Injuries to the posterior cruciate ligament (PCL) and the posterolateral corner (PLC) of the knee remain a challenging orthopaedic problem. Studies evaluating PCL and PLC reconstruction have failed to demonstrate a strong correlation between the degree of knee laxity as measured by uniplanar testing and subjective outcome or patient satisfaction. The effect that changing the magnitude of posterior tibial slope has on multiplanar, rotational stability of the PCL-deficient knee has yet to be determined. We aimed to evaluate the effect that changes in posterior tibial slope would have on static and dynamic stability of the PCL-PLC deficient knee. Ten knees were used for this study. Navigated posterior drawer and standardised reverse mechanised pivot shift maneuvers were performed in the intact knee and after sectioning the PCL, the lateral collateral ligament (LCL), the popliteofibular ligament (PFL) and the popliteus muscle tendon (POP). Navigated high tibial osteotomy (HTO) was performed to obtain the desired change in tibial plateau slope (+5® or −5® from native slope). We then repeated the posterior drawer and the reverse mechanised pivot shift test for each of the two altered slope conditions. Mean posterior
Variations in the pivot shift test have been proposed by many authors, though, a test comprised of rotatory and valgus tibial forces with accompanied knee range of motion is frequently utilised. Differences in applied forces between practitioners and patient guarding have been observed as potentially decreasing the reproducibility and reliability of the pivot shift test. We hypothesise that a low-profile pivot shift test (LPPST) consisting of practitioner induced internal rotatory and anterior directed tibial forces with accompanied knee range of motion can elicit significant differences in internal tibial rotation and anterior
Introduction. Total knee arthroplasty (TKA) is the definitive treatment for osteoarthritis of the knee. The primary goal of the operation is to minimize or eliminate pain associated with osteoarthritis and secondarily to regain functional mobility and stability around the knee joint in order improve overall quality of life. The vast majority of techniques utilized for this procedure involves removal of the anterior cruciate ligament (ACL). In a native knee the ACL is a primary stabilizing ligament and essential for providing proprioceptive feedback. In the absence of the ACL, the kinematics of the knee are compromised. In an effort to more accurately replicate normal knee stability, new implant designs have emerged which maintain an intact ACL. Described herein is a cadaveric study looking at ACL competency after implantation of a TKA in which the cruciate ligaments are preserved. Methods. Twenty fresh, frozen cadaveric knees were utilized in which the ACL was intact. Specimens were excluded if there was concern for ACL stability as determined by physical examination, direct visualization during the arthrotomy and a KT-1000 measurement of anterior
Anterior cruciate ligament (ACL) injuries are frequent among athletes and a leading cause of time away from competition. Stability of the knee involves the ACL for limiting anterior
Conventional computer navigation systems using bone fixation have been validated in measuring anteroposterior (AP) translation of the tibia. Recent developments in non-invasive skin-mounted systems may allow quantification of AP laxity in the out-patient setting. We tested cadaveric lower limbs (n=12) with a commercial image free navigation system using passive trackers secured by bone screws. We then tested a non-invasive fabric-strap system. The lower limb was secured at 10° intervals from 0° to 60° knee flexion and 100N of force applied perpendicular to the tibial tuberosity using a secured dynamometer. Repeatability coefficient was calculated both to reflect precision within each system, and demonstrate agreement between the two systems at each flexion interval. An acceptable repeatability coefficient of ≤3mm was set based on diagnostic criteria for ACL insufficiency when using other mechanical devices to measure AP
Given their role in reducing anterior
Many patients who undergo a total knee arthroplasty (TKA) wish to return to a more active lifestyle. The implant must be able to restore adequate muscle strength and function. However, this may not be a reality for some patients as quadriceps and hamstrings muscle activity may remain impaired following surgery. The purpose of this study was to compare muscle activity between patients implanted with a medial pivot (MP) or posterior stabilized (PS) implant and controls (CTRL) during ramp walking tasks. Fifteen patients were assigned to either a MP (n=9) or PS (n=6) TKA operated by the same surgeon. Nine months following surgery, the 15 patients along with nine CTRL patients completed motion and EMG analysis during level, ramp ascent & descent walking tasks. Wireless EMG electrodes were placed on six muscles: vastus medialis (VM), vastus lateralis (VL), biceps femoris (BF), semimembranosus (SM) muscles, gastrocnemius medial head (GM), and gastrocnemius lateral head (GL). Participants completed three trials of each condition. EMG data were processed for an entire gait cycle of the operated limb in the TKA groups, and for the dominant limb in the CTRL group. The maximum muscle activity achieved with each muscle during the level trial was used to normalize the ramp trials. The onset and offset of each muscle was determined using the approximated generalized likelihood ratio. Peak muscle activity (PeakLE), total muscle activity (iEMG), and muscle onsets/offsets were determined for each muscle for the ramp ascent and descent trials. Non-parametric Kruskal Wallace tests were used to test for statistical significance between groups with α=0.05. During the ramp up task, both MP and PS groups had significantly greater PeakLE and iEMG for the hamstring muscles compared to the CTRL, whereas the PS group had significantly greater PeakLE compared with the MP group for the SM muscle. During the ramp down task, both MP and PS groups had significantly greater PeakLE and iEMG for the SM and GL muscles compared to the CTRL. The PS group also had significantly greater iEMG for the BF and VM muscles compared to the CTRL. The MP group had a significantly earlier offset for the SM muscle compared to the CTRL. Stability in a cruciate removing TKA is partially controlled by the prosthetic design. During the ramp up task, the TKA groups compensated the
The knee joint displays a wide spectrum of laxity, from inherently tight to excessively lax even within the normal, uninjured population. The assessment of AP knee laxity in the clinical setting is performed by manual passive tests such as the Lachman test. Non-invasive assessment based on image free navigation has been clinically validated and used to quantify mechanical alignment and coronal knee laxity in early flexion. When used on cadavers the system demonstrated good AP laxity results with flexion up to 40°. This study aimed to validate the repeatability of the assessment of antero-posterior (AP) knee joint laxity using a non-invasive image free navigation system in normal, healthy subjects. Twenty-five healthy volunteers were recruited and examined in a single centre. AP translation was measured using a non-invasive navigation system (PhysioPilot) consisting of an infrared camera, externally mounted optical trackers and computer software. Each of the volunteers had both legs examined by a single examiner twice (two registrations). The Lachman test was performed through flexion in increments of 15°. Coefficients of Repeatability (CR) and Interclass Correlation Coefficients (ICC) were used to validate AP translation. The acceptable limits of agreement for this project were set at 3mm for antero-posterior
INTRODUCTION. Understanding the biomechanics of the anatomical knee is vital to innovations in implant design and surgical procedures. The anterior – posterior (AP) laxity is of particular importance in terms of functional outcomes. Most of the data on stability has been obtained on the unloaded knee, which does not relate to functional knee behavior. However, some studies have shown that AP laxity decreases under compression (1) (2). This implies that while the ligaments are the primary stabilizers under low loads, other mechanisms come into play in the loaded knee. It is hypothesized this decreased laxity with compressive loads is due to the following: the meniscus, which will restrain the femur in all directions; the cartilage, which will require energy as the femur displaces across the tibial surface in a plowing fashion; and the upwards slope of the anterior medial tibial plateau, which stabilizes the knee by a gravity mechanism. It is also hypothesized that the ACL will be the primary restraint for anterior
Introduction. Opening wedge high tibial osteotomy is an attractive surgical option for physically active patients with early osteoarthritis and varus malalignment. Unfortunately use of this surgical technique is frequently accompanied by an unintended increase in the posterior tibial slope, resulting in anterior
Introduction. The influences of posterior tibial slope on the knee kinematics have been reported in both TKA and UKA. We hypothesized the posterior tibial slope (PTS) would affect the sagittal knee alignment after UKA. The influences of PTS on postoperative knee extension angle were investigated with routine lateral radiographies of the knee after UKA. Materials & Methods. Twenty-four patients (26 knees; 19 females, 7 males) underwent medial UKA were involved in this study. Average age was 74.8 ± 7.2 years. The mean preoperative active range of motion were − 4.1° ± 6.3°in extension and 123.2° ± 15.5° in flexion. All UKAs were performed using fixed bearing type UKA (Zimmer Biomet, ZUK), with adjusting the posterior slope of the proximal tibial bone cut according to the original geometry of the tibia. Routine lateral radiographies of the knee were examined preoperatively, 6 months after the surgery. PTS and knee extension angles with maximal active knee extension (mEXT) and one-leg standing (sEXT) were radiographically measured. We used the fibular shaft axis (FSA) for the sagittal mechanical axis of the tibia. PTS was defined as the angle between the medial tibial plateau and the perpendicular axis of FSA. Extension angles (mEXT and sEXT) were defined as the angles between FSA and distal femoral shaft axis (positive value for hyperextension). The changes of PTS and the influences of PTS on sEXT at each time period were analyzed using simple linear regression analysis (p<0.05). Results. The mean PTSs were 10.0° ± 3.0° and 9.9° ± 2.7° preoperatively, 6m after surgery respectively. The mean mEXTs were −4.1° ± 6.3° and −2.0° ± 5.4°, and sEXTs were −9.4° ± 7.6° and −7.3° ± 6.7° at each time period. Preoperative and postoperative PTS had positive correlation (r = −0.65). PTS significantly negatively correlated to sEXT at 6 months after the surgery (r = −0.63). Discussions. We found patient tended to stand with slight knee flexion (sEXT) which was smaller than the flexion contracture measured by mEXT. Interestingly, postoperative PTS significantly correlated to the knee flexion angle during one-leg standing. Patients with the higher PTS after UKA were more likely to stand with the higher knee flexion. The higher PTS had been reported to increase
Anthropometric anatomical factors may influence mechanical and functional stability of joints. An increased posterior tibial slope places the anterior cruciate ligament at a theroretical biomechanical disadvantage. An increased posterior tibial slope can potentially alter forces during landing tasks by either increasing anterior
Tibial and femoral bone tunnel widening (TW) has been observed following anterior cruciate ligament (ACL) reconstruction. We developed a χ12 mm cannulated cancellous screw (Intercondylar Ligament Screw, ICLS) for femoral fixation to reduce TW. The purpose of this study is to introduce our surgical method and its results. We employed an original ICLS system developed to reduce the needed distance between the tibial and femoral-fixation points (distance between fixation points, DbF) in ACL reconstruction. Five-strand (sometimes four or six-strand) hamstring grafts are connected to the ICLS. Tibial fixation is achieved with a Ligament Tension Screw, which had been developed by Murase et al. rom 2001 to 2008, 169 knees underwent ACL reconstruction at our hospitals using our ICLS system. TW was evaluated by radiographs at least three months postoperatively. An enlargement of more than 2 mm was considered TW. The following was also evaluated: range of motion, the limb symmetry index (LSI, injured leg divided by uninjured and multiplied by 100), value of knee extension power in OKC, anterior knee laxity, Lysholm score, and DbF. The average length of DbF was 38.1 mm (n=132). Only 6.7% (n=104) of cases showed more than 2 mm of TW. Mean LSI was 83.3%(n=77) four months postoperatively. The mean Lysholm score was 96.2(n=68) at three months after ACL reconstruction. The mean side-to-side difference in anterior
The level of hamstring antagonist activation is thought to be related to knee functionality following anterior cruciate ligament (ACL) injury/surgery as pronounced co-activation can control anterior
While double-bundle anterior cruciate ligament (ACL) reconstruction attempts to recreate the two-bundle anatomy of the native ACL, recent research also indicates that double-bundle reconstruction more closely reproduces the biomechanical properties of the ACL and restores the rotatory and sagittal stability to the level of the intact knee that was not attainable with anatomic single-bundle reconstruction. Though double-bundle reconstruction provides these potential biomechanical benefits, it poses a significant challenge to the surgeon who must attempt to accurately place twice as many tunnels while avoiding tunnel convergence compared to single-bundle reconstruction. In addition, previous work has shown that tunnel malpositioning may cause grafts that fail to reproduce the native biomechanics of the ACL, increase graft tension in deep knee flexion, increase anterior
Controversies about the management of injuries to the soft tissue structures of the posteromedial corner of the knee and the contribution of such peripheral structures on rotational stability of the knee are of increasing interest and currently remain inadequately characterised. The posterior oblique ligament (POL) is a fibrous extension off the distal aspect of the semimembranosus that blends with and reinforces the posteromedial aspect of the joint capsule. The POL is reported to be a primary restraint to internal rotation and a secondary restraint to valgus translation and external rotation. Although its role as a static stabiliser to the medial knee has been previously described, the effect of the posterior oblique ligament (POL) injuries on tibiofemoral stability during Lachman and pivot shift examination in the setting of ACL injury is unknown. The objective of this study was to quantify the magnitude of tibiofemoral translation during the Lachman and pivot shift tests after serial sectioning of the ACL and POL. Eight knees were used for this study. Ligamentous constraints were sequentially sectioned in the following order: ACL first, followed by the POL. Navigated mechanised pivot shift and Lachman examinations were performed before and after each structure was sectioned, and tibiofemoral translation was recorded. Lachman test: There was a mean 6.0 mm of lateral compartment translation in the intact knee (SD = 3.3 mm). After sectioning the ACL, translation increased to 13.8 mm (SD = 4.6; P<0.05). There was a nonsignificant 0.7 mm increase in translation after sectioning the POL (mean = 14.5 mm; SD = 3.9 P>0.05). Mechanised pivot shift: Mean lateral compartment translation in the intact knee was −1.2 mm (SD = 3.2 mm). Sectioning the ACL caused an increase in anterior
Controversies about the management of injuries to the soft tissue structures of the posteromedial corner of the knee and the contribution of such peripheral structures on rotational stability of the knee are of increasing interest and currently remain inadequately characterised. The posterior oblique ligament (POL) is a fibrous extension off the distal aspect of the semimembranosus that blends with and reinforces the posteromedial aspect of the joint capsule. The POL is reported to be a primary restraint to internal rotation and a secondary restraint to valgus translation and external rotation. Although its role as a static stabiliser to the medial knee has been previously described, the effect of the posterior oblique ligament (POL) injuries on tibiofemoral stability during Lachman and pivot shift examination in the setting of ACL injury is unknown. The objective of this study was to quantify the magnitude of tibiofemoral translation during the Lachman and pivot shift tests after serial sectioning of the ACL and POL. Eight knees were used for this study. Ligamentous constraints were sequentially sectioned in the following order: ACL first, followed by the POL. Navigated mechanised pivot shift and Lachman examinations were performed before and after each structure was sectioned, and tibiofemoral translation was recorded. Lachman test: There was a mean 6.0 mm of lateral compartment translation in the intact knee (SD = 3.3 mm). After sectioning the ACL, translation increased to 13.8 mm (SD = 4.6; P<0.05). There was a nonsignificant 0.7 mm increase in translation after sectioning the POL (mean = 14.5 mm; SD = 3.9 P>0.05). Mechanised pivot shift: Mean lateral compartment translation in the intact knee was −1.2 mm (SD = 3.2 mm). Sectioning the ACL caused an increase in anterior
INTRODUCTION. The medial-stabilised (MS) knee implant, characterised by a spherical medial condyle on the femoral component and a medially congruent tibial bearing, was developed to improve knee kinematics and stability relative to performance obtained in posterior-stabilised (PS) and cruciate-retaining (CR) designs. We aimed to compare in vivo six-degree-of-freedom (6-DOF) kinematics during overground walking for these three knee designs. METHODS. Seventy-five patients (42 males, 33 females, age 68.4±6.6 years) listed for total knee arthroplasty (TKA) surgery were recruited to this study, which was approved by the relevant Human Research Ethics committees. Each patient was randomly- assigned a PS, CR or MS knee (Medacta International AB, Switzerland) resulting in three groups of 23, 26 and 26 patients, respectively. Patients visited the Biomotion Laboratory at the University of Melbourne 6±1.1 months after surgery, where they walked overground at their self-selected speed. A custom Mobile Biplane X-ray (MoBiX) imaging system tracked and imaged the implanted knee at 200 Hz. The MoBiX system measures 6-DOF tibiofemoral kinematics of TKA knees during overground gait with maximum RMS errors of 0.65° and 0.33 mm for rotations and translations, respectively. RESULTS AND DISCUSSION. Mean walking speeds for the three groups were not significantly different (PS, 0.86±0.14 m/s CR, 0.82±0.17 m/s and MS, 0.87±0.14 m/s, p>0.25). While most kinematic parameters were similar for the PS and CR groups, mean peak-to-peak anterior drawer was greater for PS (9.89 mm) than CR (7.75 mm, p=0.004), which in turn was greater than that for MS (4.43 mm, p<0.001). Mean tibial external rotation was greater for MS than PS (by 3.12°, p=0.033) and CR (by 3.34°, p=0.029). Anterior drawer and lateral shift were highly coupled to external rotation for MS but not so for PS and CR. The contact centres on the
Introduction. Patellar mobilisation methods used during total knee arthroplasty (TKA) have been debated in the literature, with some proponents of minimally invasive TKA suggesting that laterally retracting, rather than everting the patella may be beneficial. It was our hypothesis that by using randomised, prospective, blinded study methods, there would be no significant difference in clinical outcome measures based solely on eversion of the patella during total knee arthroplasty. Methods. After an a priori power analysis was done, 120 primary total knee replacements indicated for degenerative joint disease were included in the study and randomised to one of two patella exposure techniques: lateral retraction or eversion. Short-term outcomes were evaluated during hospitalisation and included time to return of straight leg raise (SLR), ambulation distance, and length of hospital stay. Long-term outcome values were evaluated pre-operatively, at 6 weeks, 3 months, and 1 year post-operatively, and included leg extension strength measured by dynamometer, knee range of motion (ROM), Visual Analog Scale (VAS) pain before and after knee motion, circumferential thigh measurements, and SF-36 Physical and Mental Component Scores (PCS, MCS). All collaborating investigators were blinded to each other's data. Surgical techniques and perioperative arthroplasty management protocols were those routinely and currently used during total knee replacement surgery at our institution. Results. 1 year follow-up data was available for 88.3% of patients. Mixed model analysis of variance showed no statistically significant differences between the two groups with respect to short or long term outcome measures. Ambulation distance improved dramatically from 24 (28±46 ft) to 48 hours (71±64; p<0.001) but was not different between groups (p=0.79). 24 of 51 retraction patients could straight leg raise within the first 24 hours versus 24 of 46 in the eversion group (p=0.69). At 48 hours, 23 of 48 and 31 of 53 respectively could SLR, (p=0.55). Improvements in VAS pain at rest were similar between groups (p=0.18–0.89), as were improvements in VAS pain after ROM (p=0.21–0.57). At 1 year postoperatively, quadriceps strength was not different between groups (p>0.5), and ROM improved by 6±18° from pre-operative values (p<0.001) with no statistically significant difference between groups. SF-36 PCS and MCS significantly improved for both study groups from preoperatively to 1 year postoperatively (time effect p<0.001) with similar effects between groups, and were not statistically significantly different at 1 yr after surgery (PCS: eversion 47.0±8.7, retraction 50.0±8.5, p=0.09), (MCS: eversion 53.7±9.0; retraction 53.0±10.3, p=0.69). Conclusion. With proper surgical technique and attention to detail, we believe that the standard medial parapatellar approach with anterior
Purpose. Surgeons sometimes encounter moderate or severe varus deformed osteoarthritic cases in which medial substantial release including semimembranosus is compelled to appropriately balance soft tissues in total knee arthroplasty (TKA). However, medial stability after TKA is important for acquisition of proper knee kinematics to lead to medial pivot motion during knee flexion. The purpose of the present study is to prove the hypothesis that step by step medial release, especially semimembranosus release, reduces medial stability in cruciate-retaining (CR) total knee arthroplasty (TKA). Methods. Twenty CR TKAs were performed in patients with moderate varus-type osteoarthritis (10° < varus deformity <20°) using the tibia first technique guided by a navigation system (Orthopilot). During the process of medial release, knee kinematics including tibial internal rotation and anterior translation during knee flexion were assessed using the navigation system at 3 points; (1) after anterior cruciate ligament resection (pre-release), (2) medial tibial and femoral osteophyte removal and release of minimum deep layer of medial collateral ligament (minimum release) and (3) release of semimembranosus (semimembranosus release). In addition, the kinematics after all prostheses implantation (semimembranosus release group) were assessed and compared with those assessed in another 20 patients in which only minimum release was performed (minimum release group). Results. Kinematic pattern in step by step medial release exhibited external tibial rotation during mid-range of flexion and then shifted to internal tibial rotation toward to 120 degrees of knee flexion (Fig. A). During 60 to 120 degrees of flexion, semimembranosus release significantly reduced the amount of internal tibial rotation compared with pre-release (Fig. 1B).