Introduction. Short stems have been developed for some years for preservation of femoral bone stock and achieve physiological proximal loading. Shortening
Introduction. Excellent long-term survival rates associated with the absence of stem subsidence have been achieved with total hip arthroplasty (THA) using femoral components cemented line-to-line (“French Paradox”). Recently, short stems have been introduced in order to preserve diaphyseal bone and to accommodate to minimal invasive THA and a variety of clinical situations. The aim of the current study was to quantify the rotational and tilting stability of a Kerboull stem of varying length after line-to-line cementation using a validated in-vitro model. Materials & methods. The femoral component made of M30NW stainless steel was derived from the original Kerboull stem. It had a double taper, a highly polished surface, and a quadrangular cross-section. Four
Purpose. Investigating the effects of femoral
Introduction. The Exeter cemented polished tapered stem design was introduced into clinical practice in the early 1970's. [i] Design and cement visco-elastic properties define clinical results [ii]; a recent study by Carrington et al. reported the Exeter stem has 100% survivorship at 7 years. [iii] Exeter stems with offsets 37.5–56 mm have length 150 mm (shoulder to tip). Shorter
Introduction. Femoral component design is a key part of hip arthroplasty performance. We have previously reported that a hip resurfacing offered functional improved performance over a long stem. However resurfacing is not popular for many reasons, so there is a growing trend towards shorter femoral stems, which have the added benefit of ease of introduction through less invasive incisions. Concern is also developing about the impact of longer stems on lifetime risk of periprosthetic fracture, which should be reduced by the use of a shorter stem. For these reasons, we wanted to know whether a shorter stem offered any functional improvement over a conventional long stem. We surmised that longer stems in hip implants might stiffen the femoral shaft, altering the mechanical properties. Materials and Methods. From our database of over 800 patients who have been tested in the lab, we identified 95 patients with a hip replacement performed on only one side, with no other lower limb co-morbidities, and a control group:. 19 with long stem implant, age 66 ± 14 (LONG). 40 with short stem implant, age 69 ± 9 (SHORT). 26 with resurfacing, age 60 ± 8 (RESURF). 43 healthy control with no history of arthroplasty, age 59 ± 10 (CONTROL). All groups were matched for BMI and gender. Participants were asked to walk on an instrumented treadmill. Initially a 5 minute warm up at 4 km/h, then tests at increasing speed in 0.5 km/h increments. Maximum walking speed was determined by the patients themselves, or when subjects moved from walking to running. Ground reaction forces (GRF) were measured in 20 second intervals at each speed. Features were calculated based on the mean GRF for each trial, and on symmetry measures such as first peak force (heel strike), second peak force (toe-off), the rate at which the foot was loaded and unloaded, and step length. Results. When measured by top walking speed, stemmed implants of either type appear slower than those which do not include the femoral shaft (resurfacing). The latter group walking speed was equal to the control group (Figure 1). When looking at the whole gait cycle at any one speed, no major differences appear in the first or second peak forces (Figure 2 – 5km/h, implanted side compared). When checked for asymmetry, resurfacing patients did not demonstrate any asymmetry between legs, while either stemmed groups demonstrated slight differences between legs in terms of force related features (Figure 3). Discussion. We sought to show if
Published investigations with custom short stems have reported very encouraging results (Walker, et al, 1). However, off-the-shelf (OTS) versions of shorter length prostheses has not met with the same success. Several basic questions must be addressed. First, what is the purpose of a stem? Second, can
The choice of
Recent trends in surgical techniques for THR, i.e. MIS and anterior approaches, have spawned an interest in and possible need for shorter femoral prostheses. Although, early clinical investigations with custom short stems have reported very encouraging results, the transition to off-the-shelf (OTS) versions of shorter length prostheses has not met with the same degree of success. Early reports with OTS devices have documented unacceptably high and significant incidences of implant instability, migration, mechanical/aseptic failure, and technical difficulty in achieving reproducible implantation outcomes. They have highlighted the absolute need for a better understanding of the consequences of changes in implant design as well as for improvements in instrumentation and surgeon training. Two basic questions must be addressed. First, what is the purpose of a stem? And second, can
Recent trends in surgical techniques for THR, i.e. MIS and anterior approaches, have spawned an interest in and possible need for shorter femoral prostheses. Although, early clinical investigations with custom short stems have reported very encouraging results, the transition to off-the-shelf (OTS) versions of shorter length prostheses has not met with the same degree of success. Early reports with OTS devices have documented unacceptably high and significant incidences of implant instability, migration, mechanical/aseptic failure, and technical difficulty in achieving reproducible implantation outcomes. They have highlighted the absolute need for a better understanding of the consequences of changes in implant design as well as for improvements in instrumentation and surgeon training. Two basic questions must be addressed. First, what is the purpose of a stem? And second, can
Introduction. Conventional hip radiographs allow surgeons, during preoperative planning, to make important decisions. Size and location of implants are routinely measured by overlaying schematics of the implanted components onto preoperative radiographs. Most currently available planning tools are in two-dimensions (2D), using X-ray images and 2D templates of the implants. Determination of the ideal component size requires two radiographic views of the femur: the anterior-posterior (AP) and the lateral direction. The surgeon uses this information to determine component sizes. Even though this approach has been used for many years leading to very good results, this manual process potentially carries multiple shortcomings. The biggest issue with the AP X-ray image is the fact that it is 2D in nature while the measurement's objective is to obtain three-dimensional (3D) parameters. Objective. The objective of this study is to derive a methodology to automatically select correct THA implant sizes while keeping the anatomical center of each specific patient within a forward solution model (FSM) that predicts post-operative outcomes. Methods. The femoral components in our process contain five parameters:
Durable humeral component fixation in shoulder arthroplasty is necessary to prevent painful aseptic loosening and resultant humeral bone loss. Causes of humeral component loosening include stem design and material,
The advent of modern anatomic shoulder arthroplasty occurred in the 1990's with the revelation that the humeral head dimensions had a fixed ratio between the head diameter and height. As surgeons moved from the concept of balancing soft tissue tension by using variable neck lengths for a given humeral head diameter, a flawed concept based on lower extremity reconstruction, improvements in range of motion and function were immediately observed. Long term outcome has validated this guiding principle for anatomic shoulder replacement with improved longevity of implants, improved patient and surgeon expectations and satisfaction with results. Once the ideal humeral head prosthesis is identified, and its position prepared, the surgeon must use a method to fix the position of the head that is correct in three dimensions and has the security to withstand patient activities and provide maximal longevity. Based again on lower extremity concepts, long stems were the standard of care, initially with cement, and now, almost universally without cement for a primary shoulder replacement. The incredibly low revision rates for humeral stem aseptic loosening shifted much of the attempted innovation to the challenges on the glenoid side of the reconstruction. However, glenoid problems including revision surgery, infections, periprosthetic fractures, and other complications often required the removal of the humeral stem. And, in many cases, the overall results of the procedure and the patient's long-term outcome was affected by the difficulty in removing the stem, leading surgeons to compromise the revision procedure, avoid revision surgery, or add to the overall morbidity with humeral fractures and substantial bone loss. With improved technology, including bone ingrowth methods, better matching of the proximal stem geometry to the humerus, and an understanding that the center of rotation (torque) on the humeral component is at the level of the humeral osteotomy, shorter stems and stemless humeral components were developed, now more than 10 years ago, primarily in Europe. With more than a decade of experience, our European colleagues have shown us that stemless humeral component replacement with a device that has both cortical and cancellous fixation is as effective as a stemmed device, easier to implant as well as revise when needed. The short-term results of the cancellous fixation stemless devices are acceptable, but longer follow-up is needed. Currently, the most widely used humeral components in the USA are short stem components, although the recent FDA approval of numerous stemless devices has initiated a shift from short stems to stemless devices. The truth is, short stem devices have a firm position in the USA surgeons' armamentarium today due to regulatory restrictions. A decade ago, without a predicate on the market, it was not conceivable that a stemless device that was already gaining popularity in Europe would be able to get 510K approval, and therefore would require a lengthy and expensive FDA IDE process. However, shorter stems had already been approved in the USA, as long as the
Total shoulder arthroplasty results in excellent outcomes for most patients who suffer from osteoarthritis of the shoulder. Current trends within the field reflect a desire to minimise
Shortened humeral stem implants can be advantageous as they preserve more of the patient's bone and are not limited by the canal for placement in the proximal body. However, traditional longer stems may help stabilize the implant through interaction with the dense cortical bone of the canal. We developed an FEA model to gage the contributions of design features such as
The technique involves impaction of cancellous bone into a cavitary femur. If segmental defects are present, the defects can be closed with stainless steel mesh. The technique requires retrograde fill of the femoral cavity with cancellous chips of appropriate size to create a new endomedullary canal. By using a set of trial impactors that are slightly larger than the real implants the cancellous bone is impacted into the tube. Subsequent proximal impaction of bone is performed with square tip or half moon impactors. A key part of the technique is to impact the bone tightly into the tube especially around the calcar to provide optimal stability. Finally a polished tapered stem is cemented using almost liquid cement in order to achieve interdigitation of the implant to the cancellous bone. The technique as described is rarely performed today in many centers around the world. In the US, the technique lost its interest because of the lengthy operative times, unacceptable rate of peri-operative and post-operative fractures and most importantly, owing to the success of tapered fluted modular stems. In centers such as Exeter where the technique was popularised, it is rarely performed today as well, as the primary cemented stems used there, rarely require revision. There is ample experience from around the globe, however, with the technique. Much has been learned about the best size and choice of cancellous graft, force of impaction, surface finish of the cemented stem, importance of
A large body of the orthopaedic literature clearly indicates that the cement mantle surrounding the femoral component of a cemented total hip arthroplasty should be at least 2 mm thick. In the early 1970s, another concept was introduced and is still in use in France consisting of implanting a canal filling femoral component line-to-line associated with a thin cement mantle. This principle has been named the “French paradox”. An explanation to this phenomenon has been provided by in-vitro studies demonstrating that a thin cement mantle in conjunction with a canal filling stem was supported mainly by cortical bone and was subjected to low stresses. We carried out a study to evaluate the in-vivo migration patterns of 164 primary consecutive Charnley-Kerboull total hip replacements. All prosthesis in the current series combined an all-polyethylene socket and a 22.2 mm stainless steel femoral head. The monobloc double tapered (5.9 degrees) femoral component was made of 316L stainless steel with a highly polished surface (Ra = 0.04 μm), a quadrangular section, and a neck-stem angle of 130 degrees. The stem was available in six sizes with a
Introduction. Successful designs of total hip replacement need to be robust to surgery-related variability. Until recently, only simple parametric studies have explored the influence of surgical variability [1]. This study presents a systematic method for quantifying the effect of variability in positioning on the primary stability of femoral stems using finite element (FE) models. Methods. Patient specific finite element models were generated of two femurs, one male and one female. An automated algorithm positioned and sized a Corail stem (DePuy Synthes, Warsaw) into each of the femurs to achieve maximum fill of the medullary canal without breaching into the cortical bone boundaries.. Peak joint contact and muscle forces associated with level gait were applied[2] and scaled to the body mass of each subject, whilst the distal femur was rigidly constrained. The space prone to surgical variation was defined by the “gap” between the stem and the inner boundary of the cortical bone. The anterior/posterior and the varus/valgus alignment of the stem within this “gap” was controlled by varying the location of the points defining the shaft axis. The points were taken at 20% and 80% of the
A design modification to the DJO Linear hip stem was performed to facilitate use of the stem with the minimally invasive direct anterior approach. While the main design consideration was to reduce the overall
Background. Impaction bone grafting (IBG) using a circumferential metal mesh is one of the options that allow restoration of the femoral bone stock and stability of the implant in hip arthroplasty. Here we examined the clinical and radiographic outcome of this procedure with a cemented stem and analyzed experimentally the initial stability of mesh–grafted bone–cemented stem complexes. Methods. We retrospectively reviewed 6 hips (6 patients) that had undergone femoral revisions with a circumferential metal mesh, impacted bone allografts, and a cemented stem. The mean follow-up period was 2.9 years (range, 1.4–3.8 years). Hip joint function was evaluated with the Japanese Orthopaedic Association hip score, and radiographic changes were determined from radiographs. The initial resistance of cemented stem complexes to axial and rotational force was measured in a composite bone model with various segmental losses of the proximal femur. Results. The hip score improved from 50 (range, 10–84) preoperatively to a mean of 74 (range, 67–88) at the final follow-up. The overall implant survival rate was 100% at 4 years when radiological loosening or revision for any reason was used as the endpoint. No stem subsided more than 3 mm vertically within 1 year after implantation. Computed tomography showed reconstitution of the femoral canal in a metal mesh. In mechanical analyses, there was no influence on the stem stability to axial compression during the repeated axial compression test between IBG reconstruction rates. On the other hand, for IBG reconstruction rate of 66.7%, grafted bone-Sawbone juntion was buckled under the axial breaking force. In contrast, under rotational load, the rotation angles of the stainless mesh were strongly affected by the IBG reconstruction rate. Conclusions. The short-term results show good outcomes for reconstruction of proximal bone loss with impaction bone allografts and a circumferential mesh. The procedure should be applied in cases where the circumferential proximal bone loss is less than half of the
Objective. Failures of internal fixation after intertrochanteric fractures pose great challenge to orthopaedic surgeons. Hip arthroplasty can be a remedy for such failures, however, the selection of femoral