Cementless fixation in TKA has been inconsistently adopted since its early use but is increasing due to a number of factors, predominantly related to a demand for improved survivorship in younger patients. Modern biomaterials have demonstrated optimal bone ingrowth and have also contributed to a renewed confidence by surgeons to utilise cementless fixation in TKA. With a modern design and appropriate surgical technique, optimal mechanical stability of new designs have been demonstrated and can build upon the excellent long-term outcomes that have rivaled traditional cemented TKA. Paramount to obtaining successful long-term osseointegration and clinical survivorship with cementless fixation is an awareness of the past failure mechanisms to improve implant modern implant design, and should also guide meticulous surgical technique. A robust implant design with optimal surgical technique is critical to success when employing cementless fixation in TKA. The tried and true principles of sufficient mechanical stability to minimise micromotion of an osteoconductive implant surface with intimate contact against viable bone are essential to allow osseointegration and long-term survivorship. The surgical techniques and tips for “getting it right” include: 1.) Meticulous planar cuts - Prevention of saw blade deviation (particularly anterior femoral cortex and sclerotic medial tibial plateau), Appropriate tolerances in cutting guides (particularly 4-in-1 femoral cutting guide), Appropriate interference fit for
Purpose. Medial tibial condylar fractures (MTCFs) are rare but a serious complication after unicompartmental knee arthroplasty (UKA). The reasons for MTCFs was thought to be associated with the surgical procedures that are the halls for the guide pins, extended cut of the posterior tibial cortex, an incorrect positioning of the
Bone mineral density (BMD) and bone mineral content (BMC) have not been previously assessed in unicompartmental knee replacement (UKR). We studied the early bone changes beneath the uncemented Oxford medial UKR. Our hypothesis was that this implant should decrease the shear stresses across the bone-implant interface and result in improved BMD and BMC beneath the tibial component. Using the Lunar iDXA and knee specific software we developed 7 regions of interest (ROI) in the proximal tibia and assessed 38 patients with an uncemented Oxford UKR at 2 years. We measured the replaced knee and contralateral unreplaced knee using the same ROI and compared the BMD and BMC. The initial precision study in 20 patients demonstrated high precision in all areas. There were 12 males and 16 females with an average age of 65.8 years (46–84 years). ROI 1 and 2 were beneath the tibial tray and had significantly less BMC (p=0.023 and 0.001) and BMD (p=0.012 and 0.002). ROI 3 was the lateral tibial plateau and this area also had significantly less BMC (p=0.007) and BMD (p=0.0001). ROI 4 and 5 immediately below the