Objective. Cement thickness of at least 2 mm is generally associated with more favorable results for the femoral component in cemented hip arthroplasty. However, French-designed stems have shown favorable outcomes even with
Calcium phosphates-based coatings have been widely studied to favour a firm bonding between orthopaedic implants and the host bone. To this aim,
Aims. Radiostereometric analysis (RSA) is the most accurate radiological method to measure in vivo wear of highly cross-linked polyethylene (XLPE) acetabular components. We have previously reported very low wear rates for a sequentially irradiated and annealed X3 XLPE liner (Stryker Orthopaedics, USA) when used in conjunction with a 32 mm femoral heads at ten-year follow-up. Only two studies have reported the long-term wear rate of X3 liners used in conjunction with larger heads using plain radiographs which have poor sensitivity. The aim of this study was to measure the ten-year wear of
Vitamin E-doped cross-linked polyethylene (VEPE) has encouraged the use of larger heads in thinner liners in total hip arthroplasty (THA). However, there are concerns about wear and mechanical failure of the
Prosthetic joint infections represent complications connected to the implantation of biomedical devices, they have high incidence, interfere with osseointegration, and lead to a high societal burden. The microbial biofilm, which is a complex structure of microbial cells firmly attached to a surface, is one of the main issues causing infections. Biofilm- forming bacteria are acquiring more and more resistances to common clinical treatments due to the abuse of antibiotics administration. Therefore, there is increasing need to develop alternative methods exerting antibacterial activities against multidrug-resistant biofilm-forming bacteria. In this context, metal-based coatings with antimicrobial activities have been investigated and are currently used in the clinical practice. However, traditional coatings exhibit some drawbacks related to the insufficient adhesion to the substrate, scarce uniformity and scarce control over the toxic metal release reducing their efficacy. Here, we propose the use of antimicrobial silver-based nanostructured
Aims. Several short- and mid-term studies have shown minimal liner wear of highly cross-linked polyethylene (HXLPE) in total hip arthroplasty (THA), but the safety of using thinner HXLPE liners to maximize femoral head size remains uncertain. The objective of this study was to analyze clinical survival and radiological wear rates of patients with HXLPE liners, a 36 mm femoral head, and a small acetabular component with a minimum of ten years’ follow-up. Methods. We retrospectively identified 55 patients who underwent primary THA performed at a single centre, using HXLPE liners with 36 mm cobalt-chrome heads in acetabular components with an outer diameter of 52 mm or smaller. Patient demographic details, implant details, death, and all-cause revisions were recorded. Cox regression and Kaplan-Meier survival was used to determine all-cause and liner-specific revision. Of these 55 patients, 22 had a minimum radiological follow-up of seven years and were assessed radiologically for linear and volumetric wear. Results. Overall survival rate for all-cause revision was 94.5% (95% confidence interval (CI) 81.7% to 97.2%) at a mean follow-up of 12.8 years (10.9 to 18.7). Three patients were revised, none for liner wear, fracture, or dissociation. A total of 22 patients were included in the radiological analysis (mean follow-up 9.9 years (7.5 to 13.7)). Mean linear liner wear was 0.085 mm (95% CI -0.086 to 0.257) and the volumetric wear rate was 11.097 mm. 3. /year (95% CI -6.5 to 28.7). Conclusion. Using HXLPE liners with 36 mm heads in 52 mm acetabular components or smaller is safe, with excellent survival and low rates of linear and volumetric wear at medium-term follow-up. Patients did not require revision surgery for liner complications such as fracture, dissociation, or wear. Our results suggest that the advantages of using larger heads outweigh the potential risks of using
With the introduction of highly crosslinked polyethylene (HXLPE) in total hip arthroplasty (THA), orthopaedic surgeons have moved towards using larger femoral heads at the cost of thinner liners to decrease the risk of instability. Several short and mid-term studies have shown minimal liner wear with the use HXLPE liners, but the safety of using thinner HXPLE liners to maximize femoral head size remains uncertain and concerns that this may lead to premature failure exist. Our objective was to analyze the outcomes for primary THA done with HXLPE liners in patients who have a 36-mm head or larger and a cup of 52-mm or smaller, with a minimum of 10-year follow-up. Additionally, linear and volumetric wear rates of the HXLPE were evaluated in those with a minimum of seven-year follow-up. We hypothesized that there would be minimal wear and good clinical outcome. Between 2000 and 2010, we retrospectively identified 55 patients that underwent a primary THA performed in a high-volume single tertiary referral center using HXLPE liners with 36-mm or larger heads in cups with an outer diameter of or 52-mm or smaller. Patient characteristics, implant details including liner thickness, death, complications, and all cause revisions were recorded. Patients that had a minimum radiographic follow-up of seven years were assessed radiographically for linear and volumetric wear. Wear was calculated using ROMAN, a validated open-source software by two independent researchers on anteroposterior X-rays of the pelvis. A total of 55 patients were identified and included, with a mean age of 74.8 (range 38.67 - 95.9) years and a mean BMI of 28.98 (range 18.87 - 63-68). Fifty-one (94.4%) of patients were female. Twenty-six (47.7%) patients died during the follow-up period. Three patients were revised, none for liner wear, fracture or dissociation. Twenty-two patients had a radiographic follow-up of minimum seven years (mean 9.9 years, min-max 7.5 –13.7) and were included in the long-term radiographic analysis. Liner thickness was 5.5 mm at 45 degrees in all cases but one, who had a liner thickness of 4.7mm, and all patients had a cobalt-chrome head. Cup sizes were 52mm (n=15, 68%) and 50mm (n=7, 32%). Mean linear liner wear was 0.0470 mm/year (range 0 - 0.2628 mm) and mean volumetric wear was 127.69 mm3/year (range 0 - 721.23 mm3/year). Using HXLPE liners with 36-mm heads or bigger in 52-mm cups or smaller is safe, with low rates of linear and volumetric wear in the mid to long-term follow-up. Patients did not require revision surgery for liner complications, including liner fracture, dissociation, or wear. Our results suggest that the advantages of using larger heads should outweigh the potential risks of using
INTRODUCTION. Nickel-Titanium (NiTi) with a molar composition of 50:50 or nitinol alloy exhibit special mechanical properties. These properties can be put to excellent use in various biomedical applications including: intravascular stent, orthodontic wires, prosthetic heart valves, angioplastic guides, orthopaedic implants, bone substitution materials, endoscopic instruments, implant stents and filters. Microorganism adhesion properties of nitinol may be decreased by oxidizing agents and surface heat treatment. In the present study, we investigated the microorganism adhesion and cytotoxicity of the
Isolated patellofemoral osteoarthritis can be a disabling disease. When conservative treatment fails, surgical options can be unpredictable and may be considered too aggressive for middle-aged and active people. We analysed the clinical and radiological results of a new coronal osteotomy involving
Infections are among the main complications connected to implantation of biomedical devices, having high incidence rate and severe outcome. Since their treatment is challenging, prevention must be preferred. For this reason, solutions capable of exerting suitable efficacy while not causing toxicity and/or development of resistant bacterial strains are needed. To address infection, inorganic antibacterial coatings, and in particular silver coatings, have been extensively studied and used in the clinical practice, but some drawbacks have been evidenced, such as scarce adhesion to the substrate, delamination, or scarce control over silver release. Here, antibacterial nanostructured silver-based
Introduction. Total joint arthroplasty is frequently necessary when a traumatic or degenerative disease leads to develop osteoarthritis (OA). Nowadays, the main reason for long term prosthesis failure is due to osteolysys and aseptic loosening of the implant itself, that are related to UHMWPE wear debris [1–3]. Different solutions to overcome this issue have been proposed, including different couplings like metal-on-metal and ceramic-on-ceramic. Our hypothesis was that a hard ceramic
Revision total hip replacements are likely to have higher complication rates than primary procedures due to the poor quality of the original bone. This may be constrained to achieve adequate fixation strength to prevent future “aseptic loosening” [1]. A
Introduction and Aims: The purpose of the present study was to review the early results and clinical performance of FDA approved large unipolar heads (36mm and greater) used with a metal-on-metal (MM) bearing. Method: Fourteen stem type prostheses were implanted in 14 patients. There were eight primary THA, and six conversions of surface arthroplasties in which thin-walled (5mm) porous coated MM sockets were maintained. Mean age was 55.4 years (range 30–72 years). There were nine males and five females. Dislocation precautions were discontinued after capsular healing (six weeks). The initial etiology was OA in 78%. Results: The median head size was 44mm (36–52) and socket size 54mm. Mean follow-up time was 29.1 months (range 12–81). UCLA hip scores improved for pain, walking, function, and activity from 4.8, 6.2, 6.1, and 4.8 pre-operatively to 9.3, 8.5, 7.5, and 5.4 postoperatively. Range of motion normalised. There were no complications. Conclusion: This investigation shows excellent clinical results, and suggests that dislocation can be avoided by an anatomical THR with the use of large unipolar femoral heads and
Purpose: Many lateral malleolar fractures in patients with osteoporotic bone are rotationally unstable, requiring fixation stable in torsion with good fatigue properties, but without bulk due to the soft tissue constraints. The purpose of this study was to evaluate the torsional performance of a
Wear of the ultra-high molecular weight polyethylene (UHMWPE) insert is one of the major issue related to orthopaedic implants. In this study, the tribo-mechanical properties of zirconia-coated UHMWPE deposited by means of Pulsed Plasma Deposition (PPD) technique were analyzed. Specifically, strength to local plastic deformation, indentation work portioning and creep behavior were evaluated through nanoindentation and micro-scratch tests, whereas preliminary wear data were obtained by tribology tests. A strong reduction of plastic deformation and a drop of the creep phenomenon for the zirconia-coated UHMWPE were evidenced, whereas - in spite of similar wear data - different wear mechanism was also detected. This study supported the use of hard ceramic
Introduction. Moderately crosslinked, thermally treated ultrahigh molecular weight polyethylene (UHMWPE) has to date demonstrated a good balance of wear resistance and mechanical properties. MARATHON™ Polyethylene (DePuySynthes Joint Reconstruction, Warsaw, IN) is made from polyethylene resin GUR 1050, gamma-irradiated at a dose of 5.0 Mrads to create crosslinking of polyethylene, and followed by a remelting process to eliminate free radicals for oxidative stability. 10-year clinical study [1] and laboratory wear simulation tests [2–3] have reported excellent wear performance of the MARATHON poly. There continues to be demand for improved head-to-shell ratio acetabular systems because larger head sizes have the benefits of increased stability and range of motion. The increased head-to-shell ratio is often times achieved by using a reduced liner thickness. One of the clinical concerns of thinner poly liners is the potential for rim fracture, particularly in the occurrences of rim loading or impingement at high cup angles [4–7]. This study investigated the performance of thinner poly liners to the challenge of high angle rim loading and neck-to-liner impingement. Materials and Methods. Three groups of ETO sterilized MARATHON polyethylene liners (ID/OD: 28/44, 32/48, and 36/52 mm) were paired with matching CoCrMo heads (n=6 each group). To simulate rim loading, liners were assembled in the metal shells tilted at 64° (Figure 1) with sinusoidal loading (0 to 5000N at 3Hz) in a 37°C water bath for 5-million cycles or until component failure, whichever occurred first. For neck-liner impingement testing, metal shells were potted at 54º (in the abduction/adduction plane with a ±10° of motion per ISO 14242–1 [8]) on a hip simulator (n=4 each group) using a physiological loading (max 3000N at 1Hz) for 3-million cycles (Figure 2). The impingement occurred at 64º during the simulated gait cycle (Figure 3). The liners were inspected every million cycles, using a high intensity light to search for signs of crack initiation and/or fractures. Both test methods were validated to be able to replicate liner fractures. Results. All MARATHON ETO liners passed 5-million cycles of high angle fatigue testing. All liners passed 3-million cycles of impingement testing. Discussion. Causes of liner fractures can be multi-factorial. Examples of influencing factors are: poly material, component designs, patient activity level, implant orientations, and neck-liner impingement. Improved head-to-shell ratio design requires reduction of the liner thickness, which raises the concern of liner fracture. In this study, we investigated adverse testing conditions of rim-loading and neck-liner impingement, in order to evaluate the mechanical performance of
Squeaking ceramics bearing surfaces have been recently recognised as a problem in total hip arthroplasty. The position of the acetabular cup has been alluded to as a potential cause of the squeaking, along with particular combinations of primary stems and acetabular cups. This study has used the finite element method to investigate the propensity of a new large diameter preassembled ceramic acetabular cup to squeaking due to malpositioning. A verified three-dimensional FE model of a cadaveric human pelvis was developed which had been CT scanned, and the geometry reconstructed; this was to be used to determine the behaviour of large diameter acetabular cup system with a
Fabrication of biogenic coatings with suitable mechanical properties is a key goal in orthopedics, to overcome the limitations of currently available coatings and improve the clinical results of coated implants compared to uncoated ones. In this paper, biological-like apatite coatings were deposited from a natural bone-apatite source by a pulsed electron deposition technique (PED). Bone apatite-like (BAL) films were deposited directly from bone targets, obtained by standard deproteinization of bovine tibial cortical shafts and compared to films deposited by sintered stoichiometric-hydroxyapatite targets (HA). Deposition was performed at room temperature by PED in the Ionized Jet Deposition (IJD) version. Half of the samples was annealed at 400°C for 1h (BAL_400 and HA_400). As-deposited and annealed coatings were characterized in terms of composition and crystallinity (XRD, FT-IR), microstructure and morphology (SEM-EDS, AFM) and mechanical properties (nanoindentation and micro-scratch). For the biological tests, human dental pulp stem cells (hDPSCs) were isolated from dental pulp from patients undergoing a routine tooth extraction, plated on the samples (2500 cells/cm2) and cultured for 3 weeks, when the expression of typical osteogenic markers Runx-2, osteopontin, Osx and Osteocalcin in hDPSCs was evaluated. Results showed that deposition by PED allows for a close transfer of the targets” composition. As-deposited coatings exhibited low cristallinity, that was significantly increased by post-deposition annealing, up to resembling that of biogenic apatite target. As a result of annealing, mechanical properties increased up to values comparable to those of commercial plasma-sprayed HA-coatings. In vitro biological tests indicated that BAL_400 promotes hDPSCs proliferation to a higher extent compared to non-annealed bone coating and HA-references. Furher, immunofluorescence and western blot analyses revealed that the typical osteogenic markers were expressed, indicating that BAL_400 alone can efficiently promote the osteogenic commitment of the cells, even in absence of an osteogenic medium. In conclusion, bone-like apatite coatings were deposited by PED, which closely resembled composition and structure of natural-apatite. Upon annealing at 400°C, the coatings exhibited satisfactory mechanical properties and were capable of providing a suitable microenvironment for hDPSCs adherence and proliferation and for them to reach osteogenic commitment. These results suggest that bone apatite-like
Little is known about the incidence of rotator
cuff pathology or its demographic associations in the general population.
We undertook a large epidemiological study of rotator cuff pathology
in the United Kingdom using The Health Improvement Network (THIN)
database. The incidence of rotator cuff pathology was 87 per 100
000 person-years. It was more common in women than in men (90 cases
per 100 000 person-years in women and 83 per 100 000 person-years
in men; p <
0.001). The highest incidence of 198 per 100 000
person-years was found in those aged between 55 and 59 years. The
regional distribution of incidence demonstrated an even spread across
13 UK health authorities except Wales, where the incidence was significantly
higher (122 per 100 000 person-years; p <
0.001). The lowest
socioeconomic group had the highest incidence (98 per 100 000 person-years).
The incidence has risen fourfold since 1987 and as of 2006 shows
no signs of plateauing. This study represents the largest general population study of
rotator cuff pathology reported to date. The results obtained provide
an enhanced appreciation of the epidemiology of rotator cuff pathology
and may help to direct future upper limb orthopaedic services. Cite this article:
We have compared the survival and radiological outcome at ten years after total hip replacement using two techniques for preparing the femoral canal. The same prosthesis was used throughout and all operations were performed by the same surgical team. In technique 1 the canal was over-reamed by 2 mm and in technique 2 it was reamed to the same size as the prosthesis. Technique 1 was performed on 92 patients and technique 2 on 97 patients. The survival at ten years was 97.2% (90.6 to 99.2) for technique 1 and 98.8% (92.9 to 99.8) for technique 2. Vertical migration was greater in technique 1 (1.8 mm