Advertisement for orthosearch.org.uk
Results 1 - 8 of 8
Results per page:
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 6 - 6
1 Oct 2019
Davies K Richardson S Milner C Hoyland J
Full Access

Background

Degeneration of the intervertebral disc (IVD) is a leading cause of lower back pain, and a significant clinical problem. Inflammation mediated by IL-1β and TNF-α drives IVD degeneration through promoting a phenotypic switch in the resident nucleus pulposus (NP) cells towards a more catabolic state, resulting in extracellular matrix degradation. Bone marrow mesenchymal stem cells (MSCs) produce bioactive factors that modulate local tissue microenvironments and their anti-inflammatory potential has been shown in numerous disease models. Thus MSCs offer a potential therapy for IVD degeneration. In a clinical setting, adipose-derived stem cells (ASCs) might represent an alternative and perhaps more appealing cell source. However, their anti-inflammatory properties remain poorly understood.

Methods

Here we assess the anti-inflammatory properties of donor-matched human ASCs and MSCs using qPCR and western blotting.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 42 - 42
1 Oct 2019
Grad S Wangler S Peroglio M Menzel U Benneker L Haglund L Sakai D Alini M
Full Access

Background and Purpose

Intervertebral disc (IVD) degeneration is a prominent cause of low back pain. IVD cells expressing angiopoietin-1 receptor Tie2 represent a progenitor cell population which decreases with progression of IVD degeneration. Homing of mesenchymal stem cells (MSCs) is a physiological mechanism aiming to enhance the regenerative capacity of the IVD. The purpose of this study was to assess the effect of MSC homing on the Tie2 positive IVD progenitor cell population, the IVD cell viability, and the proliferative phenotype of the IVD cells.

Methods and Results

Human MSCs were isolated from bone marrow aspirates and labelled with fluorescent dye. Whole IVDs with endplates were harvested from bovine tails; MSCs were placed on the endplates. Human traumatic, degenerative and healthy IVD tissues were obtained from patients and organ donors. MSCs were added onto tissue samples. After 5 days, IVD cells were isolated. Percentages of Tie2 positive, DAPI positive (dead) and Ki-67 positive (proliferative) IVD cells were determined.

MSC homing or co-culture significantly increased the proportion of Tie2 positive progenitor IVD cells in bovine and 7/10 human IVDs, decreased the fraction of dead IVD cells in bovine and 7/10 human IVDs, and induced a proliferative phenotype in bovine and 5/6 human IVDs.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 11 - 11
1 Oct 2019
Wignall F Richardson S Hoyland JA
Full Access

Study purpose and background

Novel regenerative therapies have the potential to restore function and relieve pain in patients with low back pain (LBP) caused by intervertebral disc (IVD) degeneration. We have previously shown that stimulation of adipose-derived stem cells (ASCs) with growth differentiation factor-6 (GDF6) promotes differentiation into nucleus pulposus (NP) cells of the IVD, which have potential for IVD regeneration. We have also shown that GDF6 stimulation activates the Smad1/5/8 and ERK1/2 signalling cascades. The aim of this study was to progress our understanding of the immediate/early response mechanisms in ASCs (N=3) which may direct GDF6-induced differentiation.

Methods and results

RNAseq was used to perform transcriptome-wide analysis across a 12-hour time course, post-stimulation. Gene ontology analysis revealed greater transcription factor and biological processes activity at 2hrs than at the 6hr and 12hr time points, where molecular and cellular activities appeared to stabilise. Interestingly, a number of lineage determining genes were identified as differentially expressed and work is ongoing to investigate whether the early response genes are maintained throughout differentiation, or whether they are responsible for early NP lineage commitment.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 22 - 22
1 Oct 2019
Snuggs J Thorpe A Hutson C Partridge S Chiverton N Cole A Sammon C Le Maitre C
Full Access

Purpose of study and background

IVD degeneration is a major cause of Low back pain. We have previously reported an injectable hydrogel (NPgel), which induces differentiation of human MSCs to disc cells and integrates with NP tissue following injection in vitro. However, the translation of this potential treatment strategy into clinic is dependent on survival and differentiation of MSCs into disc cells within the degenerate IVD. Here, we investigated the viability and differentiation of hMSCs incorporated into NPgel cultured under conditions mimicking the healthy and degenerate microenvironment of the disc.

Methods and Results

MSCs were cultured in NP gel under 5% O2 in either: standard culture (DMEM, pH7.4); healthy disc (DMEM, pH7.1); degenerate disc (low glucose DMEM, pH6) or degenerate disc plus IL-1β. Following 4 weeks histological staining and immunohistochemical analysis investigated viability, ECM synthesis and matrix degrading enzyme expression.

Here we have shown that viability and NP cell differentiation of MSCs incorporated within NPgel was mostly unaffected by treatment with conditions such as low glucose, low pH and the presence of cytokines, all regarded as key contributors to disc degeneration. In addition, the NPgel was shown to prevent MSCs from displaying a catabolic phenotype with low expression of degradative enzymes, highlighting the potential of NPgel to differentiate hMSCs and protect them from the degenerate disc microenvironment.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 21 - 21
1 Oct 2019
Binch A Richardson S Hoyland J Barry F
Full Access

Background

Mesenchymal stem cells (MSCs) are undergoing evaluation as a potential new therapy for immune and inflammatory-mediated conditions such as IVD degeneration (IDD). Both adipose (ASCs) and bone-marrow (BMSCs) derived MSCs have been widely used in this regard. The optimal tissue source and expansion conditions required to exploit the regenerative capacity of these cells are not yet fully elucidated. In addition the phenotypic response of transplanted cells to the disease environment is not well understood. In this study, ASCs and BMSCs were exposed to a combination of hypoxic conditioning and selected inflammatory mediators, conditions that mimic the microenvironment of the degenerate IVD, in an effort to understand their therapeutic potency for in vivo administration.

Methods and Results

Donor-matched ASCs and MSCs were pre-conditioned with either IL-1β (10ng/ml) or TNFα (10ng/ml) for 48 hours under hypoxic conditions (5% O2). Conditioned media was collected and 45 different immunomodulatory proteins were analysed using human magnetic Luminex® assay.

Secreted levels of several key cytokines and chemokines, both pro- and anti-inflammatory, were significantly upregulated in ASCs and BMSCs following the conditioning regime. Under all conditions tested, ASCs expressed significantly higher levels of IL-4, IL-6, IL-10, IL-12, TGF-α, and GCSF compared to BMSCs. Pre-conditioning with TNFα resulted in significantly higher levels of IL-10 while preconditioning with IL-1β resulted in higher levels of IL-6, IL-12 and GCSF.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 17 - 17
1 Oct 2019
Snuggs J Thorpe A Partridge S Chiverton N Cole A Michael A Sammon C Le Maitre C
Full Access

Purpose of study and background

We have previously reported the development of injectable hydrogels for potential disc regeneration (NPgel) or bone formation which could be utilized in spinal fusion (Bgel). As there are multiple sources of mesenchymal stem cells (MSCs), this study investigated the incorporation of patient matched hMSCs derived from adipose tissue (AD) and bone marrow (BM) to determine their ability to differentiate within both hydrogel systems under different culture conditions.

Methods and Results

Human fat pad and bone marrow derived MSCs were isolated from femoral heads of patients undergoing hip replacement surgery for osteoarthritis with informed consent. MSCs were encapsulated into either NPgel or Bgel and cultured for up to 6 weeks in 5% (NPgel) or 21% (Bgel) O2. Histology and immunohistochemistry was utilized to determine phenotype. Both fat and bone marrow derived MSCs, were able to differentiate into both cell lineages. NPgel culture conditions increased expression of matrix components such as collagen II and aggrecan and NP phenotypic markers FOXF1 and PAX1, whereas Bgel induced expression of collagen I and osteopontin, indicative of osteogenic differentiation.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_10 | Pages 21 - 21
1 May 2017
Thorpe A Vickers L Sammon C Le Maitre C
Full Access

Background

Degeneration of the intervertebral disc (IVD) is a major cause of Low back pain. We have recently reported a novel, injectable liquid L-pNIPAM-co-DMAc hydrogel (NPgel), which promote differentiation of MSCs to nucleus pulposus (NP) cells without the need for additional growth factors. Here, we investigated the behaviour of hMSCs incorporated within the hydrogel injected into NP tissue.

Methods

hMSCs were injected either alone or within NPgel, into bovine NP tissue explants and maintained at 5% O2 for up to 6wks. Media alone and acellular NPgel were also injected into NP explants to serve as controls. Cell viability was assessed by Caspase 3 immunohistochemistry and the phenotype of injected hMSC was assessed by histology and immunohistochemistry. Mechanical properties were also assessed via dynamic mechanical analysis (DMA).


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXI | Pages 34 - 34
1 Jul 2012
Koroma KE Ding M Wendt D Martin I Martinetti R Jespersen S Overgaard S
Full Access

Background

For bone grafting procedures, the use of autologous bone is considered the gold standard, as it is has a better healing capacity compared to other alternatives as allograft and synthetic bone substitutes. However, as there are several drawbacks related to autografting (infection, nerve- or vascular damage, chronic pain problems, abdominal herniation), there has been a targeted effort to improve the healing capacities of synthetic bone substitutes.

Aim

To evaluate the performance of a carbonated osteoionductive hydroxyapatite (CHA) scaffold of clinical relevant size (Ø=15mm, H=50mm) in a sheep model of multi level posterolateral intertransverse lumbar spine fusion after activation with autologous bone marrow nuclear cells (BMNC) in a flow perfusion bioreactor.