To date, few studies have investigated the feasibility of the loop-mediated isothermal amplification (LAMP) assay for identifying pathogens in tissue samples. This study aimed to investigate the feasibility of LAMP for the rapid detection of methicillin-susceptible or methicillin-resistant
Infection is one of the most serious complications of orthopedic surgery, particularly in implant-related procedures. Minimum inhibitory concentration (MIC) for identified bacteria is an important factor for successful antibiotic treatment. We investigated the MIC of antibiotics in
There is a lack of carriers for the local delivery of rifampicin (RIF), one of the cornerstone second defence antibiotic for
Background. The different biodegradable local antibiotic delivery systems are widely used in recent years. The aim of this study was to evaluate the bactericidal activity antibiotic loaded PerOssal pellet in vitro and its effectiveness in the treatment of
Objectives. Vancomycin and fosfomycin are antibiotics commonly used to treat methicillin-resistant
Abstract. OBJECTIVES.
Objectives. Implant-related infection is one of the most devastating complications in orthopaedic surgery. Many surface and/or material modifications have been developed in order to minimise this problem; however, most of the in vitro studies did not evaluate bacterial adhesion in the presence of eukaryotic cells, as stated by the ‘race for the surface’ theory. Moreover, the adherence of numerous clinical strains with different initial concentrations has not been studied. Methods. We describe a method for the study of bacterial adherence in the presence of preosteoblastic cells. For this purpose we mixed different concentrations of bacterial cells from collection and clinical strains of staphylococci isolated from implant-related infections with preosteoblastic cells, and analysed the minimal concentration of bacteria able to colonise the surface of the material with image analysis. Results. Our results show that clinical strains adhere to the material surface at lower concentrations than collection strains. A destructive effect of bacteria on preosteoblastic cells was also detected, especially with higher concentrations of bacteria. Conclusions. The method described herein can be used to evaluate the effect of surface modifications on bacterial adherence more accurately than conventional monoculture studies. Clinical strains behave differently than collection strains with respect to bacterial adherence. Cite this article: M. Martinez-Perez, C. Perez-Jorge, D. Lozano, S. Portal-Nuñez, R. Perez-Tanoira, A. Conde, M. A. Arenas, J. M. Hernandez-Lopez, J. J. de Damborenea, E. Gomez-Barrena, P. Esbrit, J. Esteban. Evaluation of bacterial adherence of clinical isolates of
This longitudinal microCT study revealed the osteolytic response to a
Introduction. Carriers of
INTRODUCTION. Staphylococci species account for ∼80 % of osteomyelitis cases. While the most severe infections are caused by
Background.
Serial section electron microscopy (SSEM) was initially developed to map the neural connections in the brain. SSEM eventually led to the term ‘Connectomics’ to be coined to describe process of following a cell or structure through a volume of tissue. This permits the true three-dimensionality to be appreciated and relationships between cells and structures. The purpose of this study was to utilize this methodology to interrogate S. aureus infected bone. Bone samples were harvested from mice tibia infected with S. aureus and were fixed, decalcified, and osmicated. The samples were paraffin embedded and 5-micron sections were cut to identify regions of bacterial invasion into the osteocyte-lacuna-canalicular-network (OLCN). This area was cut from the paraffin block, deparaffinized, post-fixed and reprocessed into epoxy resin. Serial sections were cut at 60nm and collected onto Kapton tape utilizing the Automated Tape-collecting Ultramicrotome (ATUMtome) system. Samples were mounted onto 4” silicon wafers and post-stained with 2% uranyl acetate followed by 0.3% lead citrate and carbon coated. A ZEISS GeminiSEM 450 scanning electron microscope fitted with an electron backscatter diffusion detector was used to image the sections. The image stack was aligned and segmented using the open-source software, VASTlite. 264 serial sections were imaged, representing approximately 40 × 45 × 15-micron (x, y, z) volume of tissue. 70% of the canaliculi demonstrated infiltration by S. aureus. This study demonstrates that SSEM can be applied to the skeletal system and provide a new solution to investigate the OLCN system. It is feasible that this methodology could be implemented to investigate why some canaliculi are resistant to colonization and potentially opens up a new direction for the prevention of chronic osteomyelitis. In order to make this a realistic target, automated segmentation methodologies utilizing machine learning must be developed and applied to the bone tissue datasets.
Failure of osseointegration and periprosthetic joint infection (PJI) are the two main reasons of implant failure after total joint replacement (TJR). Nanofiber (NF) implant surface coating represents an alternative local drug eluting device that improves osseointegration and decreases the risk of PJI. The purpose of this study was to investigate the therapeutic efficacies of erythromycin (EM)-loaded coaxial PLGA/PCL-PVA NF coating in a rat S. aureus-infected tibia model. NF coatings with 100mg and 1000mg EM were prepared. NF without EM was included as positive control. 56 Sprague Dawley rats were divided into 4 groups. A titanium pin (1.0-mm x 8 mm) was placed into the tibia through the intercondylar notch. S. aureus (SA) was introduced by both direct injection of 10 μl broth (1 × 104 CFU) into the medullary cavity and single dip of Ti pins into a similar solution prior to insertion. Rats were sacrificed at 8 and 16 weeks after surgery. The outcome measurements include μCT based quantitative osteolysis evaluation and hard tissue histology. Results: EM-NF coating (EM100 and EM1000) reduced osteolysis at 8 and 16 weeks, compared to EM0 and negative control. The effective infection control by EM-NFs was further confirmed by hard tissue section analysis. The Bone implant contact (BIC) and bone area fraction Occupancy (BAFO) within 200 µm of the surface of the pins were used to evaluate the osseointegration and new bone formation around the implants. At 16 weeks, the bone implant contact (BIC) of EM 100 (35.08%) was higher than that of negative control (3.43%) and EM0 (0%). The bone area fraction occupancy within 200 µm (BAFO) of EM100 (0.63 mm2) was higher than that of negative control (0.390 mm2) and EM0 (0.0 mm2). The BAFO of EM100 was also higher than that of EM1000 (0.3mm2). There was much less osteolysis observed with EM100 and EM1000 NF coatings at 16 weeks, as compared to EM0 positive control, p=0.08 and p=0.1, respectively. Osseointegration and periprosthetic bone formation was enhanced by EM-NFs, especially EM100. Data from this pilot study is promising for improving implant surface fabrication strategies.
The main problem of infected orthopaedic implants is that the presence of microorganisms in an organized biofilm making them difficult accessible for antibiotics. This biofilm consists of a complex community of microorganisms embedded in an extracellular matrix that forms on surfaces such as an implant. Non-contact induction heating uses pulsed electromagnetic fields to induce so-called ‘eddy currents’ within metal objects which causes them to heat up. This heat causes thermal damage to the bacterial biofilm hence killing the bacteria on the metal implant. The purpose of this study is to determine the effectiveness of induction heating on killing
We have compared the rates of infection and resistance in an animal model of an orthopaedic procedure which was contaminated with a low-dose inoculum of
Prosthetic joint infections (PJI) occur infrequently, but they represent the most devastating complication with high morbidity and substantial cost.
Summary Statement. A single, locally-delivered injection of a human placental product containing multipotent stromal cells reduced severity of infection in an immunosuppressed murine osteomyelitis model and eliminated infection in 25% of animals compared with 0% of controls without the use of antibiotics. Introduction. Implant–associated osteomyelitis is a serious orthopaedic condition and is particularly difficult to treat in immunosuppressed individuals. Despite great advancement in the field of biomaterials and pharmaceuticals, emerging patterns of antibiotic resistance, complex biofilm production and penetration of therapeutic concentrations of effective antibiotics into bone continue to represent unmet clinical challenges. The promise of adult multipotent stromal cells (MSCs) for tissue regeneration has been of intense interest in recent years. Among their many potential therapeutic uses, MSCs have also been shown to have direct antimicrobial properties. The objective of this study was to evaluate the efficacy of a locally–delivered human placental-based tissue product containing multipotent stromal cells (hAmSC) to reduce the severity of implant-associated
Summary.