross-linked polyethylene (HXLPE) [1], and oxidation after implantation (thought to be as a result of lipid absorption or cyclic loading [2]) remains a concern. ECIMA is a cold-irradiated, mechanically annealed, vitamin E blended next generation HXLPE developed to maintain mechanical properties, minimise wear and to improve the oxidation resistance in the long-term. The aim of this study was to compare the in-vitro wear rate and mechanical properties of three different acetabular liners; conventional
Introduction. A tibial insert with choices in size, thickness, and posterior slope is proposed to improve ligament balancing in total knee arthroplasty. However, increasing posterior slope, or the angle between the distal and proximal insert surfaces, will redistribute ultra-high molecular weight polyethylene (UHMWPE) thickness in the sagittal plane, potentially affecting wear. This study used in-vitro testing to compare wear for a standard cruciate-retaining tibial insert (STD) and a corresponding 6° sloped insert (SLP), both manufactured from direct-compression molded (DCM)
Periprosthetic osteolysis depends on the biological activity of wear particles, but there is little known about the distribution of polyethylene wear particles (PE) in the surrounding joint tissue. The purpose of this study was to examine the localisation of wear particles of six different PEs, including four crosslinked polyethylenes (XPE), as well as their biological activity in the murine knee. Material and Methods. Wear particles of 4 XPE- and 2 UHMWPE-inserts were isolated (knee joint simulator). For all groups the particles were similar in size and shape (mean diameter 0.3–05μm; 20nm-nucleopore-filter; ISO; n = 100.000).56 female Balb/c mice were randomly assigned to six treatment groups and one control group: control (PBS), XPE1 (3×30 kGy Gamma, annealed/sequential irradiated), XPE2 (95 kGy E-beam, remelted), XPE3 (65 kGy E-beam, remelted), XPE 4 (50 kGy Gamma, remelted),
The use of external fixation in the management of long bone fractures has long been recognised. The aim of this study was to compare 3 differing constructs of Hoffman-2 and Hoffman-3 External Fixator systems to assess which potentially withstood the greatest load. Three different constructs (2, 3 and 4-bar) of Hoffman 2 and 3 External Fixation systems were tested. A
Osteolysis induced by