Advertisement for orthosearch.org.uk
Results 1 - 20 of 1106
Results per page:
Bone & Joint Research
Vol. 7, Issue 7 | Pages 485 - 493
1 Jul 2018
Numata Y Kaneuji A Kerboull L Takahashi E Ichiseki T Fukui K Tsujioka J Kawahara N

Objective. Cement thickness of at least 2 mm is generally associated with more favorable results for the femoral component in cemented hip arthroplasty. However, French-designed stems have shown favorable outcomes even with thin cement mantle. The biomechanical behaviors of a French stem, Charnley-Marcel-Kerboull (CMK) and cement were researched in this study. Methods. Six polished CMK stems were implanted into a composite femur, and one million times dynamic loading tests were performed. Stem subsidence and the compressive force at the bone-cement interface were measured. Tantalum ball (ball) migration in the cement was analyzed by micro CT. Results. The cement thickness of 95 % of the proximal and middle region was less than 2.5 mm. A small amount of stem subsidence was observed even with collar contact. The greatest compressive force was observed at the proximal medial region and significant positive correlation was observed between stem subsidence and compressive force. 9 of 11 balls in the medial region moved to the horizontal direction more than that of the perpendicular direction. The amount of ball movement distance in the perpendicular direction was 59 to 83% of the stem subsidence, which was thought to be slip in the cement of the stem. No cement defect and no cement breakage were seen. Conclusion. Thin cement in CMK stems produced effective hoop stress without excessive stem and cement subsidence. Polished CMK stem may work like force-closed fixation in short-term experiment. Cite this article: Y. Numata, A. Kaneuji, L. Kerboull, E. Takahashi, T. Ichiseki, K. Fukui, J. Tsujioka, N. Kawahara. Biomechanical behaviour of a French femoral component with thin cement mantle: The ‘French paradox’ may not be a paradox after all. Bone Joint Res 2018;7:485–493. DOI: 10.1302/2046-3758.77.BJR-2017-0288.R2


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 33 - 33
1 Mar 2021
Graziani G Farè S De Carolis M Negrini N Bianchi M Sassoni E Maltarello M Boi M Berni M Baldini N
Full Access

Calcium phosphates-based coatings have been widely studied to favour a firm bonding between orthopaedic implants and the host bone. To this aim, thin films (thickness below 1 μm) having high adhesion to the substrate and a nanostructured surface texture are desired, capable of boosting platelet, proteins and cells adhesion. In addition, a tunable composition is required to resemble as closely as possible the composition of mineralized tissues and/or to intentionally substitute ions having possible therapeutic functions. The authors demonstrated nanostructured films having high surface roughness and a composition perfectly resembling the deposition target one can be achieved by Ionized Jet Deposition (IJD). Highly adhesive nanostructured coatings were obtained by depositing bone-apatite like thin films by ablation of deproteinized bovine bone, capable of promoting host cells attachment, proliferation and differentiation. Here, biomimetic films are deposited by IJD, using biogenic and synthetic apatite targets. Since IJD deposition can be carried out without heating the substrate, application on heat sensitive polymeric substrate, i.e. 3D printed porous scaffolds, is investigated. Biogenic apatite coatings are obtained by deposition of deproteinized bone (bovine, ovine, equine, porcine) and compared to ones of stoichiometry hydroxyapatite (HAp). Coatings composition (FT-IR-ATR, FT-IR microscopy, XRD, EDS) and morphology (SEM, AFM) are tested for deposition onto metallic and 3D-printed polymeric substrates (polyurethane (PU)). Different post-treatment annealing procedures for metallic substrates are compared (350–425°C), to optimize crystallinity. Then, uniformity of substrate coverage and possible damage caused to the polymeric substrate are studied by SEM, DSC and FT-IR microscopy. Biogenic coatings are composed by carbonated HAp (XRD, FT-IR). Trace ions Na. +. and Mg. 2+. are transferred from deposition target to coating. All coatings are nanostructured, composed by nano-sized globular aggregates, of which morphology and dimensions depend on the target characteristics. As-deposited coatings are amorphous, but crystallinity can be tuned by post-treatment annealing. A bone-like crystallinity can be achieved for heating at ≥400°C, also depending on duration. When deposited on 3D-printed PU scaffolds, coatings, owing to sub-micrometric thickness, coat them entirely, without altering their fibre shape and porosity. Obtained biomimetic bone apatite coatings can be deposited onto a variety of metallic and polymeric biomedical devices, thus finding several perspective applications in biomedical field


Bone & Joint Open
Vol. 4, Issue 11 | Pages 839 - 845
6 Nov 2023
Callary SA Sharma DK D’Apollonio TM Campbell DG

Aims. Radiostereometric analysis (RSA) is the most accurate radiological method to measure in vivo wear of highly cross-linked polyethylene (XLPE) acetabular components. We have previously reported very low wear rates for a sequentially irradiated and annealed X3 XLPE liner (Stryker Orthopaedics, USA) when used in conjunction with a 32 mm femoral heads at ten-year follow-up. Only two studies have reported the long-term wear rate of X3 liners used in conjunction with larger heads using plain radiographs which have poor sensitivity. The aim of this study was to measure the ten-year wear of thin X3 XLPE liners against larger 36 or 40 mm articulations with RSA. Methods. We prospectively reviewed 19 patients who underwent primary cementless THA with the XLPE acetabular liner (X3) and a 36 or 40 mm femoral head with a resultant liner thickness of at least 5.8 mm. RSA radiographs at one week, six months, and one, two, five, and ten years postoperatively and femoral head penetration within the acetabular component were measured with UmRSA software. Of the initial 19 patients, 12 were available at the ten-year time point. Results. The median proximal, 2D, and 3D wear rates calculated between one and ten years were all less than 0.005 mm/year, with no patient recording a proximal wear rate of more than 0.021 mm/year. Importantly, there was no increase in the wear rate between five and ten years. Conclusion. The very low wear rate of X3 XLPE liners with larger articulations remains encouraging for the future clinical performance of this material. Cite this article: Bone Jt Open 2023;4(11):839–845


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 63 - 63
19 Aug 2024
Tsikandylakis G Mortensen KRL Gromov K Mohaddes M Malchau H Troelsen A
Full Access

Vitamin E-doped cross-linked polyethylene (VEPE) has encouraged the use of larger heads in thinner liners in total hip arthroplasty (THA). However, there are concerns about wear and mechanical failure of the thin liner, especially when metal heads are used. The aim of this randomized controlled trial was to investigate if the use of a large metal head in a thin VEPE liner would increase polyethylene wear compared with a standard 32-mm metal head and to compare periacetabular radiolucencies and patient-reported outcomes in THA. 96 candidates for uncemented THA were randomly allocated to either the largest possible metal head (36–44 mm) that could be fitted in the thinnest available VEPE liner (intervention group) or a standard 32-mm metal head (control group). The primary outcome was proximal head penetration (PHP) measured with model-based radiostereometric analysis (RSA). Secondary outcomes were periacetabular radiolucencies and patient-reported outcomes. The mid-term results of the trial at 5 years are presented. Median total PHP (interquartile range) was -0.04 mm (−0.12 to 0.02) in the intervention group and -0.03 mm (=0.14 to 0.05) in the control group (p=0.691). The rates of periacetabular radiolucencies were 1/44 and 4/42 (p=0.197), respectively. Patient-reported hip function and health-related quality of life did not differ between the groups, but participants in the intervention group reported a higher level of activity (median UCLA rank 7 vs 6, p=0.020). There were 5 revisions caused by dislocations (2), periprosthetic fracture (1), stem subsidence (1), or iliopsoas impingement (1). Large metal heads in thin VEPE liners did not increase liner wear and were not associated with liner failure 5 years after THA


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 134 - 134
2 Jan 2024
Ghezzi D Sartori M Boi M Montesissa M Sassoni E Fini M Baldini N Cappelletti M Graziani G
Full Access

Prosthetic joint infections represent complications connected to the implantation of biomedical devices, they have high incidence, interfere with osseointegration, and lead to a high societal burden. The microbial biofilm, which is a complex structure of microbial cells firmly attached to a surface, is one of the main issues causing infections. Biofilm- forming bacteria are acquiring more and more resistances to common clinical treatments due to the abuse of antibiotics administration. Therefore, there is increasing need to develop alternative methods exerting antibacterial activities against multidrug-resistant biofilm-forming bacteria. In this context, metal-based coatings with antimicrobial activities have been investigated and are currently used in the clinical practice. However, traditional coatings exhibit some drawbacks related to the insufficient adhesion to the substrate, scarce uniformity and scarce control over the toxic metal release reducing their efficacy. Here, we propose the use of antimicrobial silver-based nanostructured thin films to discourage bacterial infections. Coatings are obtained by Ionized Jet Deposition, a plasma-assisted technique that permits to manufacture films of submicrometric thickness having a nanostructured surface texture, allow tuning silver release, and avoid delamination. To mitigate interference with osseointegration, here silver composites with bone apatite and hydroxyapatite were explored. The antibacterial efficacy of silver films was tested in vitro against gram- positive and gram-negative species to determine the optimal coatings characteristics by assessing reduction of bacterial viability, adhesion to substrate, and biofilm formation. Efficacy was tested in an in vivo rabbit model, using a multidrug-resistant strain of Staphylococcus aureus showing significant reduction of the bacterial load on the silver prosthesis both when coated with the metal only (>99% reduction) and when in combination with bone apatite (>86% reduction). These studies indicate that IJD films are highly tunable and can be a promising route to overcome the main challenges in orthopedic prostheses


The Bone & Joint Journal
Vol. 105-B, Issue 1 | Pages 29 - 34
1 Jan 2023
Fransen BL Bengoa FJ Neufeld ME Sheridan GA Garbuz DS Howard LC

Aims. Several short- and mid-term studies have shown minimal liner wear of highly cross-linked polyethylene (HXLPE) in total hip arthroplasty (THA), but the safety of using thinner HXLPE liners to maximize femoral head size remains uncertain. The objective of this study was to analyze clinical survival and radiological wear rates of patients with HXLPE liners, a 36 mm femoral head, and a small acetabular component with a minimum of ten years’ follow-up. Methods. We retrospectively identified 55 patients who underwent primary THA performed at a single centre, using HXLPE liners with 36 mm cobalt-chrome heads in acetabular components with an outer diameter of 52 mm or smaller. Patient demographic details, implant details, death, and all-cause revisions were recorded. Cox regression and Kaplan-Meier survival was used to determine all-cause and liner-specific revision. Of these 55 patients, 22 had a minimum radiological follow-up of seven years and were assessed radiologically for linear and volumetric wear. Results. Overall survival rate for all-cause revision was 94.5% (95% confidence interval (CI) 81.7% to 97.2%) at a mean follow-up of 12.8 years (10.9 to 18.7). Three patients were revised, none for liner wear, fracture, or dissociation. A total of 22 patients were included in the radiological analysis (mean follow-up 9.9 years (7.5 to 13.7)). Mean linear liner wear was 0.085 mm (95% CI -0.086 to 0.257) and the volumetric wear rate was 11.097 mm. 3. /year (95% CI -6.5 to 28.7). Conclusion. Using HXLPE liners with 36 mm heads in 52 mm acetabular components or smaller is safe, with excellent survival and low rates of linear and volumetric wear at medium-term follow-up. Patients did not require revision surgery for liner complications such as fracture, dissociation, or wear. Our results suggest that the advantages of using larger heads outweigh the potential risks of using thin HXLPE liners. Cite this article: Bone Joint J 2023;105-B(1):29–34


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 32 - 32
1 Dec 2022
Fransen B Bengoa F Neufeld M Sheridan G Garbuz D Howard L
Full Access

With the introduction of highly crosslinked polyethylene (HXLPE) in total hip arthroplasty (THA), orthopaedic surgeons have moved towards using larger femoral heads at the cost of thinner liners to decrease the risk of instability. Several short and mid-term studies have shown minimal liner wear with the use HXLPE liners, but the safety of using thinner HXPLE liners to maximize femoral head size remains uncertain and concerns that this may lead to premature failure exist. Our objective was to analyze the outcomes for primary THA done with HXLPE liners in patients who have a 36-mm head or larger and a cup of 52-mm or smaller, with a minimum of 10-year follow-up. Additionally, linear and volumetric wear rates of the HXLPE were evaluated in those with a minimum of seven-year follow-up. We hypothesized that there would be minimal wear and good clinical outcome. Between 2000 and 2010, we retrospectively identified 55 patients that underwent a primary THA performed in a high-volume single tertiary referral center using HXLPE liners with 36-mm or larger heads in cups with an outer diameter of or 52-mm or smaller. Patient characteristics, implant details including liner thickness, death, complications, and all cause revisions were recorded. Patients that had a minimum radiographic follow-up of seven years were assessed radiographically for linear and volumetric wear. Wear was calculated using ROMAN, a validated open-source software by two independent researchers on anteroposterior X-rays of the pelvis. A total of 55 patients were identified and included, with a mean age of 74.8 (range 38.67 - 95.9) years and a mean BMI of 28.98 (range 18.87 - 63-68). Fifty-one (94.4%) of patients were female. Twenty-six (47.7%) patients died during the follow-up period. Three patients were revised, none for liner wear, fracture or dissociation. Twenty-two patients had a radiographic follow-up of minimum seven years (mean 9.9 years, min-max 7.5 –13.7) and were included in the long-term radiographic analysis. Liner thickness was 5.5 mm at 45 degrees in all cases but one, who had a liner thickness of 4.7mm, and all patients had a cobalt-chrome head. Cup sizes were 52mm (n=15, 68%) and 50mm (n=7, 32%). Mean linear liner wear was 0.0470 mm/year (range 0 - 0.2628 mm) and mean volumetric wear was 127.69 mm3/year (range 0 - 721.23 mm3/year). Using HXLPE liners with 36-mm heads or bigger in 52-mm cups or smaller is safe, with low rates of linear and volumetric wear in the mid to long-term follow-up. Patients did not require revision surgery for liner complications, including liner fracture, dissociation, or wear. Our results suggest that the advantages of using larger heads should outweigh the potential risks of using thin HXLPE liners


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 252 - 252
1 Mar 2013
Marouf M Saebnoori E Rahimi MK Shahrabi T Sanjabi S
Full Access

INTRODUCTION. Nickel-Titanium (NiTi) with a molar composition of 50:50 or nitinol alloy exhibit special mechanical properties. These properties can be put to excellent use in various biomedical applications including: intravascular stent, orthodontic wires, prosthetic heart valves, angioplastic guides, orthopaedic implants, bone substitution materials, endoscopic instruments, implant stents and filters. Microorganism adhesion properties of nitinol may be decreased by oxidizing agents and surface heat treatment. In the present study, we investigated the microorganism adhesion and cytotoxicity of the thin film of nitinol and compared these properties with that of bulk form. METHODS. In this analytical comparative study, small parts of thin film and bulk form of nitinol (15 mm×15 mm) were selected and sterilized in autoclave (15 lb for 20 min). Five microorganism, four bacteria (Ecoli, staphylococcus aureus, pseudomonase aerugenosa, bacillus cereus) and one mold form of fungi (candida albicans) were selected. The sample materials (thin film and bulk forms of nitinol) were treated by microorganism suspensions in 37°C for 24h in different culture flasks. Every suspension of five microorganisms was counted before and after examination. Adherence activity of these forms of nitinol was studied by optical and electron microscopy. The interaction between the microorganisms and the two forms of nitinol alloy were studied by variation in number of microorganisms counted after introduction of these living organisms to the surface of the alloy. RESULTS. It was observed that the five separate microorganisms put in contact with the thin film in comparison with the bulk form showed lower decrease rate of cells (mean decrease rate of 39% for thin film, 62% for bulk form, sd < 0.05). On the thin film, a decrease rate of 14% for Ecoli, 44% for P. aeroginesia, 30.1%for S. aureus, 22% for B. cereus and 6.4% for C. albicans were registered. However, for cells in contact with the bulk form nitinol, decrease rate of cells were 39% for E. coli, 62% for P. aeroginosa, 61.9% for S. aureeus, 49% for B. cereus and 31% for C. albicans. DISCUSSION & CONCLUSIONS. In this study, in every forms of nitinol alloy (thin film and bulk), microorganisms numbers were declined. Thin film nitinol exhibits lower decrease rate of cells at the end of the test. This shows that this thin film nitinol have less cytotoxicity for bacterial and fungal cells in comparison with the bulk. As it appears in electron microscopic micrographs, higher adherence activity of the thin film can be attributed to smoothness and lower amount of nickle released form this surface. This property detected in vitro study may be also appeared in vivo. These different behaviours of the two forms of nitinol alloy is probably due to the better biocompatibility of the thin film. This new form of alloy with its better qualities can be a promising process for developing medical prosthetic devices


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 10 | Pages 1385 - 1391
1 Oct 2010
Vaquero J Calvo JA Chana F Perez-Mañanes R

Isolated patellofemoral osteoarthritis can be a disabling disease. When conservative treatment fails, surgical options can be unpredictable and may be considered too aggressive for middle-aged and active people. We analysed the clinical and radiological results of a new coronal osteotomy involving thinning of the patella in a selected group of patients with isolated patellofemoral osteoarthritis. Since 1991, 31 patients (35 knees) have been treated, of whom 34 were available for follow-up at a mean of 9.1 years. The Knee Society Score, the Patellar score and the Short-form-36 questionnaire were used for clinical evaluation. We also examined the radiological features to confirm bone consolidation and assess the progression of osteoarthritis. A significant improvement in the functional scores and radiological parameters was noted. All patients except one were satisfied with the operation. Radiological progression of the patellofemoral osteoarthritis was slowed but radiological femorotibial osteoarthritis progressed in 23 (65%) cases, with a total knee replacement becoming necessary in four cases without technical problems in resurfacing the patella. We compared the results with other forms of surgical treatment reported in the literature. This treatment offers good clinical and radiological results, presenting an alternative method of managing patellofemoral osteoarthritis


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 32 - 32
1 Mar 2021
Graziani G Cappelletti M Ghezzi D Costantini P Fedi S De Carolis M Maltarello M Baldini N
Full Access

Infections are among the main complications connected to implantation of biomedical devices, having high incidence rate and severe outcome. Since their treatment is challenging, prevention must be preferred. For this reason, solutions capable of exerting suitable efficacy while not causing toxicity and/or development of resistant bacterial strains are needed. To address infection, inorganic antibacterial coatings, and in particular silver coatings, have been extensively studied and used in the clinical practice, but some drawbacks have been evidenced, such as scarce adhesion to the substrate, delamination, or scarce control over silver release. Here, antibacterial nanostructured silver-based thin films are proposed, obtained by a novel plasma-assisted technique, Ionized Jet Deposition (IJD). Coatings are obtained by deposition of metallic silver targets. Films thickness is selected based on previous results aimed at measuring extent and duration of silver release and at evaluating toxicity to host cells (fibroblasts). Here, composition (grazing incidence XRD) and morphology (SEM) of the obtained coatings are characterized for deposition onto different substrates, both metallic and polymeric. For heat sensitive substrates, possible alterations caused by coatings deposition in terms of morphology (SEM) and composition (FT-IR) is assessed. Then, a proof-of-concept study of the capability of these films to inhibit microbial biofilm formation is performed by using two different supports i.e., the Calgary Biofilm Device and the microplates. To the best of the Authors knowledge, this is the first study describing the application of specific anti-biofilm analyses to nanostructured coatings. In particular, anti-biofilm activities are tested against the following pathogenic strains: Escherichia (E.) coli NCTC12923, Staphylococcus (S.) aureus ATCC29213 and S. aureus 86. Among these, the strain 86 is not only pathogen but it also possesses several antibiotic resistance genes, allowing the evaluation of the utilization of nanostructured coatings as an alternative anti-microbial system to face the global threat of antibiotic resistance. Results indicate that films deposited from silver targets are composed of nanosized aggregates of metallic silver, indicating a perfect transfer of composition from the deposition target to the coatings. Results obtained here indicate that the films have significant antibacterial and antibiofilm activity. In addition, they prove that the system can be successfully applied for evaluation of coatings antibacterial efficacy for biomedical applications


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 10 - 10
1 May 2016
Russo A Bianchi M Lopomo N Boi M Ortolani A Marchiori G Gambardella A Maltarello M Visani A Marcacci M
Full Access

Introduction. Total joint arthroplasty is frequently necessary when a traumatic or degenerative disease leads to develop osteoarthritis (OA). Nowadays, the main reason for long term prosthesis failure is due to osteolysys and aseptic loosening of the implant itself, that are related to UHMWPE wear debris [1–3]. Different solutions to overcome this issue have been proposed, including different couplings like metal-on-metal and ceramic-on-ceramic. Our hypothesis was that a hard ceramic thin film realized on the plastic component (i.e. UHMWPE) could improve the friction and wear performance in a prosthetic coupling. The purpose of the presented study was therefore to characterize from the point of view of structure and mechanical performance of this ceramic-coated plastic component. The thin films were specifically realized by means of the novel Pulsed Plasma Deposition (PPD) technique [4]. Materials and methods. PPD technique was used to deposit Yttria-stabilized zirconia (YSZ at 3%) films on medical-grade UHMWPE substrates [4]. The morphology and micro-structure were characterized by Scanning Electron Microscopy (SEM) equipped with Energy Dispersive X-ray Spectroscopy (EDS), X-ray diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS). By means of nanoindentation and scratch tests mechanical properties were investigated. Ball-on-disk tribological tests were carried out in air, deionized water and physiological solution against alumina balls (6 mm diameter, grade 200) used as counterpart; friction evaluation of the proposed approach and the corresponding worn track were analyzed by SEM-EDS. Results. Deposited zirconia films up to several micron thickness exhibited a fully cubic structure and a smooth nanostructured surface. Good high hardness and Young's modulus values (17 GPa and 154 GPa respectively) were revealed by nanoindentation tests, while no radial cracks, spalling or pile-up phenomena were observable at critical fracture tests. Assessment of the very strong interface adhesion was observed by scratch tests (with initial delamination at about 2 N load). When the UHMWPE substrate was covered by a ceramic film as thin as 1.5 micron, an indentation depth reduction of about 330% was registered. Further, the material yielding under an applied constant load (creep) was larger for UHMWPE compared to coated UHMWPE, whose total creep being only the 19% of the total creep of UHMWPE, respectively. Finally, preliminary tribological tests carried out in air against an alumina ball counterpart showed wear rate as low as 3.2*10-6mm3N-1m-1 after 500.000 cycles, showing an average friction coefficient evaluated on unpolished materials ranging from 0.15 to 0.3 in air. Conclusions. The proposed approach was able to directly coat the plastic insert of a commercial implant joint with hard ceramic materials, thus providing specific additional mechanical and superficial properties, while preserving the well established mechanical properties of UHMWPE. The results of this study showed an alternative and promising approach to improve UHMWPE mechanical properties in arthroplasty


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 52 - 52
1 Jun 2012
Thakore M Duane H DAnjou C Hanssen A Schmidig G
Full Access

Revision total hip replacements are likely to have higher complication rates than primary procedures due to the poor quality of the original bone. This may be constrained to achieve adequate fixation strength to prevent future “aseptic loosening” [1]. A thin, slightly flexible, acetabular component with a three dimensional, titanium foam in-growth surface has been developed to compensate for inferior bone quality and decreased contact area between the host bone and implant by better distributing loads across the remaining acetabulum in a revision situation. This is assumed to result in more uniform bone apposition to the implant by minimizing stress concentrations at the implant/bone contact points that may be associated with a thicker, stiffer acetabular component, resulting in improved implant performance.[2] To assemble the liner to the shell, the use of PMMA bone cement is recommended at the interface between the polyethylene insert and the acetabular shell as a locking mechanism configuration may not be ideal due to the flexibility in the shell [3]. The purpose of this study was to quantify the mechanical integrity of a thin acetabular shell with a cemented liner in a laboratory bench-top total hip revision condition. Two-point loading in an unsupported cavity was created in a polyurethane foam block to mimic the contact of the anterior and posterior columns in an acetabulum with superior and inferior defects. This simulates the deformation in an acetabular shell when loaded anatomically [4]. The application has been extended to evaluate the fatigue performance of the Titanium metal foam Revision Non-Modular Shell Sequentially Cross Linked PE All-Poly Inserts and its influence on liner fixation


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 355 - 356
1 Sep 2005
Amstutz H Le Duff M
Full Access

Introduction and Aims: The purpose of the present study was to review the early results and clinical performance of FDA approved large unipolar heads (36mm and greater) used with a metal-on-metal (MM) bearing. Method: Fourteen stem type prostheses were implanted in 14 patients. There were eight primary THA, and six conversions of surface arthroplasties in which thin-walled (5mm) porous coated MM sockets were maintained. Mean age was 55.4 years (range 30–72 years). There were nine males and five females. Dislocation precautions were discontinued after capsular healing (six weeks). The initial etiology was OA in 78%. Results: The median head size was 44mm (36–52) and socket size 54mm. Mean follow-up time was 29.1 months (range 12–81). UCLA hip scores improved for pain, walking, function, and activity from 4.8, 6.2, 6.1, and 4.8 pre-operatively to 9.3, 8.5, 7.5, and 5.4 postoperatively. Range of motion normalised. There were no complications. Conclusion: This investigation shows excellent clinical results, and suggests that dislocation can be avoided by an anatomical THR with the use of large unipolar femoral heads and thin sockets with low wear bearings. The advantage of MM is the ability to manufacture thin shells with porous beads for fixation and preserve ace-tabular bone stock


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 20 - 20
1 Mar 2010
Tornetta P Ricci W Russell T Jones B Petteys T Gerlach D
Full Access

Purpose: Many lateral malleolar fractures in patients with osteoporotic bone are rotationally unstable, requiring fixation stable in torsion with good fatigue properties, but without bulk due to the soft tissue constraints. The purpose of this study was to evaluate the torsional performance of a thin (1.5mm) plate with locked and non-locked constructs in a simulated osteoporotic lateral malleolus fracture. Method: A transverse fracture gap to mimic comminution was created in (15 lb/ft3) density foam. 3 bicortical unlocked screws were used proximal to the fracture in a 5 hole thin (1.5mm) plate for both constructs. Distally, two screws that did not breach the far cortex (12mm) were placed as locked in one group and unlocked in the other. The constructs were loaded in torsion at 1 Hz at 7.5/0.75 in-lbf (0.85/0.08 N-m) of torque. A torsional fatigue failure was defined as either a fracture of the plate, screw pull-out, or construct rotation 10 degrees beyond the maximum initial rotational displacement. Testing was conducted until construct failure or run-out of 300,000 cycles. Results: The thin plate constructs with locked distal screws showed significantly improved fatigue properties (p< 0.00001). None of the locking plate constructs failed prior to the 300,000 cycle end point. In stark contradistinction, all of the non-locked contructs failed at an average cycle count of only 9,541 (range 1,000 – 23,000 cycles). The failure mode for each of the non-locked constructs was pull-out of the distal screws. Conclusion: These results indicate that the use of a thin plate with locking capability provides a significant advantage over non-locked constructs in fatigue performance in areas of poor bone density subjected to torsional loads, such as the lateral malleolus


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 1 - 1
1 Jan 2016
Bianchi M Lopomo N Boi M Maltarello MC Liscio F Milita S Visani A Ortolani A Marcacci M Russo A
Full Access

Wear of the ultra-high molecular weight polyethylene (UHMWPE) insert is one of the major issue related to orthopaedic implants. In this study, the tribo-mechanical properties of zirconia-coated UHMWPE deposited by means of Pulsed Plasma Deposition (PPD) technique were analyzed. Specifically, strength to local plastic deformation, indentation work portioning and creep behavior were evaluated through nanoindentation and micro-scratch tests, whereas preliminary wear data were obtained by tribology tests. A strong reduction of plastic deformation and a drop of the creep phenomenon for the zirconia-coated UHMWPE were evidenced, whereas - in spite of similar wear data - different wear mechanism was also detected. This study supported the use of hard ceramic thin films to enhance the mechanical performance of the plastic inserts used in orthopaedics


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 150 - 150
1 Jan 2016
Liao Y Whitaker D Nakamura T Hardaker C
Full Access

Introduction. Moderately crosslinked, thermally treated ultrahigh molecular weight polyethylene (UHMWPE) has to date demonstrated a good balance of wear resistance and mechanical properties. MARATHON™ Polyethylene (DePuySynthes Joint Reconstruction, Warsaw, IN) is made from polyethylene resin GUR 1050, gamma-irradiated at a dose of 5.0 Mrads to create crosslinking of polyethylene, and followed by a remelting process to eliminate free radicals for oxidative stability. 10-year clinical study [1] and laboratory wear simulation tests [2–3] have reported excellent wear performance of the MARATHON poly. There continues to be demand for improved head-to-shell ratio acetabular systems because larger head sizes have the benefits of increased stability and range of motion. The increased head-to-shell ratio is often times achieved by using a reduced liner thickness. One of the clinical concerns of thinner poly liners is the potential for rim fracture, particularly in the occurrences of rim loading or impingement at high cup angles [4–7]. This study investigated the performance of thinner poly liners to the challenge of high angle rim loading and neck-to-liner impingement. Materials and Methods. Three groups of ETO sterilized MARATHON polyethylene liners (ID/OD: 28/44, 32/48, and 36/52 mm) were paired with matching CoCrMo heads (n=6 each group). To simulate rim loading, liners were assembled in the metal shells tilted at 64° (Figure 1) with sinusoidal loading (0 to 5000N at 3Hz) in a 37°C water bath for 5-million cycles or until component failure, whichever occurred first. For neck-liner impingement testing, metal shells were potted at 54º (in the abduction/adduction plane with a ±10° of motion per ISO 14242–1 [8]) on a hip simulator (n=4 each group) using a physiological loading (max 3000N at 1Hz) for 3-million cycles (Figure 2). The impingement occurred at 64º during the simulated gait cycle (Figure 3). The liners were inspected every million cycles, using a high intensity light to search for signs of crack initiation and/or fractures. Both test methods were validated to be able to replicate liner fractures. Results. All MARATHON ETO liners passed 5-million cycles of high angle fatigue testing. All liners passed 3-million cycles of impingement testing. Discussion. Causes of liner fractures can be multi-factorial. Examples of influencing factors are: poly material, component designs, patient activity level, implant orientations, and neck-liner impingement. Improved head-to-shell ratio design requires reduction of the liner thickness, which raises the concern of liner fracture. In this study, we investigated adverse testing conditions of rim-loading and neck-liner impingement, in order to evaluate the mechanical performance of thin polyethylene liner


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 136 - 136
1 May 2012
Gillies M Hogg M Dabirrahmani D Donohoo S Walter W
Full Access

Squeaking ceramics bearing surfaces have been recently recognised as a problem in total hip arthroplasty. The position of the acetabular cup has been alluded to as a potential cause of the squeaking, along with particular combinations of primary stems and acetabular cups. This study has used the finite element method to investigate the propensity of a new large diameter preassembled ceramic acetabular cup to squeaking due to malpositioning. A verified three-dimensional FE model of a cadaveric human pelvis was developed which had been CT scanned, and the geometry reconstructed; this was to be used to determine the behaviour of large diameter acetabular cup system with a thin delta ceramic liner in the acetabulum. The model was generated using ABAQUS CAE pre-processing software. The bone model incorporated both the geometry and the materials properties of the bone throughout based on the CT scan. Finite element analysis and bone material assignment was performed using ABAQUS software and a FORTRAN user subroutine. The loading applied simulated edge loading for rising from a chair, heel-strike, toe off and stumbling. All results of the analysis were used to determine if the liner separated from the shell and if the liner was toggling out of the shell. The results were also examined to see if there was a propensity for the liner to demobilise and vibrate causing a squeaking sound under the prescribed loading regime. This study indicates that there is a reduction in contact area between the ceramic liner and titanium shell if a patient happens to trip or stumble. However, since the contact between the liner and the shell is not completely lost the propensity for it to squeak is highly unlikely


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 1 - 1
1 Apr 2018
Graziani G Carnevale G Pisciotta A Bertoni L Boi M Gambardella A Berni M Marchiori G Russo A De Pol A Bianchi M
Full Access

Fabrication of biogenic coatings with suitable mechanical properties is a key goal in orthopedics, to overcome the limitations of currently available coatings and improve the clinical results of coated implants compared to uncoated ones. In this paper, biological-like apatite coatings were deposited from a natural bone-apatite source by a pulsed electron deposition technique (PED). Bone apatite-like (BAL) films were deposited directly from bone targets, obtained by standard deproteinization of bovine tibial cortical shafts and compared to films deposited by sintered stoichiometric-hydroxyapatite targets (HA). Deposition was performed at room temperature by PED in the Ionized Jet Deposition (IJD) version. Half of the samples was annealed at 400°C for 1h (BAL_400 and HA_400). As-deposited and annealed coatings were characterized in terms of composition and crystallinity (XRD, FT-IR), microstructure and morphology (SEM-EDS, AFM) and mechanical properties (nanoindentation and micro-scratch). For the biological tests, human dental pulp stem cells (hDPSCs) were isolated from dental pulp from patients undergoing a routine tooth extraction, plated on the samples (2500 cells/cm2) and cultured for 3 weeks, when the expression of typical osteogenic markers Runx-2, osteopontin, Osx and Osteocalcin in hDPSCs was evaluated. Results showed that deposition by PED allows for a close transfer of the targets” composition. As-deposited coatings exhibited low cristallinity, that was significantly increased by post-deposition annealing, up to resembling that of biogenic apatite target. As a result of annealing, mechanical properties increased up to values comparable to those of commercial plasma-sprayed HA-coatings. In vitro biological tests indicated that BAL_400 promotes hDPSCs proliferation to a higher extent compared to non-annealed bone coating and HA-references. Furher, immunofluorescence and western blot analyses revealed that the typical osteogenic markers were expressed, indicating that BAL_400 alone can efficiently promote the osteogenic commitment of the cells, even in absence of an osteogenic medium. In conclusion, bone-like apatite coatings were deposited by PED, which closely resembled composition and structure of natural-apatite. Upon annealing at 400°C, the coatings exhibited satisfactory mechanical properties and were capable of providing a suitable microenvironment for hDPSCs adherence and proliferation and for them to reach osteogenic commitment. These results suggest that bone apatite-like thin films obtained by biogenic source may represent an innovative platform to boost bone regeneration in the orthopedic, maxillofacial and odontoiatric field


The Bone & Joint Journal
Vol. 96-B, Issue 3 | Pages 350 - 353
1 Mar 2014
White JJE Titchener AG Fakis A Tambe AA Hubbard RB Clark DI

Little is known about the incidence of rotator cuff pathology or its demographic associations in the general population. We undertook a large epidemiological study of rotator cuff pathology in the United Kingdom using The Health Improvement Network (THIN) database. The incidence of rotator cuff pathology was 87 per 100 000 person-years. It was more common in women than in men (90 cases per 100 000 person-years in women and 83 per 100 000 person-years in men; p < 0.001). The highest incidence of 198 per 100 000 person-years was found in those aged between 55 and 59 years. The regional distribution of incidence demonstrated an even spread across 13 UK health authorities except Wales, where the incidence was significantly higher (122 per 100 000 person-years; p < 0.001). The lowest socioeconomic group had the highest incidence (98 per 100 000 person-years). The incidence has risen fourfold since 1987 and as of 2006 shows no signs of plateauing.

This study represents the largest general population study of rotator cuff pathology reported to date. The results obtained provide an enhanced appreciation of the epidemiology of rotator cuff pathology and may help to direct future upper limb orthopaedic services.

Cite this article: Bone Joint J 2014;96-B:350–3.


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 1 | Pages 45 - 51
1 Jan 2003
Skinner JA Todo S Taylor M Wang JS Pinskerova V Scott G

We have compared the survival and radiological outcome at ten years after total hip replacement using two techniques for preparing the femoral canal. The same prosthesis was used throughout and all operations were performed by the same surgical team. In technique 1 the canal was over-reamed by 2 mm and in technique 2 it was reamed to the same size as the prosthesis. Technique 1 was performed on 92 patients and technique 2 on 97 patients.

The survival at ten years was 97.2% (90.6 to 99.2) for technique 1 and 98.8% (92.9 to 99.8) for technique 2. Vertical migration was greater in technique 1 (1.8 mm versus 1.0 mm at five years; p = 0.36). There were significantly more lytic lesions and radiolucent lines at five years (p = 0.0061) with technique 1. We conclude that technique 2 is not worse and may produce better long- term results than current teaching suggests.