Background. Postoperative dislocation is one of the main surgical complications and the primary cause for revision surgery after 2-stage implant exchange due to periprosthetic infection of a total hip arthroplasty. Objective. The aims of our study were (1) to determine the incidence of dislocation after two-stage THA reimplantation without spacer placement, (2) to evaluate relevant risk factors for dislocation and (3) to assess the final functional outcome of those patients. Method. We prospectively analyzed 187 patients who underwent a two-stage
BACKGROUND PURPOSES. dislocation is a classical complication in
Postoperative infection is a difficult complication affecting total hip arthroplasty. It is painful, disabling, costly and it lacks definitive treatment guidelines. Klebsiella spp. are uncommon causes of Total Hip Arthroplasty. The aim of this case report was to document an effective treatment algorithm for a multidrug resistant Klebsiella spp infection after THA. We report a case of a 56-year-old male who has performed a THA in 2007 at our institution. After 4 admissions due to posterior hip dislocations it was performed an Acetabular Revision in May 2014. The periprothesic infection was suspected by delayed wound healing with inflammatory signals and both abnormal values of Erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP). The patient was submitted to two hip arthrocenteses, one before and the other after antibiotic therapy (EV). The intra-articular cultures revealed a Klebsiella Pneumoniae infection only carbapenem-sensitive. We decided to performed a two-stage
Aim. Aseptic loosening is the leading cause of
The objective of this study was to determine whether the bearing surface is a risk factor for revision after late dislocation in total hip arthroplasty (THA). Data from primary THAs were extracted from the New Zealand Joint Registry over a 13-year period. The mean age of patients was 68.9 years; 53.2% were female. The surgical approach used was posterior in 66% of THAs, lateral in 29% and anterior in 5%. There were 53,331 (65.1%) metal-on-polyethylene THAs, 14,093 (17.2%) ceramic-on-polyethylene, 8,177 (10.0%) ceramic-on-ceramic, 461 (0.5%) ceramic-on-metal, 5910, and (7.2%) metal-on-metal. The primary endpoint was late revision for dislocation, with ‘late’ defined as greater than one year post-operatively. 73,386 hips were available for analysis. The overall revision rate was 4.3% (3,130 THAs), 1.1% (836) were revised for dislocation. Only 0.65% (470) hips were revised for dislocation after the first post-operative year. The unadjusted hazard ratios (HR) showed significantly higher rates of revision for dislocation in ceramic-on-polyethylene (HR 2.48; p=0.001) and metal-on-polyethylene (HR 2.00; 95% p =0.007) compared to ceramic-on-ceramic. However, when adjusted for head size, age and surgical approach, only ceramic-on-polyethylene (HR 2.10; p=0.021) maintained a significantly higher rate of revision, whereas metal-on-polyethylene approached significance (HR 1.76; 95% p = 0.075). In New Zealand, dislocation is the most common reason for revision, ahead of aseptic loosening of the acetabular component. The relationships between bearing materials and risk of revision for late dislocation is controversial. However, in this study ceramic-on-ceramic shows lower risk rates for revision than other bearing surface combinations. Low wear and less debris, limited peri-articular inflammatory reaction and an healthy fibrotic pseudo-capsule are potential factors determining long-term stability of the hip joint.
Revision is a key negative outcome of joint replacements. The purpose of this abstract is to present revision risk curves for hip and knee replacements based on the most recently available national data sources. Having a better understanding of determinants of revision risk can help inform clinical and health care system improvements. We explored revision risk of primary joint replacement stratified by key clinical, prosthesis, and surgeon-level factors using data from three databases managed by CIHI: the Canadian Joint Replacement Registry (CJRR), the Discharge Abstract Database, and the National Ambulatory Care Reporting System. To investigate early revisions, we used Kaplan-Meier analysis stratified by demographic factors to determine the risk of revision within up to five years of primary surgery. This analysis identified the primary cohort from the CJRR from April 1, 2012 to March 31, 2017 and was limited to mandatory reporting provinces (British Columbia, Manitoba and Ontario) to ensure maximal coverage of prosthesis information. Bearing surface was obtained from the International Prosthesis Library maintained by the International Consortium of Orthopaedic Registries (ICOR) and the International Society of Arthroplasty Registers (ISAR). The total revision risk cohort contained 283,620 primary surgeries, of which 5,765 (2%) had at least one
The aim of this study was to assess the incidence of low-grade infections in
Hip fracture patients are at higher risk of severe COVID-19 illness, and admission into hospital puts them at further risk. We implemented a two-site orthopaedic trauma service, with ‘COVID’ and ‘COVID-free’ hubs, to deliver urgent and infection-controlled trauma care for hip fracture patients, while increasing bed capacity for medical patients during the COVID-19 pandemic. A vacated private elective surgical centre was repurposed to facilitate a two-site, ‘COVID’ and ‘COVID-free’, hip fracture service. Patients were screened for COVID-19 infection and either kept at our ‘COVID’ site or transferred to our ‘COVID-free’ site. We collected data for 30 days on patient demographics, Clinical Frailty Scale (CFS), Nottingham Hip Fracture Scores (NHFS), time to surgery, COVID-19 status, mortality, and length of stay (LOS).Aims
Methods
The main causes of
The leading cause for
Plots are an elegant and effective way to represent
data. At their best they encourage the reader and promote comprehension.
A graphical representation can give a far more intuitive feel to
the pattern of results in the study than a list of numerical data,
or the result of a statistical calculation. The temptation to exaggerate differences or relationships between
variables by using broken axes, overlaid axes, or inconsistent scaling
between plots should be avoided. A plot should be self-explanatory and not complicated. It should
make good use of the available space. The axes should be scaled
appropriately and labelled with an appropriate dimension. Plots are recognised statistical methods of presenting data and
usually require specialised statistical software to create them.
The statistical analysis and methods to generate the plots are as
important as the methodology of the study itself. The software,
including dates and version numbers, as well as statistical tests
should be appropriately referenced. Following some of the guidance provided in this article will
enhance a manuscript. Cite this article: