This study measured the three bony axes usually used for femoral component rotation in total knee arthroplasty and compared the accuracy and repeatability of different measurement techniques. Fresh cadaveric limbs (n=6) were used. Three observers (student, trainee and consultant) identified the posterior condylar (PCA), anteroposterior (AP) and the transepicondylar (TEA) axes, using a computer navigation system to record measurements. The AP axis was measured before and after being identified with an ink line. The
Three distal femoral axes have been described to aid in alignment of the femoral component; the Trans Epicondylar Axis (TEA), the Posterior Condylar Axis (PCA) and the Antero Posterior (AP) axis. Our aim was to identify if there was a reproducible relationship between the axes which would aid alignment of the femoral component. This is the first study compare all three distal femoral axes with each other using magnetic resonance imaging (MRI) in a Caucasian population. Our sample group represents real life patients awaiting total knee arthroplasty (TKA), as opposed non-arthritic or cadaveric knees. We identified the relationship between these rotational axes by performing MRI scans on 89 patients awaiting TKA with patient-specific instrumentation. Measurements were taken by two observers. Patients had a mean age of 62.5 years (range 32–91). 51 patients were female. The mean angle between the
Three distal femoral axes have been described to aid in alignment of the femoral component; the Trans Epicondylar Axis (TEA), the Posterior Condylar Axis (PCA) and the Antero Posterior (AP) axis. Our aim was to identify if there was a reproducible relationship between the axes. Hopefully this will aid the surgeon to more accurately judge the rotation of the femoral cutting block by using the axes with the least variation. This is the first study compare all three distal femoral axes with each other using magnetic resonance imaging (MRI) in a Caucasian population awaiting total knee arthroplasty (TKA). We identified the relationship between these axes by performing MRI scans on 89 patients awaiting TKA with patient-specific instrumentation. Measurements were taken by two observers. Patients had a mean age of 62.5 years (range 32–91). 51 patients were female. The mean angle between the
Among plant derived molecules, polyphenols have antioxidant, anticancer and antibacterial ability [1,2]. Moreover, they can stimulate osteoblast differentiation and promote apoptosis of tumoral cells [3–4]. It's thus possible combine the properties of these molecules with those of bioactive materials trough surface functionalization. A silica-based bioactive glass and chemically treated bioactive Ti6Al4V were used as substrates while gallic acid and polyphenols extracted from green
Background. The optimal reference for rotational positioning of femoral component in total knee replacement (TKR) is debated. Navigation has been suggested for intra-op acquisition of patient's specific kinematics and functional flexion axis (FFA). Questions/Purposes. To prospectively investigate whether pre-operative FFA in patients with osteoarthritis (OA) and varus alignment changes after TKR and whether a correlation exists between post-op FFA and pre-op alignment. Patients and Methods. A navigated TKR was performed in 108 patients using a specific software to acquire passive joint kinematics before and after TKR. The knee was cycled through three passive range of motions (PROM), from 0° to 120°. FFA was computed using the mean helical axis algorithm. The angle between FFA and surgical
Summary Statement. This 3-dimensional CT study on cadaveric proximal ulna provides further insight into the size and geometry of the proximal ulna intramedullary cavity with potential applications to design and sizing of proximal ulna components. Introduction. Total elbow arthroplasty (TEA) is an established treatment for varying pathologies of the elbow with very good functional outcomes. Optimal fit of ulna components in
The understanding of rotational alignment of the distal femur is essential in total knee replacement to ensure that there is correct placement of the femoral component. Many reference axes have been described, but there is still disagreement about their value and mutual angular relationship. Our aim was to validate a geometrically-defined reference axis against which the surface-derived axes could be compared in the axial plane. A total of 12 cadaver specimens underwent CT after rigid fixation of optical tracking devices to the femur and the tibia. Three-dimensional reconstructions were made to determine the anatomical surface points and geometrical references. The spatial relationships between the femur and tibia in full extension and in 90° of flexion were examined by an optical infrared tracking system. After co-ordinate transformation of the described anatomical points and geometrical references, the projection of the relevant axes in the axial plane of the femur were mathematically achieved. Inter- and intra-observer variability in the three-dimensional CT reconstructions revealed angular errors ranging from 0.16° to 1.15° for all axes except for the trochlear axis which had an interobserver error of 2°. With the knees in full extension, the femoral transverse axis, connecting the centres of the best matching spheres of the femoral condyles, almost coincided with the tibial transverse axis (mean difference −0.8°,