Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

THE VALGUS ALIGNMENT OF THE TIBIAL COMPONENT WOULD INCREASE THE RISKS OF THE MEDIAL TIBIAL CONDYLAR FRACTURES IN UNICOMPARTMENTAL KNEE ARTHROPLASTY.

The International Society for Technology in Arthroplasty (ISTA), 28th Annual Congress. PART 2.



Abstract

Purpose

Medial tibial condylar fractures (MTCFs) are rare but a serious complication after unicompartmental knee arthroplasty (UKA). The reasons for MTCFs was thought to be associated with the surgical procedures that are the halls for the guide pins, extended cut of the posterior tibial cortex, an incorrect positioning of the tibial keel groove, and an excessive force application when placing the tibial component. However, the relationship between MTCFs and the alignment of the tibial component has not been proven. The purpose of the study was to investigate the effect of the tibial component alignment to the MTCFs using the finite element method (FEM)

Materials and Methods

We used three-dimensional (3D) image model of the tibia (Sawbones: Washington, US) on the FEM analysis software (ANSYS Design Space ver. 12, Tokyo, Japan). We measured the bone stresses in the 3D image model of the tibia at the site of the medial metaphyseal cortex and the anterior/posterior cortex. The tibial component was placed 0°, 3°varus, 3°valgus, 6°varus, and 6° valgus relative to the tibial anatomical axis in the coronal plane (Figure 1). In sagittal plane, tibial component was positioned 7° posterior inclination relative to the tibial anatomical axis. And, making an additional vertical groove at the posterior cortex by the extended sagittal saw cut of 2° and 10° posterior inclination, the impact of posterior cortical bone stress was evaluated (Figure 2). A load of 900 N was applied to the center of the tibial component parallel to the tibial axis, the maximum bone stress was subsequently calculated. Furthermore, to evaluate the stress distribution, we calculated the bone mass of the 3D bone model below the tibia component under the various alignment of the tibial component (Figure 3).

Results

The bone stress at the medial metaphyseal cortex and the anterior cortex did not change depending on the alignment of the tibial component (Figure 4). When the tibial component was placed varus, the bone stress at the posteiror cortex decreased. By contrast, the valgus position of the tibial component increased the bone stress. An extended sagittal saw cut increased the bone stress depending on the depth of the groove. The bone mass of the tibia below the tibial component decreased as positioning the tibial component valgus.

Conclusions

Surgeons should be aware of the potential pitfalls of valgus alignemnt of the tibial component and an extended sagittal saw cut, because this can lead to increased risk of the MTCFs.


*Email: