Stems improve the mechanical stability of tibial
components in total knee replacement (TKR), but come at a cost of stress
shielding along their length. Their advantages include resistance
to shear, reduced tibial lift-off and increased stability by reducing
micromotion. Longer stems may have disadvantages including stress
shielding along the length of the stem with associated reduction
in bone density and a theoretical risk of subsidence and loosening, peri-prosthetic
fracture and end-of-stem pain. These features make long stems unattractive
in the primary TKR setting, but often desirable in revision surgery
with bone loss and instability. In the revision scenario, stems
are beneficial in order to convey structural stability to the construct
and protect the reconstruction of bony defects. Cemented and uncemented
long stemmed implants have different roles depending on the nature
of the bone loss involved. This review discusses the biomechanics of the design of tibial
components and stems to inform the selection of the component and
the technique of implantation.
Bone mineral density (BMD) around the femoral component has been reported to decrease after total knee replacement (TKR) because of
Aim. The aim of this FE study was to analyse the comparative behaviour of cement and metal based augments in TKR and quantify the stresses within these different augments and underlying cancellous bone. Materials and methods. A three-dimensional FE model was constructed from a CT scan of the proximal tibia using SIMPLEWARE v3.2 image processing software. The tibial component of a TKR was implanted with either a block or wedge-shaped augment made of either metal or cement. The model was axially loaded with a force of 3600N and testing was conducted with both evenly and eccentrically distributed loads. Results. Upon loading the FE model, the von-Mises stresses in the cancellous bone underneath the augments was higher with cement based augments in comparison their metal counterparts. When evenly loaded the maximum recorded compressive stresses within the metal augments were 5 times less than the endurance limit of the material, whilst the stresses within cement augments were only half the endurance limit of the material. Upon eccentric loading compressive stresses within the cement based augments in excess of the endurance limit were recorded. Discussion. The FE model has demonstrated that cement based augments undergo greater deformation when loaded and transfer greater loads to the underlying cancellous bone thus reducing the possibility of
Loosening of components after total knee arthroplasty (TKA) can be associated with the development of radiolucent lines (RLLs). The aim of this study was to assess the rate of formation of RLLs in the cemented original design of the ATTUNE TKA and their relationship to loosening. A systematic search was undertaken using the Cochrane methodology in three online databases: MEDLINE, Embase, and CINAHL. Studies were screened against predetermined criteria, and data were extracted. Available National Joint Registries in the Network of Orthopaedic Registries of Europe were also screened. A random effects model meta-analysis was undertaken.Aims
Methods
The mean age of patients undergoing total knee arthroplasty (TKA) has reduced with time. Younger patients have increased expectations following TKA. Aseptic loosening of the tibial component is the most common cause of failure of TKA in the UK. Interest in cementless TKA has re-emerged due to its encouraging results in the younger patient population. We review a large series of tantalum trabecular metal cementless implants in patients who are at the highest risk of revision surgery. A total of 454 consecutive patients who underwent cementless TKA between August 2004 and December 2021 were reviewed. The mean follow-up was ten years. Plain radiographs were analyzed for radiolucent lines. Patients who underwent revision TKA were recorded, and the cause for revision was determined. Data from the National Joint Registry for England, Wales, Northern Island, the Isle of Man and the States of Guernsey (NJR) were compared with our series.Aims
Methods
Stemmed tibial components are frequently used in revision total knee arthroplasty (TKA). The purpose of this study was to evaluate patient satisfaction, overall pain, and diaphyseal tibial pain in patients who underwent revision TKA with cemented or uncemented stemmed tibial components. This is a retrospective cohort study involving 110 patients with revision TKA with cemented versus uncemented stemmed tibial components. Patients who underwent revision TKA with stemmed tibial components over a 15-year period at a single institution with at least two-year follow-up were assessed. Pain was evaluated through postal surveys. There were 63 patients with cemented tibial stems and 47 with uncemented stems. Radiographs and Knee Society Scores were used to evaluate for objective findings associated with pain or patient dissatisfaction. Postal surveys were analyzed using Fisher’s exact test and the independent-samples Aims
Methods
The main objective of this study is to analyze the penetration of bone cement in four different full cementation techniques of the tibial tray. In order to determine the best tibial tray cementation technique, we applied cement to 40 cryopreserved donor tibiae by four different techniques: 1) double-layer cementation of the tibial component and tibial bone with bone restrictor; 2) metallic cementation of the tibial component without bone restrictor; 3) bone cementation of the tibia with bone restrictor; and 4) superficial bone cementation of the tibia and metallic keel cementation of the tibial component without bone restrictor. We performed CT exams of all 40 subjects, and measured cement layer thickness at both levels of the resected surface of the epiphysis and the endomedular metaphyseal level.Aims
Methods
To establish our early clinical results of a new total knee arthroplasty (TKA) tibial component introduced in 2013 and compare it to other designs in use at our hospital during the same period. This is a retrospective study of 166 (154 patients) consecutive cemented, fixed bearing, posterior-stabilized (PS) TKAs (ATTUNE) at one hospital performed by five surgeons. These were compared with a reference cohort of 511 knees (470 patients) of other designs (seven manufacturers) performed at the same hospital by the same surgeons. There were no significant differences in age, sex, BMI, or follow-up times between the two cohorts. The primary outcome was revision performed or pending.Aims
Methods
Total knee arthroplasty is an established treatment for knee osteoarthritis with excellent long-term results, but there remains controversy about the role of uncemented prostheses. We present the long-term results of a randomized trial comparing an uncemented tantalum metal tibial component with a conventional cemented component of the same implant design. Patients under the age of 70 years with symptomatic osteoarthritis of the knee were randomized to receive either an uncemented tantalum metal tibial monoblock component or a standard cemented modular component. The mean age at time of recruitment to the study was 63 years (50 to 70), 46 (51.1%) knees were in male patients, and the mean body mass index was 30.4 kg/m2 (21 to 36). The same cruciate retaining total knee system was used in both groups. All patients received an uncemented femoral component and no patients had their patella resurfaced. Patient outcomes were assessed preoperatively and postoperatively using the modified Oxford Knee Score, Knee Society Score, and 12-Item Short-Form Health Survey questionnaire (SF-12) score. Radiographs were analyzed using the American Knee Society Radiograph Evaluation score. Operative complications, reoperations, or revision surgery were recorded. A total of 90 knees were randomized and at last review 77 knees were assessed. In all, 11 patients had died and two were lost to follow-up.Aims
Methods
Options for the treatment of intra-articular ligament injuries are limited, and insufficient ligament reconstruction can cause painful joint instability, loss of function, and progressive development of degenerative arthritis. This study aimed to assess the capability of a biologically enhanced matrix material for ligament reconstruction to withstand tensile forces within the joint and enhance ligament regeneration needed to regain joint function. A total of 18 New Zealand rabbits underwent bilateral anterior cruciate ligament reconstruction by autograft, FiberTape, or FiberTape-augmented autograft. Primary outcomes were biomechanical assessment (n = 17), microCT (µCT) assessment (n = 12), histological evaluation (n = 12), and quantitative polymerase chain reaction (qPCR) analysis (n = 6).Aims
Materials and Methods
We report the results of revision total knee
replacement (TKR) in 26 patients with major metaphyseal osteolytic defects
using 29 trabecular metal cones in conjunction with a rotating hinged
total knee prosthesis. The osteolytic defects were types II and
III (A or B) according to the Anderson Orthopaedic Research Institute
(AORI) classification. The mean age of the patients was 72 years
(62 to 84) and there were 15 men and 11 women. In this series patients had
undergone a mean of 2.34 previous total knee arthroplasties. The
main objective was to restore anatomy along with stability and function
of the knee joint to allow immediate full weight-bearing and active
knee movement. Outcomes were measured using Knee Society scores,
Oxford knee scores, range of movement of the knee and serial radiographs.
Patients were followed for a mean of 36 months (24 to 49). The mean
Oxford knee clinical scores improved from 12.83 (10 to 15) to 35.20
(32 to 38) (p <
0.001) and mean American Knee Society scores
improved from 33.24 (13 to 36) to 81.12 (78 to 86) (p <
0.001).
No radiolucent lines suggestive of loosening were seen around the trabecular
metal cones, and by one year all the radiographs showed good osteo-integration.
There was no evidence of any collapse or implant migration. Our
early results confirm the findings of others that trabecular metal
cones offer a useful way of managing severe bone loss in revision
TKR. Cite this article:
The optimum cementing technique for the tibial
component in cemented primary total knee replacement (TKR) remains
controversial. The technique of cementing, the volume of cement
and the penetration are largely dependent on the operator, and hence
large variations can occur. Clinical, experimental and computational
studies have been performed, with conflicting results. Early implant
migration is an indication of loosening. Aseptic loosening is the
most common cause of failure in primary TKR and is the product of
several factors. Sufficient penetration of cement has been shown
to increase implant stability. This review discusses the relevant literature regarding all aspects
of the cementing of the tibial component at primary TKR. Cite this article:
We studied the bone mineral density (BMD) and
the bone mineral content (BMC) of the proximal tibia in patients with
a well-functioning uncemented Oxford medial compartment arthroplasty
using the Lunar iDXA bone densitometer. Our hypothesis was that
there would be decreased BMD and BMC adjacent to the tibial base
plate and increased BMD and BMC at the tip of the keel. There were 79 consecutive patients (33 men, 46 women) with a
mean age of 65 years (44 to 84) with a minimum two-year follow-up
(mean 2.6 years (2.0 to 5.0)) after unilateral arthroplasty, who
were scanned using a validated standard protocol where seven regions
of interest (ROI) were examined and compared with the contralateral
normal knee. All had well-functioning knees with a mean Oxford knee
score of 43 (14 to 48) and mean Knee Society function score of 90
(20 to 100), showing a correlation with the increasing scores and
higher BMC and BMD values in ROI 2 in the non-implanted knee relative
to the implanted knee (p = 0.013 and p = 0.015, respectively). The absolute and percentage changes in BMD and BMC were decreased
in all ROIs in the implanted knee compared with the non-implanted
knee, but this did not reach statistical significance. Bone loss
was markedly less than reported losses with total knee replacement. There was no significant association with side, although there
was a tendency for the BMC to decrease with age in men. The BMC
was less in the implanted side relative to the non-implanted side
in men compared with women in ROI 2 (p = 0.027), ROI 3 (p = 0.049)
and ROI 4 (p = 0.029). The uncemented Oxford medial compartment arthroplasty appears
to allow relative preservation of the BMC and BMD of the proximal
tibia, suggesting that the implant acts more physiologically than
total knee replacement. Peri-prosthetic bone loss is an important
factor in assessing long-term implant stability and survival, and
the results of this study are encouraging for the long-term outcome
of this arthroplasty. Cite this article:
As the number of younger and more active patients
treated with total knee arthroplasty (TKA) continues to increase,
consideration of better fixation as a means of improving implant
longevity is required. Cemented TKA remains the reference standard
with the largest body of evidence and the longest follow-up to support
its use. However, cementless TKA, may offer the opportunity of a
more bone-sparing procedure with long lasting biological fixation
to the bone. We undertook a review of the literature examining advances
of cementless TKA and the reported results. Cite this article:
This was a retrospective analysis of the medium-
to long-term results of 46 TC3 Sigma revision total knee replacements
using long uncemented stems in press-fit mode. Clinical and radiological analysis took place pre-operatively,
at two years post-operatively, and at a mean follow-up of 8.5 years
(4 to 12). The mean pre-operative International Knee Society (IKS)
clinical score was 42 points (0 to 74), improving to 83.7 (52 to
100) by the final follow-up. The mean IKS score for function improved
from 34.3 points (0 to 80) to 64.2 (15 to 100) at the final follow-up.
At the final follow-up 30 knees (65.2%) had an excellent result, seven
(15.2%) a good result, one (2.2%) a medium and eight (17.4%) a poor
result. There were two failures, one with anteroposterior instability
and one with aseptic loosening. The TC3 revision knee system, when used with press-fit for long
intramedullary stems and cemented femoral and tibial components,
in both septic and aseptic revisions, results in a satisfactory
clinical and radiological outcome, and has a good medium- to long-term
survival rate.
Revision knee arthroplasty presents a number
of challenges, not least of which is obtaining solid primary fixation
of implants into host bone. Three anatomical zones exist within
both femur and tibia which can be used to support revision implants.
These consist of the joint surface or epiphysis, the metaphysis
and the diaphysis. The methods by which fixation in each zone can
be obtained are discussed. The authors suggest that solid fixation
should be obtained in at least two of the three zones and emphasise
the importance of pre-operative planning and implant selection. Cite this article:
Orthopaedic surgeons use stems in revision knee surgery to obtain
stability when metaphyseal bone is missing. No consensus exists
regarding stem size or method of fixation. This A custom test rig using differential variable reluctance transducers
(DVRTs) was developed to record all translational and rotational
motions at the bone–implant interface. Composite femurs were used.
These were secured to permit variation in flexion angle from 0°
to 90°. Cyclic loads were applied through a tibial component based
on three peaks corresponding to 0°, 10° and 20° flexion from a normal
walking cycle. Three different femoral components were investigated
in this study for cementless and cemented interface conditions.Objectives
Methods
This study reports on the first 150 consecutive
Oxford cementless unicompartmental knee arthroplasties (UKA) performed
in an independent centre (126 patients). All eligible patients had
functional scores (Oxford knee score and high activity arthroplasty
score) recorded pre-operatively and at two- and five-years of follow-up. Fluoroscopically
aligned radiographs were taken at five years and analysed for any
evidence of radiolucent lines (RLLs), subsidence or loosening. The
mean age of the cohort was 63.6 years (39 to 86) with 81 (53.1%)
males. Excellent functional scores were maintained at five years
and there were no progressive RLLs demonstrated on radiographs.
Two patients underwent revision to a total knee arthroplasty giving
a revision rate of 0.23/100 (95% confidence interval 0.03 to 0.84)
component years with overall component survivorship of 98.7% at
five years. There were a further four patients who underwent further
surgery on the same knee, two underwent bearing exchanges for dislocation
and two underwent lateral UKAs for disease progression. This was
a marked improvement from other UKAs reported in New Zealand Joint
Registry data and supports the designing centre’s early results. Cite this article:
Total knee arthroplasty (TKA) is known to lead
to a reduction in periprosthetic bone mineral density (BMD). In theory,
this may lead to migration, instability and aseptic loosening of
the prosthetic components. Bisphosphonates inhibit bone resorption
and may reduce this loss in BMD. We hypothesised that treatment
with bisphosphonates and calcium would lead to improved BMD and
clinical outcomes compared with treatment with calcium supplementation
alone following TKA. A total of 26 patients, (nine male and 17 female,
mean age 67 years) were prospectively randomised into two study
groups: alendronate and calcium (bisphosphonate group, n = 14) or calcium
only (control group, n = 12). Dual energy X-ray absorptiometry (DEXA)
measurements were performed post-operatively, and at three months,
six months, one, two, four, and seven years post-operatively. Mean femoral metaphyseal BMD was significantly higher in the
bisphosphonate group compared with controls, up to four years following
surgery in some areas of the femur (p = 0.045). BMD was observed
to increase in the lateral tibial metaphysis in the bisphosphonate
group until seven years (p = 0.002), and was significantly higher than
that observed in the control group throughout (p = 0.024). There
were no significant differences between the groups in the central
femoral metaphyseal, tibial medial metaphyseal or diaphyseal regions
of interest (ROI) of either the femur or tibia. Bisphosphonate treatment after TKA may be of benefit for patients
with poor bone quality. However, further studies with a larger number
of patients are necessary to assess whether this is clinically beneficial. Cite this article: