Mesenchymal stem cells (MSCs) have been studied for the treatment of Osteoarthritis (OA), a potential mechanism of MSC therapies has been attributed to paracrine activity, in which extracellular vesicles (EVs) may play a major role. It is suggested that MSCs from younger donor compete with adult MSC in their EV production capabilities. Therefore, MSCs generated from induced pluripotent mesenchymal stem cells (iMSC) appear to provide a promising source. In this study, MSCs and iMSC during long term-expansion using a serum free clinical grade condition, were characterized for surface expression pattern, proliferation and differentiation capacity, and senescence rate. Culture media were collected continuously during cell expansion, and EVs were isolated. Nanoparticle tracking analysis (NTA), transmission electron microscopy, western blots, and flow cytometry were used to identify EVs. We evaluated the biological effects of MSC and iMSC-derived EVs on human chondrocytes treated with IL-1α, to mimic the OA environment. In both cell types, from early to late passages, the amount of EVs detected by NTA increased significantly, EVs collected during cells expansion, retained tetraspanins (CD9, CD63 and CD81) expression. The anti-inflammatory activity of MSC-EVs was evaluated in vitro using OA chondrocytes, the expression of IL-6, IL-8 and COX-2 was significantly reduced after the treatment with hMSC-derived EVs isolated at early passage. The miRNA content of EVs was also investigated, we identify miRNA that are involved in specific biological function. At the same time, we defined the best culture conditions to maintain iMSC and define the best time window in which to isolate EVs with highest biological activity. In conclusion, a clinical grade serum-free medium was found to be suitable for the isolation and expansion of MSCs and iMSC with increased EVs production for therapeutic applications.
Bone marrow stem cells (BMSCs) represent a collection of different cell types exhibiting stem cell characteristics but with notable heterogeneity. Among these, Skeletal
Introduction and Objective. Platelet-Rich-plasma (PRP) has been used in combination with stem cells, from different sources, with encouraging results both in vitro and in vivo in osteochondral defects management. Adipose-derived
Introduction. Autologous Chondrocyte Implantation (ACI) is an effective surgical treatment for chondral defects. ACI involves arthrotomy for cell implantation. We describe the development of an intra-articular injection of cultured MSC, progressing from in-vitro analysis, through animal model, clinical and radiological outcome at five years follow up. Materials and Methods. We prospectively investigated sixteen patients with symptomatic ICRS grade III and IV lesions. These patients underwent cartilage repair using cultured mesenchymal stem cell injections and are followed up for five years. Results. Statistically significant clinical improvement was noted by two years and was sustained for five years of the study. At five years, mean Lysholm score was 80, compared to 44 pre-operatively. Symptomatic KOOS improved to 88 from 55. Subjective IKD Calso showed improvement from 42 to 76. On morphological MRI MOCART score was 76 and qualitative MRI showed the mean T2relaxation-times were 28 and 31 for their pair tissue and native cartilage respectively. Discussion. Cultured MSC provides a good number of uncommitted stem cells to the previously prepared chondral defects of the knee by “homing on” phenomenon. Cultured cells, suspended in serum can be delivered by an intra-articular injection. Conclusion. Use of cultured MSC is less invasive, avoids complications associated with arthrotomy, compared to ACI technique. Good clinical results were found to be sustained at five years of follow-up with a regenerate that appears like surrounding native cartilage. The use of Cultured Mesenchymal
Introduction There are 1 million cases of major skeletal defects :that occur worldwide each year that lead to significant morbidity and disability and currently require bone grafting as the main mode of treatment. Limitations of bone-grafting include donor site morbidity, reduced osseoinductivity and risk of pathogen transmission to the host. There is considerable interest in finding ways of differentiating mesenchymal stem cells down the osteoblastic lineage to form bone tissue. We hypothesized that there is an optimum strain that promotes differentiation of mesenchymal stem cells into osteoblasts. Methods: A bioreactor was developed that was capable of applying tensional forces across a culture strip in a graduated manner within a range of 1-4373me. Mesenchymal stem cells were grown on these strips and subjected to cyclical tensile strain at 1Hz. Cell morphology using Scanning Electron Microscopy, mineralization using specialized stains and expression of core binding factor1 (Cbfa1) was studied at various strain levels. Results: Scanning Electron Microscopy revealed classic osteoblastic cells in the regions subjected to tensile force, especially in the region where average strain was 1312me. X-ray microanalysis revealed calcium deposits on the strip, indicating osteoblastic differentiation. Cbfa1 expression was greatest in the region with an average strain 1312 me followed by a region on the strip subjected to just fluid shear without any tension. Cbfa1 expression was significantly greater in cells subjected to tensile forces than unstrained controls at all levels of strain tested (p<
0.05). Cbfa1 expression was further enhanced significantly by the addition of osteogenic factors (p<
0.05). Significantly greater mineralization (p<
0.05) occurred in the regions subject to tension with the greatest being in the region with an average strain of 1312 me. Conclusions: Mechanical tensile forces especially in the range of up to 2173me promote differentiation of Mesenchymal
The aim of the ongoing projects was to demonstrate the efficacy of autologous bone marrow derived stem cells (MSC) combined with biomaterial to induced new bone formation in a randomized multicenter controlled clinical trial. Patients with a need for bone reconstruction of residual edentulous ridges in both the mandible and maxilla due to bone defects with a vertical loss of alveolar bone volume and/or knife edge ridges (≤ than 4,5 mm) unable to provide adequate primary stabilization for dental implants were included in the clinical study. Autologous bone marrow MSC were expanded, loaded on BCP and used to augment the alveolar ridges. After five months bone biopsies were harvested at the implant position site and implants were installed in the regenerated bone. The implants were loaded after 8–12 weeks. Safety, efficacy, quality of life and success/survival were assessed. Five clinical centers, 4 different countries participated. Bone grafts harvested from the ramus of the mandibles were used as control in the projects.
Summary. In this study, we challenged the current paradigm of human Mesenchymal
We found that adipose stem cells are poorly differentiated into bone and that their ability to differentiate into bone varies from cell line to cell line. The osteogenic differentiation ability of the adipose stem cell lines was distinguished through Alzarin Red Staining, and the cell lines that performed well and those that did not were subjected to RNA-seq analysis. The selected gene GSTT1 (glutathione S-transferase theta-1) gene is a member of a protein superfamily that catalyzes the conjugation of reduced glutathione to a variety of hydrophilic and hydrophobic compounds. The purpose of this study is to treat avascular necrosis and bone defect by improving bone regeneration with adipose stem cells introduced with a new GSTT1 gene related to osteogenic differentiation of adipose stem cells. In addition, the GSTT1 gene has the potential as a genetic marker that can select a specific cell line in the development of an adipose stem cell bone regeneration drug. Total RNA was extracted from each sample using the TRIzol reagent. Its concentration and purity were determined based on A260 and A260/A280, respectively, using a spectrophotometer. RNA sequencing library of each sample was prepared using a TruSeq RNA Library Prep Kit. RNA-seq experiments were performed for hADSCs. Cells were transfected with either GSTT1 at 100 nM or siControl (scramble control) by electroporation using a 1050 pulse voltage for 30 ms with 2 pulses using a 10 μl pipette tip. The purpose of this study is to discover genetic markers that can promote osteogenic differentiation of adipose stem cells (hADSCs) through mRNA-seq gene analysis. The selected GSTT1 gene was found to be associated with the enhancement of osteogenic differentiation of adipose stem cells. siRNA against GSTT1 reduced osteogenic differentiation of hADSCs, whereas GSTT1 overexpression enhanced osteogenic differentiation of hADSCs under osteogenic conditions. In this study, GSTT1 transgenic adipose stem cells could be used in regenerative medicine to improve bone differentiation. In addition, the GSTT1 gene has important significance as a marker for selecting adipose stem cells with potential for bone differentiation in the development of a therapeutic agent for bone regeneration cells.
Stem cells are known to have low levels of intracellular reactive oxygen species (ROS) and high levels of glutathione. ROS are thought to interact with several pathways that affect the transcription machinery required for stem cell differentiation, and are critical for maintaining stem cell function. In this study, we are developing a new fluorescent probe that rapidly and reversibly reacts with glutathione (GSH), the most abundant non-protein thiol in living cells that acts as an antioxidant and redox regulator. Multipotent perivascular progenitor cells derived from human ESCs (hESC-PVPCs): Differentiated ESCs as embryoid bodies in the presence of BMP4 to induce mesoderm differentiation followed by a simple cell selection strategy using attachment of single cells onto collagen-coated dishes. Differential gene expression profiling was performed among H9 hESCs, EBs induced by BMP4 and naturally selected CD140B+CD44+ population at Day 7 (PVPCs). Colony-forming assay: GSHhigh and GSHlow PVPCs were plated on 10-cm tissue culture-treated polystyrene dishes in triplicate in growth medium and cultured for 14 days. Transwell migration assay: GSHhigh and GSHlow PVPCs at passage 4 were resuspended at 1 × 106/mL in the migration medium and seeded in the upper chamber. The following human recombinant SDF-1 and PDGF-AA proteins were used as chemoattractants in the lower compartment. Probe-GSH conjugate shows shifts in fluorescence excitation and emission spectra that enables ratiometric measurement of GSH levels. Using these properties, stem cells can be purified by FACS-based technology according to intracellular GSH level. We are developing a protocol both for comparing GSH level in stem cell from different culture conditions and for preparing stem cells with high-GSH level . Our results reveal that GSHhigh PVPC purified by FACS show increased colony forming ability compared with that GSHlow PVPC, indicating that intracellular GSH contributes to the maintenance of stemness. Moreover, transplantation of GSHlow PVPC is more effective than that of GSHlow PVPC for cartilage regeneration in osteochondral defect. This technique enable FACS-based sorting of stem cells according to intracellular GSH levels and thus investigation of functional role of GSH (high antioxidant capacity) in the stem cell maintenance and chondrogenic differentiation.
Mesenchymal stem cells (MSC) have been used for bone regenerative applications as an alternative approach to bone grafting. Selecting the appropriate source of MSC is vital for the success of this therapeutic approach. MSC can be obtained from various tissues, but the most used sources of MSC are Bone marrow (BMSC), followed by adipose tissue (ASC). A donor-matched comparison of these two sources of MSC ensures robust and reliable results. Despite the similarities in morphology and immunophenotype of donor-matched ASC and BMSC, differences existed in their proliferation and in vitro differentiation potential, particularly osteogenic differentiation that was superior for BMSC, compared to ASC. However, these differences were substantially influenced by donor variations. In vivo, although the upregulated expression of osteogenesis-related genes in both ASC and BMSC, more bone was regenerated in the calvarial defects treated with BMSC compared to ASC, especially during the initial period of healing. According to these findings, compared to ASC, BMSC may result in faster regeneration and healing, when used for bone regenerative applications.
Introduction: Emerging therapies for regenerating skeletal tissues are focused on the repair of pathologically altered tissue by the transplantation of functionally competent cells and supportive matrices. Stem cells have the potential to differentiate into musculoskeletal tissue and may be the optimal cell source for such therapies. In vitro studies have demonstrated the ability of adult bone marrow stromal cells (MSC) and human embryonic stem cells (hES) to generate bone, but little is known regarding their potential to repair bone in vivo. Preclinical studies in animal models will allow investigation into the extent that regenerated tissue resembles functional and healthy tissue, and its potential clinical application. Aim: To assess whether adult and embryonic stem cells maintained their ability to form musculoskeletal tissues in vivo using diffusion chambers implanted into the peritoneal cavity of nude mice. Currently, ongoing experiments are assessing the use of MSCs and hES cells to regenerate bone in a rodent preclinical model. Methods: MSC cells and embryoid body-derived H9 hES cells were prepared as previously described (Haynesworth et al Bone 1992; Sottile et al Cloning
A promising application of Mesenchymal stem cells (MSCs) is the treatment of non-unions. Substituting bone grafts, MSCs are directly injected into the fracture gap. High cell viability seems to be a prerequisite for therapeutic success. Administration of the MSCs via injection creates shear stresses possibly damaging or destroying the cells. Aim of this study was to investigate the effect of the injection process on cell viability. MSCs were isolated and cultivated from femoral tissue of five subjects undergoing arthroplasty. Prior to injection, the cells were identified as MSCs. After dissolving to a concentration of 1 Million cells/ml, 1 ml of the suspension was injected through a cannula of 200 mm length and 2 mm diameter (14 G) with flow rates of 38 and 100 ml/min. The viability of the MSCs at different flow rates was evaluated by staining to detect the healthy cell fraction. It was analyzed statistically against a control group via the Kruskal-Wallis-test and for equivalence via the TOST procedure. Significance level was set to 5 %, equivalence margin to 20 %. The healthy cell fraction of the control group was 85.88 ± 2.98 %, 86.04 ± 2.53 % at 38 ml/min and 85.48 ± 1.64 % at 100 ml/min. There was no significant difference between the fraction of healthy cells (p = 0.99) for different volume flows, but a significant equivalence between the control group and the two volume flows (38 ml/min: p = 0.002, 100 ml/min: p = 0.001). When injecting MSC solutions, e.g. into a non-union, the viability of the injected cells does not deterioriate significant. The injecting technique is therefore feasible.
Background: It has been previously shown that in elderly patients with osteoporosis the Mesenchymal Stem Cell (MSC) growth rate and osteogenic potential is decreased. The aim of this study was to elucidate the effect of BMP-2, BMP-7, PTH and PDGF on MSC’s capacity to proliferate and differentiate. Methods: Cancellous bone samples were obtained from 10 patients (mean age 76 (70–84), (4 males)) suffering from lower extremity fractures and osteoporosis. Mes-enchymal
To test and evaluate the effectiveness of local injection of autologous fat-derived mesenchymal stem cells (MSCs) into fracture site to prevent non-union in a clinically relevant model. 5 male Wistar rats underwent the same surgical procedure of inducing non-union. A mid-shaft tibial osteotomy was made with 1mm non-critical gap. Periosteum was stripped around the two fracture ends. Then, the fracture was fixed by ante-grade intramedullary nail. The non-critical gap was maintained by a spacer with minimal effect on the healing surface area. At the same surgical time, subcutaneous fat was collected from the ipsilateral inguinal region and stem cells were isolated and cultured All the five fractures united fully after 8 weeks. There was a progressive increase in the callus radiopacity during the eight-week duration, the average radiopacity in the autologous fat-MSC injected group was significantly higher than that of the allogeneic MSCs, xenogeneic MSCs and the control group, The autologous fat-MSCs are effective in prevention of atrophic non-union by stimulation of the healing process leading to a solid union. The quality and speed of repair are higher than those of the other types of cell transplantation tested.
Aneurysmal bone cyst (ABC) of the spine is a locally aggressive benign lesion which can be treated by en bloc resection with wide margin to reduce the risk of local recurrence. To avoid morbidity associated with surgery, selective arterial embolization (SAE) can be considered the first-line treatment for ABCs of the spine. We previously introduced the use of autologous bone marrow concentrate (BMC) injection therapy to stimulate bone healing and regeneration in ABC of the spine. In this prospective study we described the clinical and radiological outcomes of percutaneous injection of autologous BMC in a series of patients affected by ABCs of the spine. Fourteen patients (6 male, 8 female) were treated between June 2014 and December 2019 with BMC injection for ABC of the spine. The mean age was 17.85 years. The mean follow up was 37.4 months (range 12–60 months). The dimension of the cyst and the degree of ossification were measured by Computed Tomography (CT) scans before the treatment and during follow-up visits. Six patients received a single dose of BMC, five patients received two doses and in three patients three doses of BMC were administered. The mean ossification of the cyst (expressed in Hounsfield units) increased statistically from 43.48±2.36 HU to 161.71±23.48 HU during follow-up time and the ossification was associated to an improvement of the clinical outcomes. The mean ossification over time was significantly higher in patients treated with a single injection compared to patients treated with multiple injections. No significant difference in ossification was found between cervical and non-cervical localization of the cyst. Moreover, the initial size of the cyst was not statistically associated with the degree of ossification during follow-up. The results of this study reinforce our previous evidence on the use of BMC as a valid alternative for spinal ABC management when SAE is contraindicated or ineffective. The initial size of the cyst and its localization does not influence the efficacy of the treatment. However, data suggest that BMC injection could be indicated as treatment of choice for spinal ABC in young adolescent women.
Extensive bone defects, caused by severe trauma or resection of large bone tumors, are difficult to treat. Regenerative medicine, including stem cell transplantation, may provide a novel solution for these intractable problems and improve the quality of life in affected patients. Adipose-derived stromal/stem cells (ASCs) have been extensively studied as cell sources for regenerative medicine due to their excellent proliferative capacity and the ability to obtain a large number of cells with minimal donor morbidity. However, the osteogenic potential of ASCs is lower than that of bone marrow-derived stromal/stem cells. To address this disadvantage, our group has employed various methods to enhance osteogenic differentiation of ASCs, including factors such as bone morphogenetic protein or Vitamin D, coculture with bone marrow stem cells, VEGF transfection, and gene transfer of Runx-2 and osterix. Recently, we mined a marker that can predict the osteogenic potential of ASC clones and also investigated the usefulness of the molecule as the enhancer of osteogenic differentiation of ASCs as well as its mechanism of action. Through RNA-seq gene analysis, we discovered that GSTT1 was the most distinguished gene marker between highly osteogenic and poorly osteogenic ASC clones. Knockdown of GSTT1 in high osteogenic ASCs by siGSTT1 treatment reduced mineralized matrix formation while GSTT1 overexpression by GSTT1 transfection or GSTT1 recombinant protein treatment enhanced osteogenic differentiation of low osteogenic ASCs. Metabolomic analysis confirmed significant changes of metabolites related to bone differentiation in ASCs transfected with GSTT1. A high total antioxidant capacity, low levels of cellular reactive oxygen species and increased GSH/GSSG ratios were also detected in GSTT1- transfected ASCs. GSTT1 can be a useful marker to screen the highly osteogenic ASC clones and also a therapeutic factor to enhance the osteogenic differentiation of poorly osteogenic ASC clones.
In this study, we developed biocompatible adhesive which enables implanted chondrogenic-enhanced hASCs being strongly fixed to the lesion site of defected cartilage. The bioengineered mussel adhesive protein (MAP) was produced and purified using a bacterial expression system as previously reported. The cell encapsulated coacervate was formulated with two polyelectrolyte, the MAP and 723kDa hyaluronic acid (HA). MAP formed liquid microdroplets with HA and subsequently gelated into microparticles, which is highly viscous and strongly adhesive. The MAP with chondro-induced hASCs were implanted on the osteochondral defect created in the patellar groove/condyle of OA-induced rabbits. Rabbits were allocated to three different groups as follows: Group1 – Fibrin only; Group2 – Fibrin with hASCs (1.5×106 chondro-induced hASCs); Group3; MAP with hASCs. The implanted cells were labeled with a fluorescent dye for in vivo visualization. After 35 days, fluorescent signals were more potently detected for MAP with hASCs group than Fibrin with hASCs group in osteochondral defect model. Moreover, histological assessment showed that MAP with hASCs group had the best healing and covered with hyaline cartilage-like tissue. The staining image shows that MAP with hASCs group were filled with perfectly differentiated chondrocytes. Although Fibrin with hASCs group had better healing than fibrin only group, it was filled with fibrous cartilage which owes its flexibility and toughness. As MAP with hASCs group has higher possibility of differentiating to complete cartilage, Fibrin only group and Fibrin with hASCs group have failed to treat OA by rehabilitating cartilage. In order to clarify the evidence of remaining human cell proving efficacy of newly developed bioadhesive, human nuclear staining was proceeded with sectioned rabbit cartilage tissue. The results explicitly showed MAP with hASCs group have retained more human cells than Fibrin only and Fibrin with hASCs groups. We investigated the waterproof bioadhesive supporting transplanted cells to attach to defect lengthily in harsh environment, which prevents cells from leaked to other region of cartilage. Collectively, the newly developed bio-adhesive, MAP, could be successfully applied in OA treatment as a waterproof bioadhesive with the capability of the strong adhesion to target defect sites.
Numerous investigators have described osteogenic differentiation of bone marrow stromal cells obtained from both murine and human sources over the past decade. The ease of access and large available quantity of adipose tissue, however, makes Adipose-Derived
Purpose: Athrophic non unions constitute a major problem in orthopaedic trauma. The main probably cause of atrophic non union is damage of the vascular system and dysfunctional regeneration of the vasculature at the area of the fracture. The most important hormonal pathway controlling angiogenesis is VEGF (Vascular Endothelial Growth Factor). The use of VEGF for enhancing bone healing in atrophic non unions could be a very promising solution for the future. An interesting alternative to the use of VEGF is the use of Erythropoietin (Epo). VEGF has been also reported to interact with Endothelial Progenitor Cells (EPCs). Our scope is to identify a possible new role for Epo as a valid substitute for VEGF through the clarification of the molecular and cellular pathways of fracture healing. Methods: A survey was conducted via internet (Med-line - Pubmed, Cochrane database, Scopus) and relevant textbooks. Results: It has been reported that Epo could induce increased chemotaxis, migration of Mesenchymal
Numerous investigators have described chondrogenic differentiation of bone marrow stromal cells obtained from both murine and human sources over the past decade. The ease of access and large available quantity of adipose tissue, however, makes Adipose-Derived