Advertisement for orthosearch.org.uk
Results 1 - 20 of 48
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_10 | Pages 47 - 47
1 Jun 2023
Wilson G Prior C
Full Access

Introduction. The purpose of this study was to analyse the efficacy and complications associated with the use of Calcium Sulphate synthetic bone graft in a paediatric population. There are no published articles on the use in children. Materials & Methods. A retrospective review was undertaken of the notes, microbiology, and X-Rays of 17 cases (in 15 patients) of calcium sulphate use in paediatric patients. As well as patient demographic data, data collected included indication, use of additional agents (antibiotics), return to theatre, and wound complications. Major complications were also assessed for. Results. There were 17 cases, in 15 patients, in our case series where calcium sulphate synthetic bone graft was used. The average patient age was 12.0 years (range 5 years – 17 years). Indications for use included likely infection (12), possible infection (3), and 2 elective finger cases (enchondroma and osteotomy). The humerus was the most common target site (5), followed by the femur (4), tibia (3), calcaneum (2), finger (2) and metatarsal (1) also included. There were positive intra-operative microbiology samples for eleven cases (Staphylococcus aureus and Staphylococcus epidermidis). Antibiotics were used in all cases except the elective finger surgery, and choice ranged between vancomycin, gentamicin, or a combination of both. Two patients required return to theatre for management of ongoing deep infection, although one case was later deemed to be non-infective osteomyelitis. Seven patients had undergone debridements prior to the definitive one with calcium sulphate (5 without Calcium Sulphate, 2 with Calcium Sulphate). Three patients experienced wound issues in the form of discharge/leakage, all were managed with dressings and did not require return to theatre. Conclusions. Calcium Sulphate synthetic bone graft, with addition of antibiotics, is an efficacious treatment in the paediatric population and is not associated with any major complications. Wound discharge should be observed for, and patients/parents warned about this, but only as per the adult population


Aims. Our objective was to conduct a systematic review and meta-analysis, to establish whether differences arise in clinical outcomes between autologous and synthetic bone grafts in the operative management of tibial plateau fractures. Methods. A structured search of MEDLINE, EMBASE, the online archives of Bone & Joint Publishing, and CENTRAL databases from inception until 28 July 2021 was performed. Randomized, controlled, clinical trials that compared autologous and synthetic bone grafts in tibial plateau fractures were included. Preclinical studies, clinical studies in paediatric patients, pathological fractures, fracture nonunion, or chondral defects were excluded. Outcome data were assessed using the Risk of Bias 2 (ROB2) framework and synthesized in random-effect meta-analysis. The Preferred Reported Items for Systematic Review and Meta-Analyses guidance was followed throughout. Results. Six studies involving 353 fractures were identified from 3,078 records. Following ROB2 assessment, five studies (representing 338 fractures) were appropriate for meta-analysis. Primary outcomes showed non-significant reductions in articular depression at immediate postoperative (mean difference -0.45 mm, p = 0.25, 95%confidence interval (CI) -1.21 to 0.31, I. 2. = 0%) and long-term (> six months, standard mean difference -0.56, p = 0.09, 95% CI -1.20 to 0.08, I. 2. = 73%) follow-up in synthetic bone grafts. Secondary outcomes included mechanical alignment, limb functionality, and defect site pain at long-term follow-up, perioperative blood loss, duration of surgery, occurrence of surgical site infections, and secondary surgery. Mean blood loss was lower (90.08 ml, p < 0.001, 95% CI 41.49 to 138.67) and surgery was shorter (16.17 minutes, p = 0.04, 95% CI 0.39 to 31.94) in synthetic treatment groups. All other secondary measures were statistically comparable. Conclusion. All studies reported similar methodologies and patient populations; however, imprecision may have arisen through performance variation. These findings supersede previous literature and indicate that, despite perceived biological advantages, autologous bone grafting does not demonstrate superiority to synthetic grafts. When selecting a void filler, surgeons should consider patient comorbidity, environmental and societal factors in provision, and perioperative and postoperative care provision. Cite this article: Bone Jt Open 2022;3(3):218–228


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVII | Pages 28 - 28
1 May 2012
Ong J Mitra A Harty J
Full Access

Objective. To determine differences in fracture stability and functional outcome between synthetic bone graft and allograft/autograft with internal fixation of tibia plateau metaphyseal defects. Patient & Methods. Between 2007- 2008, 84 consecutive cases of internal fixation of tibia plateaux were identified from our theater logbook. 29 patients required additional autologous, allogenic bone graft, or synthetic bone graft substitute to ensure fracture stability. 5 patients were excluded due to lost to follow up leaving a cohort of 24 patients. Hydroxyapatite calcium carbonate synthetic bone graft was utilised in 14 patients (6 male and 8 female). Allograft/autograft were utilised in the remaining 10 patients (6 male and 4 female). All 24 patients had closed fractures, classified using the AO and Schatzker classification. Roentograms at presentation, post-operatively and regular follow-up till 12 months were analysed for maintenance of reduction, early and late subsidence of the articular surface. Functional outcomes such as knee range of movement and WOMAC Knee scores were compared between groups. Results. There was no significant statistical difference between groups for post-operative joint reduction, long term subsidence, and WOMAC scores. The degree of subsidence was not related to age or fracture severity. Maintenance of knee flexion was found to be better in the allograft/autograft group (p=0.015) when compared between groups. Multivariate analysis compared graft type, fracture severity, postoperative reduction, subsidence rate, range of movement and WOMAC score. The only finding was a statistical significant (p=0.025) association with the graft type and range of movement. Conclusion. Allograft/autograft may allow better recovery of long-term flexion, possibly due to reduced inflammatory response compared with synthetic bone graft. However, all other parameters such as maintenance of joint reduction and subjective outcome measures were comparable with the use of hydroxyapatite calcium carbonate bone graft. This study shows that synthetic bone graft is a suitable option in fixation of unstable tibia plateau fractures, avoiding risk of viral disease transmission with allograft and donor site morbidity associated with autograft


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_23 | Pages 40 - 40
1 Dec 2016
McNally M Diefenbeck M Stubbs D Athanasou N
Full Access

Aim. This study describes and correlates the radiographic and histologic changes which develop in a Gentamicin-eluting synthetic bone graft substitute. *. in the management of bone defects after resection of chronic osteomyelitis (COM). Method. 100 patients with COM were treated with a single stage procedure, including management of the dead space with insertion of a Gentamicin-eluting synthetic bone graft substitute. *. Radiographs of 73 patients with a follow-up of at least 12 months (range 12–33 months) were available for review. Bone defects were diaphyseal in 32, metaphyseal in 34 and combined in 7 patients. In 3 patients, radiographs were not of sufficient quality to allow analysis. Five patients had subsequent surgery, not related to recurrence of infection, which allowed biopsy of the implanted material. These biopsies were harvested between 12 days and 9 months after implantation. Tissue was fixed in formalin and stained with haematoxylin-eosin and immunohistochemically for bone matrix markers. Results. Radiographic: 31 of 34 diaphyseal implantations (91%) demonstrated remodelling of the biocomposite, gradually over many months, producing new bone and resulting in a “normal post-osteomyelitic” appearance. In metaphyseal implantations, new bone filled two-thirds or more of the defect in 55% of cases, one to two-thirds was filled in 31% and one third or less was filled in 14%. 22% of patients exhibited radiographic signs of dissolution and remodelling which are specific to this material. The ‘Halo’ sign of peripheral zone remodelling, the ‘Marble’ sign of dissolution and the ‘Puddle’ sign of distal migration can be described. Histologic: Histological assessment revealed early active remodelling of the biocomposite. The material was osteoconductive with accumulation of osteoblasts and osteoid and woven bone formation on the surface of the Gentamicin-eluting synthetic bone graft substitute. *. separated by fibrous tissue at the edge of the defect beneath reactive viable host bone. Fibrous tissue contained a heavy macrophage infiltrate and the newly formed matrix contained the specific bone proteins, dentine matrix protein-1 and podoplanin. There was limited evidence of remodelling into lamellar bone at 20 weeks after implantation. Conclusions. The Gentamicin-eluting synthetic bone graft substitute. *. exhibits a specific pattern of radiographic change over many months after implantation. The resolution of the bone defect would appear to be due to bone formation, as seen in the histologic and immunohistochemical analysis


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 483 - 483
1 Sep 2009
Manoj-Thomas A Nikos M Paul I Jones D
Full Access

Aim: To determine the clinical improvement and the radiological time to fusion as well as correction of the lordosis angle in patients undergoing anterior cervical interbody fusion with the use of a silicate substituted calcium phosphate ceramic (Si-CaP) (Actifuse™ Synthetic Bone Graft, ApaTech, Ltd., Elstree, UK) as the bone graft substitute in the cage. Design: We conducted a prospective clinical and radiological study to evaluate the use of Si-CaP as bone graft substitute in anterior cervical fusion for degenerative cervical spondylosis. Materials and methods: Thirty patients were selected prospectively by preoperative and postoperative clinical and radiological assessments. All patients were operated on by a single surgeon (D.A.J.). Neck disability index and visual analogue score were used for the clinical assessment. Radiological assessment included improvement in the lordosis angle and time to fusion. Patients were evaluated at three months, six months and one year post-surgery. Results: At present 14 patients with a total of 19 levels have completed their one year follow-up. The patients had an average of 50.4 years (range 34–69), with ratio of male to female of 6:7. Lordosis angle improved significantly from a mean lordosis angle of 0.31 preoperatively to 4.75 degree postoperatively (p< 0.05). All the levels had fused at the 1 year follow up and there was no radiological evidence of sinkage of the cage. Conclusion: Substitution of silicate ions into calcium phosphate ceramics has been shown to impart a negative surface charge, leading to greater protein absorption, increased osteoblast proliferation, and higher production of extracellular matrix. Our results show that Si-CaP has excellent clinical performance as a synthetic bone graft in anterior cervical discectomy and fusion. Postoperatively, patients demonstrate a good fusion with an excellent correction and maintenance of the lordosis angle


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 50 - 50
1 Mar 2010
Kennedy J MacGarry P FitzPatrick D Mullet JH
Full Access

Background: Fixation of complex fractures of the proximal humerus is challenging. Fixed angle plates have been shown to give good results in younger patients with good bone quality, however failure of screws to maintain fixation in older patients remains a problem [1]. It has been shown that the bone quality within the humeral head sharply declines with age leaving a large bone void [2]. We propose that filling this bone void with a synthetic bone graft will improve screw purchase, and reduce the likelihood of construct failure. Aims: We aim to use CT based finite element analysis to examine the effect of augmenting plate fixation with synthetic bone graft in the presence of a poor bone stock. Methods: A computer tomography (CT) scan of an intact cadaveric fresh frozen humerus from a 78 year old male was obtained. The CT Hounsfield units were calibrated using a water phantom. Both the external contour and internal structure of the hummers were accurately defined using the threshold method. Using proprietary software [Simpleware Simpleware Ltd., Exeter], Boolean subtraction was employed to simulate an anatomically reduced four-part proximal humerus fracture with a representative bone void within the humeral head. A digital representation of a fixed angle proximal humerus plate was created and located so as to fix the fracture. The geometry of the plate fixed four-part fracture was then used to create a hexa-hederal dominant finite element mesh with over six hundred thousand elements created. Linear elastic properties were assigned to each element within the mesh representing bone using established relationships based on local Hounsfield number in the original CT scan [3]. The model was imported into the finite element preprocessor [Abaqus CAE, Simulia Inc, USA]. Contact interactions between the bone fragments, implant and bone graft substitute were defined. A pressure load was applied to the articular fragment to simulate maximum physiological joint reaction forces on the proximal humerus [4,5]. Simulations were run on the facilities at the Irish Center for High End Computing (ICHEC) The effect of adding synthetic bone graft to fixation with a fixed angle device was studied. Results: In all models the peak pressures were along the lateral cortex and at the implant bone interface. This agrees with common clinical modes of failure being lateral collapse, valgus impaction and cutout of screws into the glenoid fossa. Finite element models where the simulated bone void was filled with bone graft substitute showed 60% reduction in the bearing pressures at the implant/bone interface. Conclusions: Our results suggest that augmenting plate based fixation of complex proximal humerus fractures with synthetic bone graft results in a more robust construct. It a clinical setting this is likely to result a lower incidence of failure of fixation and subsequent revision surgery


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 379 - 379
1 Oct 2006
Hsu Y Turner I Miles A
Full Access

Introduction: Calcium phosphate based ceramics with a porous configuration are attraction for use as synthetic bone grafts as the porous network allows tissue ingrowth, which further enhances the implant-tissue attachment. The degree of interconnectivity and the nominal pore size are the critical factors that determine the success of the implants. It is generally accepted that a minimum pore size of 100 μm is necessary for the porous implant materials to function well and a pore size greater than 200 μm is an essential requirement for osteo-conduction. However, research has suggested that the degree of interconnectivity is more critical than the pore size. In this study, porous Hydroxyapatite/Tricalcium phosphate (HA/TCP) bioceramics with interconnected porosity and controlled pore sizes were fabricated by a novel technique involving vacuum impregnation of reticulated polymeric foams with ceramic slip. HA/TCP samples with a range of pore sizes and functionally gradient materials (FGM) with porosity gradients were made. Materials and Methods: Two grades of calcium phosphate powder, TCP 118 and TCP 130, were used. Varying the blend ratios could change the ratios of HA and TCP in the sintered samples. The foams used comprised polyurethane (PU) which had one of three different porosities 20, 30 and 45 pores per inch (ppi). In order to make a FGM with porosity gradients mimicking the bimodal structure of cortical and cancellous bone, two different foams were either joined together by sewing or pressfitting together. The foams were substantially impregnated with slip by vacuum impregnation. The impregnated foams were removed from the vacuum chamber and dried on tissue for at least 24 hours then sintered at temperatures of up to 1280°C. Results and Discussion: Using a slip with the appropriate viscosity, porous HA/TCP bioceramics having interconnecting pores and a range of pore sizes can be produced successfully. By joining different ppi foams together, it is possible to develop functional gradient materials in which the porosity varies through the thickness of the samples. No weakness could be seen at the interface between the two different structures. This demonstrated that porous HA/TCP with two or more different levels of porosity could be produced in a single block. Image analysis shows the porosity measured for the three different foams was similar. The area equivalent diameters of the pore structure are 197–254 μm with 20ppi foam, 143–183 μm with 30ppi foam and 105–127 μm with 45ppi foam. The compressive strengths of the HA/TCP samples are in the range of 30–170 MPa and the apparent densities were 2.34–2.76 g/cm3. The technique developed for fabricating porous bioceramics can be extended to produce a range of bone substitute materials with properties tailored to specific clinical applications


The Bone & Joint Journal
Vol. 95-B, Issue 5 | Pages 583 - 597
1 May 2013
Kurien T Pearson RG Scammell BE

We reviewed 59 bone graft substitutes marketed by 17 companies currently available for implantation in the United Kingdom, with the aim of assessing the peer-reviewed literature to facilitate informed decision-making regarding their use in clinical practice. After critical analysis of the literature, only 22 products (37%) had any clinical data. Norian SRS (Synthes), Vitoss (Orthovita), Cortoss (Orthovita) and Alpha-BSM (Etex) had Level I evidence. We question the need for so many different products, especially with limited published clinical evidence for their efficacy, and conclude that there is a considerable need for further prospective randomised trials to facilitate informed decision-making with regard to the use of current and future bone graft substitutes in clinical practice.

Cite this article: Bone Joint J 2013;95-B:583–97.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 110 - 110
2 Jan 2024
Kucko N Crowley J Wills D Wang T Pelletier M Yuan H Houtzager G Campion C Walsh W de Bruijn J Groot FB
Full Access

Biphasic calcium phosphate (BCP) with a characteristic needle-shaped submicron surface topography (MagnetOs) has attracted much attention due to its unique bone-forming ability which is essential for repairing critical-size bone defects such as those found in the posterolateral spine. Previous in vitro and ex-vivo data performed by van Dijk LA and Yuan H demonstrated that these specific surface characteristics drive a favorable response from the innate immune system. This study aimed to evaluate and compare the in vivo performance of three commercially-available synthetic bone grafts, (1) i-FACTOR Putty. ®. , (2) OssDsign. ®. Catalyst Putty and (3) FIBERGRAFT. ®. BG Matrix, with that of a novel synthetic bone graft in a clinically-relevant instrumented sheep posterolateral lumbar spine fusion (PLF) model. The novel synthetic bone graft comprised of BCP granules with a needle-shaped submicron surface topography (MagnetOs) embedded in a highly porous and fibrillar collagen matrix (MagnetOs Flex Matrix). Four synthetic bone grafts were implanted as standalone in an instrumented sheep PLF model for 12 weeks (n=3 bilateral levels per group; levels L2/3 & L4/5), after which spinal fusion was determined by manual palpation, radiograph and µCT imaging (based on the Lenke scale), range-of-motion mechanical testing, and histological and histomorphological evaluation. Radiographic fusion assessment determined bilateral robust bone bridging (Lenke scale A) in 3/3 levels for MagnetOs Flex Matrix compared to 1/3 for all other groups. For µCT, bilateral fusion (Lenke scale A) was found in 2/3 levels for MagnetOs Flex Matrix, compared to 0/3 for i-FACTOR Putty. ®. , 1/3 for OssDsign. ®. Catalyst Putty and 0/3 for FIBERGRAFT. ®. BG Matrix. Fusion assessment for MagnetOs Flex Matrix was further substantiated by histology which revealed significant graft resorption complemented by abundant bone tissue and continuous bony bridging between vertebral transverse processes resulting in bilateral spinal fusion in 3/3 implants. These results show that MagnetOs Flex Matrix achieved better fusion rates compared to three commercially-available synthetic bone grafts when used as a standalone in a clinically-relevant instrumented sheep PLF model


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 49 - 49
17 Apr 2023
Cooper G Kennedy M Jamal B Shields D
Full Access

Our objective was to conduct a systematic review and meta-analysis, comparing differences in clinical outcomes between either autologous or synthetic bone grafts in the operative management of tibial plateau fractures: a traumatic pattern of injury, associated with poor long-term functional prognosis. A structured search of MEDLINE, EMBASE, The Bone & Joint and CENTRAL databases from inception until 07/28/2021 was performed. Randomised, controlled, clinical trials that compared autologous and synthetic bone grafts in tibial plateau fractures were included. Preclinical studies, clinical studies in paediatric patients, pathological fractures, fracture non-union or chondral defects were excluded. Outcome data was assessed using the Risk of Bias 2 (ROB2) framework and synthesised in random-effect meta-analysis. Preferred Reported Items for Systematic Review and Meta-Analysis guidance was followed throughout. Six comparable studies involving 352 patients were identified from 3,078 records. Following ROB2 assessment, five studies (337 patients) were eligible for meta-analysis. Within these studies, more complex tibia plateau fracture patterns (Schatzker IV-VI) were predominant. Primary outcomes showed non-significant reductions in articular depression at immediate postoperative (mean difference −0.45mm, p=0.25, 95% confidence interval (95%CI): −1.21-0.31mm, I. 2. =0%) and long-term (>6 months, standard mean difference −0.56, p=0.09, 95%CI: −1.20-0.08, I. 2. =73%) follow-up in synthetic bone grafts. Secondary outcomes included mechanical alignment, limb functionality, defect site pain, occurrence of surgical site infections, secondary surgery, perioperative blood loss, and duration of surgery. Blood loss was lower (90.08ml, p<0.001, 95%CI: 41.49-138.67ml, I. 2. =0%) and surgery was shorter (16.17minutes, p=0.04, 95%CI: 0.39-31.94minutes, I. 2. =63%) in synthetic treatment groups. All other secondary measures were statistically comparable. Our findings supersede previous literature, demonstrating that synthetic bone grafts are non-inferior to autologous bone grafts, despite their perceived disadvantages (e.g. being biologically inert). In conclusion, surgeons should consider synthetic bone grafts when optimising peri-operative patient morbidity, particularly in complex tibial plateau fractures, where this work is most applicable


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 44 - 44
1 Nov 2018
Meisel HJ
Full Access

Cervical and lumbar spine fusion procedures are increasing every year. Nonetheless, these procedures are associated with high infection rates, resulting in additional cost burden. The conundrum of achieving efficient spinal fusions with minimum complications requires an ideal bone graft with osteoconductive, osteoinductive, osteogenic and structural characteristics. Synthetic bone graft substitutes with or without autograft, allograft or synthetic bone substitutes have been commonly used for fusion procedures. We carried out a meta-analysis of comparative studies and prospective case series (n = 29) with cervical and lumbar fusion procedures using synthetic bone graft substitutes, autograft or allograft and other biologics. Synthetic bone graft substitutes analysed included HA (Hydroxyapatite), β-TPC (Tri Calcium Phosphate), β-TSC (Tri Calcium Sulfate), PMMA (Polymethylmetacrylate), Surgibone, BOP (Biocompatible Osteoconductive Polymer). The analysis revealed suboptimal evidence for the efficacy and safety of synthetic products used in spinal fusion procedures. Further studies are needed to determine beneficial effects of synthetic substitutes. However, the infection rate could be highly decreased with surface and composition modification of widely used polyether ether ketone (PEEK) implants. Laser modification of surface characteristics and collagen fleeces with micro and nano pore structures can prove to be excellent surface for increased osteoblasts cell proliferation and vitality


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 25 - 25
1 Oct 2022
Casali M Rani N Cucurnia I Filanti M Coco V Reale D Zarantonello P Musiani C Zaffagnini M Romagnoli M
Full Access

Aim. Aim of this monocentric, prospective study was to evaluate the safety, efficacy, clinical and radiographical results at 24-month follow-up (N = 6 patients) undergoing hip revision surgery with severe acetabular bone defects (Paprosky 2C-3A-3B) using a combination of a novel phase-pure betatricalciumphosphate - collagen 3D matrix with allograft bone chips. Method. Prospective follow-up of 6 consecutive patients, who underwent revision surgery of the acetabular component in presence of massive bone defects between April 2018 and July 2019. Indications for revision included mechanical loosening in 4 cases and history of hip infection in 2 cases. Acetabular deficiencies were evaluated radiographically and CT and classified according to the Paprosky classification. Initial diagnosis of the patients included osteoarthritis (N = 4), a traumatic fracture and a congenital hip dislocation. 5 patients underwent first revision surgery, 1 patient underwent a second revision surgery. Results. All patients were followed-up radiographically with a mean of 25,8 months. No complications were observed direct postoperatively. HHS improved significantly from 23.9 preoperatively to 81.5 at the last follow-up. 5 patients achieved a defined good result, and one patient achieved a fair result. No periprosthetic joint infection, no dislocations, no deep vein thrombosis, no vessel damage, and no complaint about limbs length discrepancy could be observed. Postoperative dysmetria was found to be + 0.2cm (0cm/+1.0cm) compared to the preoperative dysmetria of − 2.4 cm (+0.3cm/−5.7cm). Conclusions. Although used in severe acetabular bone defects, the novel phase-pure betatricalciumphosphate - collagen 3D matrixshowed complete resorption and replacement by newly formed bone, leading to a full implant integration at 24 months follow-up and thus represents a promising method with excellent bone regeneration capacities for complex cases, where synthetic bone grafting material is used in addition to autografts


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 132 - 132
2 Jan 2024
Rau J
Full Access

Over the last decades, biodegradable metals emerged as promising materials for various biomedical implant applications, aiming to reduce the use of permanent metallic implants and, therefore, to avoid additional surgeries for implant removal. However, among the important issue to be solved is their fast corrosion - too high to match the healing rate of the bone tissue. The most effective way to improve this characteristic is to coat biodegradable metals with substituted calcium phosphates. Tricalcium phosphate (β-TCP) is a resorbable bioceramic widely used as synthetic bone graft. In order to modulate and enhance its biological performance, the substitution of Ca2+ by various metal ions, such as strontium (Sr2+), magnesium (Mg2+), iron (Fe2+) etc., can be carried out. Among them, copper (Cu2+), manganese (Mn2+), zinc (Zn2+) etc. could add antimicrobial properties against implant-related infections. Double substitutions of TCP containing couples of Cu2+/Sr2+ or Mn2+/Sr2+ ions are considered to be the most perspective based on the results of our study. We established that single phase Ca3−2x(MˊMˊˊ)x(PO4)2 solid solutions are formed only at x ≤ 0.286, where Mˊ and Mˊˊ—divalent metal ions, such as Zn2+, Mg2+, Cu2+, Mn2+, and that in case of double substitutions, the incorporation of Sr2+ ions allows one to extend the limit of solid solution due to the enlargement of the unit cell structure. We also reported that antimicrobial properties depend on the substitution ion occupation of Ca2+ crystal sites in the β-TCP structure. The combination of two different ions in the Ca5 position, on one side, and in the Ca1, Ca2, Ca3, and Ca4 positions, on another side, significantly boosts antimicrobial properties. In the present work, zinc-lithium (Zn-Li) biodegradable alloys were coated with double substituted Mn2+/Sr2+ β-TCP and double substituted Cu2+/ Sr2+ β-TCP, with the scope to promote osteoinductive effect (due to the Sr2+ presence) and to impart antimicrobial properties (thanks to Cu2+ or Mn2+ ions). The Pulsed Laser Deposition (PLD) method was applied as the coating's preparation technique. It was shown that films deposited using PLD present good adhesion strength and hardness and are characterized by a nanostructured background with random microparticles on the surface. For coatings characterization, Fourier Transform Infrared Spectroscopy, X-ray Diffraction, and Scanning Electron Microscopy coupled with Energy Dispersive X-ray and X-ray Photoelectron Spectroscopy were applied. The microbiology tests on the prepared coated Zn-Li alloys were performed with the Gram-positive (Staphylococcus aureus, Enterococcus faecalis) and Gram-negative (Salmonella typhimurium, Escherichia coli) bacteria strains and Candida albicans fungus. The antimicrobial activity tests showed that Mn2+/Sr2+ β-TCP -coated and Cu2+/Sr2+ β-TCP coated Zn-Li alloys were able to inhibit the growth of all five microorganisms. The prepared coatings are promising in improving the degradation behavior and biological properties of Zn-Li alloys, and further studies are necessary before a possible clinical translation


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 56 - 56
1 Apr 2018
Hettwer W
Full Access

Successful reconstruction of bone defects requires an adequate filling material that supports regeneration and formation of new bone within the treated defect in an optimal fashion. Currently available synthetic bone graft substitutes cannot fulfill all requirements of the highly complex biological processes involved in physiological bone healing. Due their unphysiologically asynchronous biodegradation properties, their specific foreign material-mediated side effects and complications and their relatively modest overall osteogenic potential, their overall clinical performance typically lags behind conventional bone grafts of human origin. However, defect- and pathology specific combination of synthetic bone graft substitutes exhibiting appropriate carrier properties with therapeutic agents and/or conventional bone graft materials allows creation of biologically enhanced composite constructs that can surpass the biological and therapeutic limits even of autologous bone grafts. This presentation introduces a bone defect reconstruction concept based on biological enhancement of optimal therapeutic agent-carrier composites and provides a rationale for an individual, requirement-specific adaptation of a truly patient-specific reconstruction of bone defects. It represents the pinnacle of the bone defect reconstruction pyramid, founded on the basic principles and prerequisites of complete elimination of the underlying pathology, preservation, augmentation or restoration of mechanical stability of the treated bone segment and creation of a biodegradable scaffold with adequate mechanical integrity. It summarises the current body of relevant experimental and clinical research, presents clinical case examples illustrating the various aspects of the proposed concept as well as early clinical results. The author hopes that the theoretical and conceptual framework provided, will help guide future research as well as clinical decision making with respect to this particular field


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 39 - 39
1 Apr 2018
Daldal I Şenköylü A Değim T Tamer Sİ Ömeroğlu S Akarca O Çelik HH Ocak M Uzuner MB Saygılı HH Tuğrul HO Koçkar B Eren A
Full Access

Background context. Fusion is a fundamental procedure in spine surgery. Although autogenous grafts have ideal bone graft characteristics, their use may remain limited due to various morbidities. Even though ceramic based synthetic bone grafts are used commonly at present, in order to enhance their efficacy, their combined use with other materials has been investigated. The use of carbon nanotubes (CNTs) together with synthetic bone grafts such as hydroxyapatite (HA) has contributed to positive developments in bone tissue engineering. Purpose. The aim of the present study was to investigate the effect of CNTs/ HA- tricalcium phosphate (TCP) composite prepared in posterolateral spinal fusion model. Study Design/Setting. Experimental animal study. Methods. At first, CNTs and CNTs/HA-TCP composites were prepared. Twenty adult male Spraque Dawley rats were randomized into four groups with five rats in each group. Decortication was carried out in standard manner in all animals. Group 1 (only decortication), group 2 (CNTs), group 3 (HA-TCP) and group 4 (CNTs/HA-TCP) were formed. Eight weeks later all animals were sacrificed and obtained fusion segments were evaluated by manual palpation, histomorphometry and micro computed tomography (mCT). Results. In all evaluations, highest fusion values were obtained in Group 4. In mCT investigations, bone volume/ tissue volume (BV/TV) ratio was found to be significantly higher in composite group (group 4) only compared to ceramic group (group 3). Although in Group 2, in which only CNTs were used, the ratio was found to be significantly higher than group 1, the difference was not considered significant in terms of fusion and in addition in group 2, CNTs were completely surrounded by fibrous tissue, i.e. no bone formation was observed. Conclusions. The combined use of carbon nanotubes with ceramic based bone grafts enhances spinal fusion markedly. Although CNTs are inadequate in producing spinal fusion when they are used by themselves, due to especially their high biocompatibillity and unique bicomechanic characteristics compatible with bone tissue, they increase fusion rates significantly, particularly together with ceramic based synthetic grafts. Keywords. Spinal fusion; Rat; Carbon nanotube(s); Ceramic(s); Bone graft subsitutes; Hydroxyapatite


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 8 - 8
22 Nov 2024
Arts C
Full Access

Introduction. Various biomaterials and bone graft substitute technologies for use in osteomyelitis treatment are currently used in clinal practice. They vary in mode of action (with or without antibiotics) and clinical application (one-stage or two-stage surgery). This systematic review aims to compare the clinical evidence of different synthetic antimicrobial bone graft substitutes and antibiotic-loaded carriers in eradicating infection and clinical outcome in patients with chronic osteomyelitis. Methods. Systematic review according to PRISMA statement on publications 2002-2023. MESH terms: osteomyelitis and bone substitutes. FREE terms: chronic osteomyelitis, bone infection. A standardized data extraction form was be used to extract data from the included papers. Results. Publications with increased methodological quality and clinical evidence for biomaterials in osteomyelitis treatment were published in the last decades. High 85-95% eradication rates of osteomyelitis were observed for various resorbable Ca-P and/or Ca-S biomaterials combined with antibiotics and S53P4 bioactive glass. Level of evidence varies significantly between products. Antibiotic pharmacokinetic release profiles vary between resorbable Ca-P and/or Ca-S biomaterials. Conclusion. Given the high 85-95% eradication rates of osteomyelitis by various resorbable Ca-P and/or Ca-S biomaterials combined with antibiotics and S53P4 bioactive glass, one-stage treatment is preferred. Surgeons should be aware of variations in mechanical properties and antibiotic pharmacokinetic release profiles between Ca-P and CA-s products. Mechanical, biological and antimicrobial properties of bioactive glass are formulation dependent. Currently, only S53P4 bioactive glass has proven antimicrobial properties. Based on this systematic review antibiotic loaded fleeces should be used with caution and restraint


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 163 - 163
1 Mar 2013
Devadasan B Hafiz A Harichandra D
Full Access

Introduction. Core decompression is used in precollapse lesions to forestall disease progression in avascular necrosis (AVN) of femoral head (FH). The author reports a new technique using reverse bone graft technique to effectuate core decompression. Aim. To prevent precollapse in Ficat Type 1&2 and revascularization using synthetic bone graft material. Methods. A 18 year female police trainee with Magnetic Resonance Imaging (MRI) confirming AVN Stage 2 Ficat, clinically painful hip not evident in x-rays consented to undergo this new technique. Reverse bone graft technique with a Coring reamer – Patent 5423823. A minimally invasive technique with lateral 2 cm incision introducing 8.5 mm core reamer to remove a core of bone up to the subchondral bone. The subchondral cyst decompressed and curetted under video recorded Image Intensifier (II). Demarcated avascular bone segment excised and bone graft reversed and inserted with cortical bone acting as a support to prevent collapse and the distal segment augmented using 5 grams of osteoconductive granular synthetic bone graft material based on calcium phosphate hydroxyapatite (HA 2500–5000 μm). Avascular segment histopathologically confirmed AVN. The metaphyseal entry was extrapoliated at the lateral cortex using the combined necrotic angle described by Kerboul in the anteroposterior and lateral views under II. Protected weight bearing for 2 months to prevent stress riser. Biomaterials. HA granules named as GranuMas™ developed under Intensified Research in Priority Areas (IRPA) Research Project (No. 03-01-03-0000-PR0026/05) and invented by the Advance Materials Research Centre (AMREC) and manufactured by GranuLab –Patent P1 20040748 fulfilling the criteria for American Society for Testing and Materials (ASTM) F1185-88(1993) Standards which is ‘Standard Specification for Composition of Ceramic Hydroxyapatite for Surgical Implants’. Derived from Malaysian limestone, ranging from 200–5000 μm gamma sterilized. Results. After 6 months, there was no collapse of subchondral bone and the FH showed revascularization along bone grafted site with viable graft and increased radiotracer activity using 99-Tc MDP Bone Planar Scintigraphy. Clinical analysis follow up at 2 years was descriptive rather than statistical with a x-ray evident incorporated graft and with pain free full range of movement. Discussion. Reduction in intraosseous pressure is achieved by using large bore 8.5 mm coupled with HA granules promoting revascularization. The core tract entering through the metaphyseal region reduces risk of subtrochanteric fracture a potential complication of vascularized fibular grafts and with less morbidity with other treatment methods for osteonecrosis of the femoral head. The concept can be extended in introducing stem cell and biologic material to treat AVN. Conclusion. This technique is minimally invasive and effective in young patients with early stage of FH AVN and has shown revascularization along the bone grafted site


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 5 | Pages 617 - 623
1 May 2010
McNamara I Deshpande S Porteous M

The clinical and radiological results of 50 consecutive acetabular reconstructions in 48 patients using impaction grafting have been retrospectively reviewed. A 1:1 mixture of frozen, ground irradiated bone graft and Apapore 60, a synthetic bone graft substitute, was used in all cases. There were 13 complex primary and 37 revision procedures with a mean follow-up of five years (3.4 to 7.6). The clinical survival rate was 100%, with improvements in the mean Harris Hip Scores for pain and function. Radiologically, 30 acetabular grafts showed evidence of incorporation, ten had radiolucent lines and two acetabular components migrated initially before stabilising. Acetabular reconstruction in both primary and revision surgery using a 1:1 mixture of frozen, ground, irriadiated bone and Apapore 60 appears to be a reliable method of managing acetabular defects. Longer follow-up will be required to establish whether this technique is as effective as using fresh-frozen allograft


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_17 | Pages 52 - 52
1 Dec 2018
Ferguson J Athanasou N McNally M
Full Access

Aim. This study describes the histologic changes seen with a gentamicin-eluting synthetic bone graft substitute (BGS)(1) in managing bone defects after resection of chronic osteomyelitis (cOM). Method. 154 patients with mean follow-up of 21.8 months (12–56) underwent treatment of cOM with an antibiotic-loaded BGS for defect filling. Nine patients had subsequent surgery, not related to infection recurrence, allowing biopsy of the implanted material. These biopsies were harvested between 19 days and two years after implantation, allowing a description of the material's remodelling over time. Samples were fixed in formalin and stained with haematoxylin-eosin. Immunohistochemistry, using an indirect immunoperoxidase technique, identified the osteocyte markers Dentine Matrix Protein-1 (DMP-1) and Podoplanin, the macrophage/osteoclast marker CD68, and the macrophage marker CD14. Results. The material was actively remodelled and was osteoconductive. There was evidence of osteoblast recruitment, leading to osteoid and intramembranous formation of woven and lamellar bone on the material's surface, seen most prominently in areas of well-vascularised fibrous tissue. Osteocytes in woven bone expressed the markers DMP-1 and Podoplanin. No cartilage or endochondral ossification was seen. There was a prominent (CD14+/ CD68+) macrophage response to the BSG and macrophages within reparative cellular and collagenous fibrous tissue. In biopsies taken between 4 and 5 months, there were bone trabeculae containing BGS of mainly woven but partly lamellar type. Giant cells on the surface of newly formed mineralised osteoid and woven bone expressed an osteoclast phenotype (CD68+/CD14-). In later biopsies (up to 2 years), larger bone trabeculae were seen more frequently within well-vascularised reparative fibrous tissue. The BGS was replaced with predominantly lamellar bone. One biopsy was taken from an extraosseous leak of BGS into the soft tissues, behind the distal tibia. The histology showed a heavy macrophage infiltrate, but notably no evidence of osteoid or bone formation in the material or surrounding soft tissues. Conclusion. There was clear evidence that this BGS is osteoconductive with first osteoid then woven and lamellar bone being formed. DMP-1 and podoplanin-expressing osteocytes present in woven and lamellar bone demonstrate osteoclastic bone remodelling. Increased lamellar bone was noted in later samples and bone formation was most prominent in well-vascularised areas. There was on-going remodelling of the material beyond one year. The BGS did not ossify in soft tissue. The hydroxyapatite scaffold in this material is probably responsible for its high osteoconductivity and potential to be transformed into bone


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_16 | Pages 92 - 92
1 Dec 2015
Jensen C Hettwer W Horstmann P Petersen M
Full Access

To report our experience with the use of local antibiotic co-delivery with a synthetic bone graft substitute during a second stage re-implantation of an infected proximal humeral replacement. A 72 year old man was admitted to our department with a pathological fracture through an osteolytic lesion in the left proximal humerus, due to IgG Myelomatosis. He was initially treated with a cemented proximal humerus replacement hemiarthroplasty. Peri-prosthetic joint infection (PJI) with significant joint distention was evident three weeks post operatively. Revision surgery confirmed presence of a large collection of pus and revealed disruption of the soft tissue reattachment tube, as well as complete retraction of rotator cuff and residual capsule. All modular components were removed and an antibiotic-laden cement spacer (1.8g of Clindamycin and Gentamycin, respectively) was implanted onto the well-fixed cemented humeral stem. Initial treatment with i.v. Amoxicillin/Clavulanic acid was changed to Rifampicin and Fusidic Acid during a further 8 weeks after cultures revealed growth of S. epidermidis. During second stage revision, a hybrid inverse prosthesis with silver coating was implanted, with a total of 20 ml Cerament ™G (injected into the glenoid cavity prior to insertion of the base plate and around the humeral implant-bone interface) and again stabilized with a Trevira tube. Unfortunately, this prosthesis remained unstable, ultimately requiring re-revision to a completely new constrained reverse prosthesis with a custom glenoid shell and silver-coated proximal humeral component. 18 months postoperatively, the patient's shoulder remains pain free and stable, without signs of persistent or reinfection since the initial second stage revision. The function however, unfortunately remains poor. This case report illustrates the application of an antibiotic-eluting bone graft substitute in a specific clinical situation, where co-delivery of an antibiotic together with a bone remodeling agent may be beneficial to simultaneously address PJI as well as poor residual bone quality