Abstract
Introduction
Vitamin E stabilization of radiation crosslinked UHMWPE is done by (1) blending into the resin powder, consolidating and irradiating or (2) diffusing into already consolidated and irradiated UHMWPE and terminally gamma sterilizing. With blending, a higher radiation dose is required for crosslinking to the same level as virgin UHMWPE. With diffusion, the vitamin E amount used is not limited by the crosslink density, but, vitamin E is exposed to terminal sterilization dose of 25–40 kGy, less than the 100–150 kGy used with blending, which may decrease the grafting of the antioxidant onto the polymer. We investigated the efficiency of grafted vitamin E against squlene-initiated accelerated aging.
Methods
Medical grade GUR1050 UHMWPE with vitamin E (0.1 wt%) was irradiated to 150 kGy. Tibial knee insert preforms were irradiated to 100 kGy, diffused with vitamin E using a doping and homogenization procedure. This UHMWPE was used either before or after gamma sterilization. One set of machined blocks (10 × 10 × 6 mm; n = 6) were extracted in boiling hexane for 4 days, then dried. The extracted blocks were doped with squalene at 120°C for 2 hours. One block each was analyzed after doping. The rest were accelerated aged at 70°C and 5 atm. of oxygen for 6 (n = 2) and 14 days (n = 3). Thin sections (150 micron thick) were microtomed and analyzed by Fourier Transform Infrared Spectroscopy to determine a vitamin E index (1245–1275 cm−1 normalized to 1850–1985 cm−1) and an oxidation index (1700 cm−1 normalized to 1370 cm−1) after extraction with boiling hexane for 16 hours and drying.
Results
After extraction, 92% of the original vitamin E was removed from diffused and sterilized UHMWPE and 99% of the vitamin E was removed from the diffused and unsterilized UHMWPE. Vitamin E content of the blended, irradiated UHMWPEs could not be detected. As a result of accelerated aging in the presence of squalene, all extracted vitamin E-stabilized UHMWPEs showed increased oxidation except diffused, sterilized UHMWPE. The small amount grafted vitamin E in these samples (8%, ∼0.02 wt%) protected irradiated UHMWPE under these conditions. All vitamin E-stabilized, extracted UHMWPEs showed higher oxidative stability than irradiated and melted virgin UHMWPE in the presence of squalene. In the blended, irradiated UHMWPE, there was less effective vitamin E compared to the diffused, sterilized UHMWPE due to the high dose irradiation.
Conclusions
Radiation grafting of vitamin E onto UHMWPE was effective against squalene initiated oxidation in accelerated aging. Vitamin E-diffused, sterilized UHMWPE showed no oxidation and diffused, unsterilized UHMWPE and blended, irradiated UHMWPE showed higher oxidative resistance than irradiated/melted UHMWPE.