Advertisement for orthosearch.org.uk
Results 1 - 20 of 839
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 146 - 146
11 Apr 2023
Sneddon F Fritsch N Skipsey D Mackenzie S Rankin I
Full Access

The Royal College of Surgeons of England (RCS) Good Surgical Practice guidance identifies essential criteria for surgical operation note documentation. The current quality improvement project aims to identify if using pre-templated operation notes for documenting fractured neck of femur surgery results in improved documentation when compared to free hand orthopaedic operation notes. A total of fourteen categories were identified from the RCS guidance as required across all the operations identified in this study. All operations for the month of October 2021 were identified and the operation notes analysed. Pre-templated operation notes were compared to free hand operation notes. 97 cases were identified, of which 74 were free hand operation notes and 23 were pre-templated fractured neck of femur operation notes. All fourteen categories were completed in 13 (57%) of the templated operation notes vs 0 (0%) in the free hand operation notes (odds ratio 0.0052, 95% CI 0.0003 to 0.0945, p < 0.001). The median total number of completed categories was significantly higher in the templated op-note group compared to the free hand op-note group (templated median 14, range 12-14, vs. free hand median 11, range 9 to 13, p < 0.001). Logistic regression analysis of operation notes written by Registrars or Consultants identified Registrars as more likely to document the antibiotic prophylaxis given (p = 0.025). Use of pre-templated operation notes results in significantly improved documentation. Adoption of generic pre-templated operation notes to improve surgical documentation should be considered across all operations


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 65 - 65
1 Dec 2021
Addai D Zarkos J Pettit M Kumar KHS Khanduja V
Full Access

Abstract. Objectives. Outcomes following different types of surgical intervention for FAI are well reported individually but comparative data is deficient. The purpose of this study was to conduct a systematic review (SR) and meta-analysis to analyse the outcomes following surgical management of FAI by hip arthroscopy (HA), anterior mini open approach (AMO) and surgical hip dislocation (SHD). Methods. This SR was registered with PROSPERO. An electronic database search of Pubmed, Medline and EMBASE for English and German language articles over the last 20 years was carried out according to the PRISMA guidelines. We specifically analysed and compared changes in patient reported outcome measures PROMs, α-angle, rate of complications, rate of revision and conversion to total hip arthroplasty (THA). Results. A total of 48 articles included for final analysis with a total of 4384 hips in 4094 patients. All subgroups showed a significant correction in mean alpha angle post-operatively with a mean change of 28.8° (95% CI, 21°-36.5°; p <0.01) after AMO, 21.1° (95% CI, 15.1°-27°; p <0.01) after SHD and 20.39° (95% CI, 15.66°-25.12°; p <0.01) after HA. AMO group showed a significantly higher increase in PROMs (3.7; 95% CI, 3.2–4.2; p <0.01) versus arthroscopy (2.47; 95% CI, 2.22–2.73; p <0.01) and SHD (2.4; 95% CI, 1.5–3.3; p <0.01). However, the rate of complications following AMO was significantly higher than HA and SHD. Conclusion. All three surgical approaches offered significant improvements in outcomes and radiological correction of cam deformities. All three groups showed similar rates of revision procedures and SHD had the highest rate of conversion to a THA. Revision rates was similar for all three revision procedures


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 54 - 54
17 Nov 2023
Bishop M Zaffagnini S Grassi A Fabbro GD Smyrl G Roberts S MacLeod A
Full Access

Abstract. Background. Distal femoral osteotomy is an established successful procedure which can delay the progression of arthritis and the need for knee arthroplasty. The surgery, however, is complex and lengthy and consequently it is generally the preserve of highly experienced specialists and thus not widely offered. Patient specific instrumentation is known to reduce procedural complexity, time, and surgeons’ anxiety levels. 1. in proximal tibial osteotomy procedures. This study evaluated a novel patient specific distal femoral osteotomy procedure (Orthoscape, Bath, UK) which aimed to use custom-made implants and instrumentation to provide a precision correction while also simplifying the procedure so that more surgeons would be comfortable offering the procedure. Presenting problem. Three patients (n=3) with early-stage knee arthritis presented with valgus malalignment, the source of which was predominantly located within the distal femur, rather than intraarticular. Using conventional techniques and instrumentation, distal femoral knee osteotomy cases typically require 1.5–2 hours surgery time. The use of bi-planar osteotomy cuts have been shown to improve intraoperative stability as well as bone healing times. 2. This normally also increases surgical complexity; however, multiple cutting slots can be easily incorporated into patient specific instrumentation. Clinical management. All three cases were treated at a high-volume tertiary referral centre (Istituto Ortopedico Rizzoli, Bologna) using medial closing wedge distal femoral knee osteotomies by a team experienced in using patient specific osteotomy systems. 3. Virtual surgical planning was conducted using CT-scans and long-leg weight-bearing x-rays (Orthoscape, Bath, UK). Patient specific surgical guides and custom-made locking plates were design for each case. The guides were designed to allow temporary positioning, drilling and bi-planar saw-cutting. The drills were positioned such that the drills above and below the osteotomy became parallel on closing following osteotomy wedge removal. This gave reassurance of the achieved correction allowed the plate to be located precisely over the drills. All screw lengths were pre-measured. Discussion. The surgical time reduced to approximately 30 minutes by the third procedure. It was evident that surgical time was saved because no intraoperative screw length measurements were required, relatively few x-rays were used to confirm the position of the surgical guide, and the use of custom instrumentation significantly reduced the surgical inventory. The reduced invasiveness and ease of surgery may contribute to faster patient recovery compared to conventional techniques. The final post-operative alignment was within 1° of the planned alignment in all cases. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 85 - 85
2 Jan 2024
Zwingenberger S
Full Access

Spinal diseases such as unstable fractures, infections, primary or secondary tumors or deformities require surgical stabilization with implants. The long-term success of this treatment is only ensured by a solid bony fusion. The size of the bony defect, the often poor bone quality and metabolic diseases increase the risk of non-union and make the case a great burden for the patient and a challenge for the surgeon. The goal of spinal fusion can only be achieved if the implants used offer sufficient mechanical stability and the local biological regeneration potential is large enough to form sufficient bone. The lecture will present challenging clinical cases. In addition, implant materials and new surgical techniques are discussed. Local therapeutic effects are achieved through the release of osteopromotive or anti-resorbtive drugs, growth factors and antibiotics. By influencing biological pathways, basic orthopedic research has strong potential to further positively change future spinal surgery


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 17 - 17
4 Apr 2023
Queen R Arena S
Full Access

Arthritis is a common and debilitating disease and is associated with an increased fall risk. The purpose of this study was to examine the effect of impacted joint and limb on fall risk as measured by the margin of stability (MOS). There were 110 participants, including healthy controls (HC; n=30), ankle arthritis (AA; n=30), knee arthritis (KA; n=20) and hip arthritis (HA; n=30) patients. All protocols were Institutional Review Board approved and all participants signed informed consent. Participants walked approximately 6 meters at a self-selected pace. MOS was calculated in the foot coordinate system in the anterior/posterior (AP) and medial/lateral (ML) directions at heel strike. A one-way ANOVA was used to examine group effects (HC, AA, KA, HA) on gait speed. A two-way repeated measures ANOVA was used to examine the effects of limb (Non-Surgical, Surgical) and group on AP and ML MOS. HC had the fastest gait speed (1.40±0.24 m/s; p<0.001) when compared to AA (0.85±0.24 m/s), KA (0.94±0.22 m/s) and HA (1.05±0.22 m/s). HA participants had a greater gait speed compared to AA (p=0.004). AP MOS was greater in the surgical limb compared to the non-surgical limb for AA (p<0.001) and HA (p<0.001). AP MOS was smaller in HC compared to AA, KA, and HA, regardless of limb (p<0.030). AP MOS was similar between AA, KA, and HA for the non-surgical limb (p>0.194) and the surgical limb (p>0.096). ML MOS was greater in the surgical compared to non-surgical limb (p=0.003). ML MOS was smaller in KA participants compared to all other groups (p<0.001). Our results demonstrate stability during gait varies between limbs in arthritis patients, with a more conservative pattern for the surgical limb and suggest KA may be at an increased risk of falls with a smaller ML MOS


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 1 - 1
11 Apr 2023
Mischler D Knecht M Varga P
Full Access

Surgical education of fracture fixation biomechanics relies mainly on simplified illustrations to distill the essence of the underlying principles. These mostly consist of textbook drawings or hands-on exercises during courses, both with unique advantages such as broad availability and haptics, respectively. Computer simulations are suited to bridge these two approaches; however, the validity of such simulations must be guaranteed to teach the correct aspects. Therefore, the aim of this study was to validate finite element (FE) simulations of bone-plate constructs to be used in surgical education in terms of fracture gap movement and implant surface strain. The validation procedure was conducted in a systematic and hierarchical manner with increasing complexity. First, the material properties of the isolated implant components were determined via four-point bending of the plate and three-point bending of the screw. Second, stiffness of the screw-plate interface was evaluated by means of cantilever bending to determine the properties of the locking mechanism. Third, implant surface strain and fracture gap motion were measured by testing various configurations of entire fixation constructs on artificial bone (Canevasit) in axial compression. The determined properties of the materials and interfaces assessed in these experiments were then implemented into FE models of entire fixation constructs with different fracture width and screw configurations. The FE-predicted implant surface strains and fracture gap motions were compared with the experimental results. The simulated results of the different construct configurations correlated strongly with the experimentally measured fracture gap motions (R. 2. >0.99) and plate surface strains (R. 2. >0.95). In a systematic approach, FE model validation was achieved successfully in terms of fracture gap motion and implant deformation, confirming trustworthiness for surgical education. These validated models are used in a novel online education tool OSapp (. https://osapp.ch/. ) to illustrate and explain the biomechanical principles of fracture fixations in an interactive manner


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 138 - 138
11 Apr 2023
Cheon S Suh D Moon J Park J
Full Access

Surgical debridement for medial epicondylitis (ME) is indicated for patients with refractory ME. The clinical efficacy of simple debridement has not been studied sufficiently. Moreover, authors experienced surgical outcome of ME was not as good as lateral epicondylitis. In this regard, authors have combined the atelocollagen injection in the debridement surgery of ME. The purpose of study was to compare clinical outcomes between simple debridement and debridement combined with atelocollagen injection in the ME. Twenty-five patients with refractory ME and underwent surgical debridement were included in the study. Group A (n=13) was treated with isolated debridement surgery, and group B (n=12) was treated with debridement combined with 1.0 mL of type I atelocollagen. Pain and functional improvements were assessed using visual analogue scale, Mayo Elbow Performance Score (MEPS) and quick Disabilities of the Arm, Shoulder and Hand (DASH) scale respectively before surgery, at 3, 6 months after surgery and at the final follow-up. Demographic data did not show significant difference between two groups before surgical procedures. Both groups showed improvement in pain and functional score postoperatively. However, at the 3 months after surgery, group B showed significantly better improvement as compared to group A(VAS 3.1 / 2.0, MEPS 71/82 qDASH 29/23). At the 6 months after surgery and final follow-up, both groups did not show any difference. Surgical debridement combined with atelocollagen is effective treatment option in refractory ME and showed better short-term outcomes compared to isolated surgery


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 86 - 86
4 Apr 2023
Joumah A Al-Ashqar M Richardson G Bakhshayesh P Kanakaris N
Full Access

The aim of this study was to assess the impact of Covid-19 measures on the rate of surgical site infections (SSI) and subsequent readmissions in orthopaedic patients. Retrospective, observational study in a level 1 major trauma center comparing rates of SSI in orthopaedic patients who underwent surgery prior to the Covid-19 lockdown versus that of patients who underwent surgery during the lockdown period. A total of 1151 patients were identified using electronic clinical records over two different time periods; 3 months pre Covid-19 lockdown (n=680) and 3 months during the Covid-19 lockdown (n=470). Patients were followed up for 1 year following their initial procedure. Primary outcome was readmission for SSI. Secondary outcomes were treatment received and requirement for further surgeries. The most commonly performed procedures were arthroplasty and manipulation under anaesthesia with 119 in lockdown vs 101 non-lockdown (p=0.001). The readmission rate was higher in the lockdown group with 61 (13%) vs 44 (6.5%) in the non-lockdown group (p <0.001). However, the majority were due to other surgical complications such as dislocations. Interestingly, the SSI rates were very similar with 24 (5%) in lockdown vs 28 (4%) in non-lockdown (p=0.472). Twenty patients (4.2%) required a secondary procedure for their SSI in the lockdown group vs 24 (3.5%) in non-lockdown (p=0.381). Mortality rate was similar at 44 (9.3%) in lockdown vs 61 (9.0%; p=0.836). Whilst Covid-19 precautions were associated with higher readmission rates, there was no significant difference in rate of SSI between the two groups


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 93 - 93
4 Apr 2023
Mehta S Goel A Mahajan U Kumar P
Full Access

C. Difficile infections in elderly patients with hip fractures is associated with high morbidity and mortality. Antibiotic regimens with penicillin and its derivatives is a leading cause. Antibiotic prophylactic preferences vary across different hospitals within NHS. We compared two antibiotic prophylactic regimens - Cefuroxime only prophylaxis and Teicoplanin with Gentamicin prophylaxis in fracture neck of femur surgery, and evaluated the incidence of C. Difficile diarrhea and Surgical Site Infection (SSI). To assess the Surgical Site Infection and C. Difficile infection rate associated with different regimens of antibiotics prophylaxis in fracture neck of femur surgery. Data was analyzed retrospectively. Neck of femur fracture patients treated surgically from 2009 in our unit were included. Age, gender, co morbidities, type of fracture, operation, ASA grade was collected. 1242 patients received Cefuroxime only prophylaxis between January 2009 and December 2012 (Group 1) and 486 patients received Teicoplanin with Gentamicin between October 2015 and March 2017 (Group 2). There were 353 males and 889 female patients in Group 1 and 138 males and 348 female patients in Group 2. The co morbidities in both groups were comparable. Incidence of C. Difficile diarrhea and Surgical Site Infection (SSI) was noted. Statistical analysis with chi square test was performed to determine the ‘p’ value. C. Diff diarrhea rate in Group 2 was 0.41 % as compared to 1.29 % in Group 1. The Surgical Site Infection (SSI) rate in Group 2 was 0.41 % as compared to 3.06 % in Group 1. The comparative results were statistically significant (p = 0.0009). Prophylactic antibiotic regimen of Teicoplanin with Gentamicin showed significant reduction in C. Difficile diarrhea & Surgical Site Infection in fracture neck of femur patients undergoing surgery


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 39 - 39
2 Jan 2024
Pastor T Cattaneo E Pastor T Gueorguiev B Windolf M Buschbaum J
Full Access

Freehand distal interlocking of intramedullary nails remains a challenging task. If not performed correctly it can be a time consuming and radiation expensive procedure. Recently, the AO Research Institute developed a new training device for Digitally Enhanced Hands-on Surgical Training (DEHST) that features practical skills training augmented with digital technologies, potentially improving surgical skills needed for distal interlocking. Aim of the study: To evaluate weather training with DEHST enhances the performance of novices without surgical experience in free-hand distal nail interlocking compared to a non-trained group of novices. 20 novices were assigned in two groups and performed distal interlocking of a tibia nail in an artificial bone model. Group 1: DEHST trained novices (virtual locking of five nail holes during one hour of training). Group 2: untrained novices without DEHST training. Time, number of x-rays, nail hole roundness, critical events and success rates were compared between the groups. Time to complete the task (sec.) and x-ray exposure (µGcm2) were significantly lower in Group1 414.7 (290–615) and 17.8 (9.8–26.4) compared to Group2 623.4 (339–1215) and 32.6 (16.1–55.3); p=0.041 and 0.003. Perfect circle roundness (%) was 95.0 (91.1–98.0) in Group 1 and 80.8 (70.1–88.9) in Group 2; p<0.001. In Group 1 90% of the participants achieved successful completion of the task (hit the nail with the drill), whereas only 60% of the participants in group 2 achieved this; p=0.121. Training with DEHST significantly enhances the performance of novices without surgical experience in distal interlocking of intramedullary nails. Besides radiation exposure and operation time the com-plication rate during the operation can be significantly reduced


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 143 - 143
4 Apr 2023
Kröger I Pätzold R Brand A Wackerle H Klöpfer-Krämer I Augat P
Full Access

Tibial shaft fractures require surgical stabilization preferably by intramedullary nailing. However, patients often report functional limitations even years after the injury. This study investigates the influence of the surgical approach (transpatellar vs. parapatellar) on gait performance and patient reported outcome six months after surgery. Twenty-two patients with tibial shaft fractures treated by intramedullary nailing through a transpatellar approach (TP: n=15, age 41±15, BMI 24±3) or a parapatellar approach (PP: n=7, age 34±15, BMI 23±2) and healthy, matched controls (n=22, age 39±13, BMI 24±2) were assessed by instrumented motion analysis six months after intramedullary nailing. Short musculoskeletal function assessment questionnaire (SMFA) as well as kinematic and kinetic gait data were collected during level walking. Comparisons among approach methods and control group were performed by analysis of variance and Mann-Whitney test. Six months after surgery, knee kinetics in both groups differed significantly compared to controls (p <.04). The approach method affected gait speed (TP: p = .002; PP: p = .08) and knee kinematics in the early stance phase (TP: p = .011; PP: p = .082), with the parapatellar approach showing a more favorable outcome. However, the difference between patient groups was not significant for any of the assessed gait parameters (p > .2). Also, no differences could be found in the bother index (BI) or function index (FI) of SMFA between surgical approach methods (BI: TP: Mdn = 7.2, PP: Mdn = 9.4; FI: TP: Mdn = 10.3, PP: Mdn = 9.2, p > .7). Our study demonstrates, that six months after surgery for tibial shaft fractures functional limitations remain. These limitations appear not to be different for either a trans- or a parapatellar approach for the insertion of the intramedullary nail. The findings of this study are limited by the relatively short follow up time period and small number of patients. Future studies should investigate the source of the functional limitation after intramedullary nailing of tibial shaft fractures


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 24 - 24
1 Dec 2022
Trisolino G Frizziero L Santi GM Alessandri G Liverani A Menozzi GC Depaoli A Martinelli D Di Gennaro GL Vivarelli L Dallari D
Full Access

Paediatric musculoskeletal (MSK) disorders often produce severe limb deformities, that may require surgical correction. This may be challenging, especially in case of multiplanar, multifocal and/or multilevel deformities. The increasing implementation of novel technologies, such as virtual surgical planning (VSP), computer aided surgical simulation (CASS) and 3D-printing is rapidly gaining traction for a range of surgical applications in paediatric orthopaedics, allowing for extreme personalization and accuracy of the correction, by also reducing operative times and complications. However, prompt availability and accessible costs of this technology remain a concern. Here, we report our experience using an in-hospital low-cost desk workstation for VSP and rapid prototyping in the field of paediatric orthopaedic surgery. From April 2018 to September 2022 20 children presenting with congenital or post-traumatic deformities of the limbs requiring corrective osteotomies were included in the study. A conversion procedure was applied to transform the CT scan into a 3D model. The surgery was planned using the 3D generated model. The simulation consisted of a virtual process of correction of the alignment, rotation, lengthening of the bones and choosing the level, shape and direction of the osteotomies. We also simulated and calculated the size and position of hardware and customized massive allografts that were shaped in clean room at the hospital bone bank. Sterilizable 3D models and PSI were printed in high-temperature poly-lactic acid (HTPLA), using a low-cost 3D-printer. Twenty-three operations in twenty patients were performed by using VSP and CASS. The sites of correction were: leg (9 cases) hip (5 cases) elbow/forearm (5 cases) foot (5 cases) The 3D printed sterilizable models were used in 21 cases while HTPLA-PSI were used in five cases. customized massive bone allografts were implanted in 4 cases. No complications related to the use of 3D printed models or cutting guides within the surgical field were observed. Post-operative good or excellent radiographic correction was achieved in 21 cases. In conclusion, the application of VSP, CASS and 3D-printing technology can improve the surgical correction of complex limb deformities in children, helping the surgeon to identify the correct landmarks for the osteotomy, to achieve the desired degree of correction, accurately modelling and positioning hardware and bone grafts when required. The implementation of in-hospital low-cost desk workstations for VSP, CASS and 3D-Printing is an effective and cost-advantageous solution for facilitating the use of these technologies in daily clinical and surgical practice


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 90 - 90
4 Apr 2023
Sharma M Khanal P Patel N Patel A
Full Access

To investigate the utility of virtual reality (VR) simulators in improving surgical proficiency in Orthopaedic trainees for complex procedures and techniques. Fifteen specialty surgeons attending a London Orthopaedic training course were randomised to either the VR (n = 7) or control group (n = 8). All participants were provided a study pack comprising an application manual and instructional video for the Trochanteric Femoral Nail Advanced (TFNA) procedure. The VR group underwent additional training for TFNA using the DePuy Synthes (Johnson and Johnson) VR simulator. All surgeons were then observed applying the TFNA in a Sawbones model and assessed by a blinded senior consultant using three metrics: time to completion, 22-item procedure checklist and 5-point global assessment scale. Participant demographics for the VR and control groups were similar in context of age (mean [SD]: VR group, 31.0 [2.38] years; control group, 30.6 [2.39] years), gender (VR group, 5 [71%] men; control group, 8 [100%] men) and prior experience with TFNA (had applied TFNA as primary surgeon: VR group, 6 [86%]; control group, 7 [88%]). Although statistical significance was not reached, the VR group, on average, outperformed the control group on all three metrics. They completed the TFNA procedure faster (mean [SD]: 18.2 [2.16] minutes versus 19.78 [1.32] minutes; p<0.189), performed a greater percentage of steps correctly (79% versus 66%; p<0.189) and scored a higher percentage on the global assessment scale (75% versus 65%; p<0.232). VR simulators offer a safe and accessible means for Orthopaedic trainees to prepare for and supplement their theatre-based experience. It is vital, therefore, to review and validate novel simulation-based systems and in turn facilitate their improvement. We intend to increase our sample size and expand this preliminary study through a second upcoming surgical course for Orthopaedic trainees in London


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 78 - 78
2 Jan 2024
Ponniah H Edwards T Lex J Davidson R Al-Zubaidy M Afzal I Field R Liddle A Cobb J Logishetty K
Full Access

Anterior approach total hip arthroplasty (AA-THA) has a steep learning curve, with higher complication rates in initial cases. Proper surgical case selection during the learning curve can reduce early risk. This study aims to identify patient and radiographic factors associated with AA-THA difficulty using Machine Learning (ML). Consecutive primary AA-THA patients from two centres, operated by two expert surgeons, were enrolled (excluding patients with prior hip surgery and first 100 cases per surgeon). K- means prototype clustering – an unsupervised ML algorithm – was used with two variables - operative duration and surgical complications within 6 weeks - to cluster operations into difficult or standard groups. Radiographic measurements (neck shaft angle, offset, LCEA, inter-teardrop distance, Tonnis grade) were measured by two independent observers. These factors, alongside patient factors (BMI, age, sex, laterality) were employed in a multivariate logistic regression analysis and used for k-means clustering. Significant continuous variables were investigated for predictive accuracy using Receiver Operator Characteristics (ROC). Out of 328 THAs analyzed, 130 (40%) were classified as difficult and 198 (60%) as standard. Difficult group had a mean operative time of 106mins (range 99–116) with 2 complications, while standard group had a mean operative time of 77mins (range 69–86) with 0 complications. Decreasing inter-teardrop distance (odds ratio [OR] 0.97, 95% confidence interval [CI] 0.95–0.99, p = 0.03) and right-sided operations (OR 1.73, 95% CI 1.10–2.72, p = 0.02) were associated with operative difficulty. However, ROC analysis showed poor predictive accuracy for these factors alone, with area under the curve of 0.56. Inter-observer reliability was reported as excellent (ICC >0.7). Right-sided hips (for right-hand dominant surgeons) and decreasing inter-teardrop distance were associated with case difficulty in AA-THA. These data could guide case selection during the learning phase. A larger dataset with more complications may reveal further factors


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 63 - 63
11 Apr 2023
Pastor T Knobe M Kastner P Souleiman F Pastor T Gueorguiev B Windolf M Buschbaum J
Full Access

Freehand distal interlocking of intramedullary nails is technical demanding and prone to handling issues. It requires the surgeon to precisely place a screw through the nail under x-ray. If not performed accurately it can be a time consuming and radiation expensive procedure. The aims of this study were to assess construct and face validity of a new training device for distal interlocking of intramedullary nails. 53 participants (29 novices and 24 experts) were included. Construct validity was evaluated by comparing simulator metrics (number of x-rays, nail hole roundness, drill tip position and accuracy of the drilled hole) between experts and novices. Face validity was evaluated by means of a questionnaire concerning training potential and quality of simulated reality using a 7-point Likert scale (range 1-7). Mean realism of the training device was rated 6.3 (range 4-7) and mean training potential as well as need for distal interlocking training was rated 6.5 (range 5-7) with no significant differences between experts and novices, p≥0.236. All participants stated that the simulator is useful for procedural training of distal nail interlocking, 96% would like to have it at their institution and 98% would recommend it to their colleagues. Total number of x-rays were significantly higher for novices (20.9±6.4 vs. 15.5±5.3), p=0.003. Successful task completion (hit the virtual nail hole with the drill) was significantly higher in experts (p=0.04; novices hit: n=12; 44,4%; experts hit: n=19; 83%). The evaluated training device for distal interlocking of intramedullary nails yielded high scores in terms of training capability and realism. Furthermore, construct validity was established as it reliably discriminates between experts and novices. Participants see a high further training potential as the system may be easily adapted to other surgical task requiring screw or pin position with the help of x-rays


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 140 - 140
11 Apr 2023
Gens L Marchionatti E Steiner A Stoddart M Thompson K Mys K Zeiter S Constant C
Full Access

Autologous cancellous bone graft is the gold standard in large bone defect repair. However, studies using autologous bone grafting in rats are rare and donor sites as well as harvesting techniques vary. The aim of this study was to determine the feasibility of autologous cancellous bone graft harvest from 5 different anatomical sites in rats and compare their suitability as donor sites for autologous bone graft. 13 freshly euthanised rats were used to describe the surgical approaches for autologous bone graft harvest from the humerus, iliac crest, femur, tibia and tail vertebrae (n=4), determine the cancellous bone volume and microstructure of those five donor sites using µCT (n=5), and compare their cancellous bone collected qualitatively by looking at cell outgrowth and osteogenic differentiation using an ALP assay and Alizarin Red S staining (n=4). It was feasible to harvest cancellous bone graft from all 5 anatomical sites with the humerus and tail being more surgically challenging. The microstructural analysis showed a significantly lower bone volume fraction, bone mineral density, and trabecular thickness of the humerus and iliac crest compared to the femur, tibia, and tail vertebrae. The harvested volume did not differ between the donor sites. All donor sites apart from the femur yielded primary osteogenic cells confirmed by the presence of ALP and Alizarin Red S stain. Bone samples from the iliac crest showed the most consistent outgrowth of osteoprogenitor cells. The tibia and iliac crest may be the most favourable donor sites considering the surgical approach. However, due to the differences in microstructure of the cancellous bone and the consistency of outgrowth of osteoprogenitor cells, the donor sites may have different healing properties, that need further investigation in an in vivo study


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 5 - 5
1 Dec 2020
Ulucakoy C Atalay İB Yapar AE Ekşioğlu MF Kaptan AY Doğan M
Full Access

Purpose. Extraskeletal chondrosarcoma is a rare tumor with an indolent course and high propensity for local recurrence and metastasis. This tumor most commonly presents in the proximal extremities of middle-aged males, and is commonly asymptomatic. Although slow growing, these tumors have a significant risk of eventual relapse and metastases, especially to the lung. There are no clinical trials that investigated the best treatment options for this tumor given its very low incidence. The aim of this study is to present the surgical and clinical results of extraskeletal chondrosarcoma, which is a rare tumor. Methods. In our clinic, the information of 13 patients who were diagnosed with extra-skeletal chondrosarcoma between 2006 and 2018 were retrospectively reviewed. Demographic information, tumor size, surgical treatments, chemotherapy and radiotherapy status, follow-up times, recurrence and metastases of the patients were recorded. Results. This study included 13 patients with an average age of 53.6 ± 15 (range, 28 to 73) years diagnosed with extraskelatal chondrosarcoma. In 8 of the patients, the tumor was located in the lower limbs and it was observed that the thigh was located mostly (46.2%). The mean follow-up period of the patients was 52.8 ± 19.9 (range, 24 to 96) months. All patients underwent extensive resection and only one patient had a positive surgical margin. In the follow-up, 5 (38.5%) of the patients developed recurrence, while 6 patients had lung metastasis (46.2%) and 53.8% (7 patients) of the patients exitus. The mean tumor size was 10.4 ± 3.2 (range, 5 to 17) cm. The median survival time of the patients in the study was 61 (50.5–71.4) months. The 5-year survival rate is 51.8%. There was no significant difference between survival times according to age, gender, side, limb location, postoperative RT, recurrence and presence of lung metastasis (log rank tests p > 0.05). The cut off value for exitus obtained by ROC analysis of tumor size was determined as 11 cm (fig 1). Accordingly, the survival time of patients with 11 cm and above tumor size was observed to be statistically significantly shorter. Conclusion. Consequently, ECM is a rare soft tissue sarcoma with high local recurrence and metastasis capacity. Therefore, close follow-up is recommended. The first option should be extensive resection. Studies with large patient series on the prognostic factors of the future ECM are needed. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 49 - 49
17 Apr 2023
Cooper G Kennedy M Jamal B Shields D
Full Access

Our objective was to conduct a systematic review and meta-analysis, comparing differences in clinical outcomes between either autologous or synthetic bone grafts in the operative management of tibial plateau fractures: a traumatic pattern of injury, associated with poor long-term functional prognosis. A structured search of MEDLINE, EMBASE, The Bone & Joint and CENTRAL databases from inception until 07/28/2021 was performed. Randomised, controlled, clinical trials that compared autologous and synthetic bone grafts in tibial plateau fractures were included. Preclinical studies, clinical studies in paediatric patients, pathological fractures, fracture non-union or chondral defects were excluded. Outcome data was assessed using the Risk of Bias 2 (ROB2) framework and synthesised in random-effect meta-analysis. Preferred Reported Items for Systematic Review and Meta-Analysis guidance was followed throughout. Six comparable studies involving 352 patients were identified from 3,078 records. Following ROB2 assessment, five studies (337 patients) were eligible for meta-analysis. Within these studies, more complex tibia plateau fracture patterns (Schatzker IV-VI) were predominant. Primary outcomes showed non-significant reductions in articular depression at immediate postoperative (mean difference −0.45mm, p=0.25, 95% confidence interval (95%CI): −1.21-0.31mm, I. 2. =0%) and long-term (>6 months, standard mean difference −0.56, p=0.09, 95%CI: −1.20-0.08, I. 2. =73%) follow-up in synthetic bone grafts. Secondary outcomes included mechanical alignment, limb functionality, defect site pain, occurrence of surgical site infections, secondary surgery, perioperative blood loss, and duration of surgery. Blood loss was lower (90.08ml, p<0.001, 95%CI: 41.49-138.67ml, I. 2. =0%) and surgery was shorter (16.17minutes, p=0.04, 95%CI: 0.39-31.94minutes, I. 2. =63%) in synthetic treatment groups. All other secondary measures were statistically comparable. Our findings supersede previous literature, demonstrating that synthetic bone grafts are non-inferior to autologous bone grafts, despite their perceived disadvantages (e.g. being biologically inert). In conclusion, surgeons should consider synthetic bone grafts when optimising peri-operative patient morbidity, particularly in complex tibial plateau fractures, where this work is most applicable


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 128 - 128
1 Nov 2021
Stallone S Trisolino G Zarantonello P Ferrari D Papaleo P Napolitano F Santi GM Frizziero L Liverani A Gennaro GLD
Full Access

Introduction and Objective. Virtual Surgical Planning (VSP) is becoming an increasingly important means of improving skills acquisition, optimizing clinical outcomes, and promoting patient safety in orthopedics and traumatology. Pediatric Orthopedics (PO) often deals with the surgical treatment of congenital or acquired limbs and spine deformities during infancy. The objective is to restore function, improve aesthetics, and ensure proper residual growth of limbs and spine, using osteotomies, bone grafts, age-specific or custom-made hardware and implants. Materials and Methods. Three-dimensional (3D) digital models were generated from Computed Tomography (CT) scans, using free open-source software, and the surgery was planned and simulated starting from the 3D digital model. 3D printed sterilizable models were fabricated using a low-cost 3D printer, and animations of the operation were generated with the aim to accurately explain the operation to parents. All procedures were successfully planned using our VSP method and the 3D printed models were used during the operation, improving the understanding of the severely abnormal bony anatomy. Results. The surgery was precisely reproduced according to VSP and the deformities were successfully corrected in eight cases (3 genu varum in Blount disease, 2 coxa vara in pseudo achondroplasia, 1 SCFE, 1 missed Monteggia lesion and 1 post-traumatic forearm malunion deformity). In one case, a focal fibrocartilaginous dysplasia, the intraoperative intentional undersizing of the bone osteotomy produced an incomplete correction of a congenital forearm deformity. Conclusions. Our study describes the application of a safe, effective, user-friendly, VSP process in PO surgery. We are convinced that our study will stimulate the widespread adoption of this technological innovation in routine clinical practice for the treatment of rare congenital and post-traumatic limb deformities during childhood


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 13 - 13
11 Apr 2023
Edwards T Gupta S Soussi D Patel A Khan S Liddle A Cobb J Logishetty K
Full Access

Current evidence suggests that superior surgical team performance is linked to fewer intra-operative errors, reductions in mortality and even improved patient outcomes. Virtual reality has demonstrated excellent efficacy in training surgeons and scrub nurses individually, however its impact on training teams is currently unknown. This study aimed to assess if training together (scrub nurse and surgeon) in an innovative multiplayer virtual reality program was superior to single player training for novices learning anterior approach total hip arthroplasty (AA-THA). 40 participants (20 novice surgeons (CT1-ST3 level) and 20 novice scrub nurses) were enrolled in this study and randomised to individual or team virtual reality training. Individually-trained participants played with virtual avatar counterparts, whilst teams trained live in pairs (surgeon and scrub nurse). Both groups underwent 5 VR training sessions over 6 weeks. Subsequently, they underwent a real-life assessment in which they performed AA-THA on a high-fidelity model with real equipment in a simulated operating theatre. Teams performed together and individually-trained participants were randomly paired up with a solo player of the opposite role. Videos of the assessment were marked by two blinded expert assessors. The primary outcome was team performance as graded by the validated NOTECHs II score. Secondary outcomes were procedure time and number of technical errors from an expert pre-defined protocol. Teams outperformed individually-trained participants for non-technical skills in the real-world assessment (NOTECHS-II score 50.3 ± 6.04 vs 43.90 ± 5.90, p=0.0275). They completed the assessment 28.1% faster (31.22 minutes ±2.02 vs 43.43 ±2.71, p=0.01), and made close to half the number of technical errors when compared to the individual group (12.9 ± 8.3 vs 25.6 ± 6.1, p=0.001). Multiplayer, team training appears to lead to faster surgery with fewer technical errors and the development of superior non-technical skills