header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

AN EVALUATION OF SQUEAKING IN A LARGE DIAMETER THIN CERAMIC LINER USING THE FINITE ELEMENT METHOD

Australian Orthopaedic Association Limited (AOA)



Abstract

Squeaking ceramics bearing surfaces have been recently recognised as a problem in total hip arthroplasty. The position of the acetabular cup has been alluded to as a potential cause of the squeaking, along with particular combinations of primary stems and acetabular cups. This study has used the finite element method to investigate the propensity of a new large diameter preassembled ceramic acetabular cup to squeaking due to malpositioning.

A verified three-dimensional FE model of a cadaveric human pelvis was developed which had been CT scanned, and the geometry reconstructed; this was to be used to determine the behaviour of large diameter acetabular cup system with a thin delta ceramic liner in the acetabulum. The model was generated using ABAQUS CAE pre-processing software. The bone model incorporated both the geometry and the materials properties of the bone throughout based on the CT scan. Finite element analysis and bone material assignment was performed using ABAQUS software and a FORTRAN user subroutine. The loading applied simulated edge loading for rising from a chair, heel-strike, toe off and stumbling.

All results of the analysis were used to determine if the liner separated from the shell and if the liner was toggling out of the shell. The results were also examined to see if there was a propensity for the liner to demobilise and vibrate causing a squeaking sound under the prescribed loading regime.

This study indicates that there is a reduction in contact area between the ceramic liner and titanium shell if a patient happens to trip or stumble. However, since the contact between the liner and the shell is not completely lost the propensity for it to squeak is highly unlikely.