Advertisement for orthosearch.org.uk
Results 1 - 20 of 1148
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 91 - 91
10 Feb 2023
Schwer E Grant J Taylor D Hewitt J Blyth P
Full Access

The triangular fibrocartilage complex (TFCC) is a known stabiliser of the distal radioulnar joint (DRUJ). An injury to these structures can result in significant disability including pain, weakness and joint stiffness. The contribution each of its components makes to the stability of the TFCC is not well understood. This study was undertaken to investigate the role of the individual ligaments of the TFCC and their contribution to joint stability. The study was undertaken in two parts. 30 cadaveric forearms were studied in each group. The ligaments of the TFCC were progressively sectioned and the resulting effect on the stability of the DRUJ was measured. A custom jig was created to apply a 20N force through the distal radius, with the ulna fixed. Experiment one measured the effect on DRUJ translation after TFCC sectioning. Experiment two added the measurement of rotational instability. Part one of the study showed that complete sectioning of the TFCC caused a mean increase in translation of 6.09(±3) mm. Sectioning the palmar radioulnar ligament of the TFCC caused the most translation. Part two demonstrated a change in rotation with a mean of 18 (± 6) degrees following sectioning of the TFCC. There was a progressive increase in rotational instability until the palmar radioulnar ligament was also sectioned. Linear translation consistently increased after sectioning all of the TFCC ligaments, confirming its importance for DRUJ stability. Sectioning of the palmar radioulnar ligament most commonly caused the greatest degree of translation. This suggests injury to this ligament would more likely result in a greater degree of translational instability. The increase in rotation also suggests that this type of instability would be symptomatic in a TFCC injury


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 128 - 128
1 Feb 2017
Lynch J Frisch N Banglmaier R Silverton C
Full Access

Background. The purpose of this study was to investigate the stability of dual-taper modular hip implants following impaction forces delivered in varying directions as measured by the distraction forces required to disassemble the components. Methods. Distraction of the head-neck and neck-stem tapers of dual-taper modular implants with 0°, 8°, and 15° neck angles were measured utilizing a custom-made distraction fixture attached to a servohydraulic materials test machine. Distraction was measured after hand-pressing the components as well as following a simulated firm hammer blow impaction. Impacts to the 0°, 8°, 15° necks were directed axially in-line with the neck, 10° anterior, and 10° proximal to the axis of the neck, respectively. Results. Distraction forces required to disassemble the neck-stem taper were significantly higher following impaction (1125- 1743 N) when compared to hand pressed assembly (248–302 N). Off-axis impacts resulted in significantly reduced mean (±95% CI) distraction forces (8° neck = 1125 ±117 N; 15° neck = 1212 ±73 N), which were up to 35% lower than the mean distraction force for axial impacts to the 0° neck (1743 ±138 N). Conclusion. The direction of impaction has a significant effect on the stability of dual taper modular implants, measured by the component distraction force. Greatest stability at the modular interface was achieved with impaction directed in line with the longitudinal axis of the taper junction. Off axis impaction of the 8° and 15° neck led to significantly reduced stability at the neck-stem junction


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 49 - 49
23 Feb 2023
Sorial R Coffey S Callary S
Full Access

Roentgen Stereophotogrammetric Analysis (RSA) is the gold standard for measuring implant micromotion thereby predicting implant loosening. Early migration has been associated with the risk of long-term clinical failure. We used RSA to assess the stability of the Australian designed cementless hip stem (Paragon TM) and now report our 5-year results. Fifty-three patients were prospectively and consecutively enrolled to receive a Paragon hip replacement. Tantalum beads were inserted into the bone as per RSA protocol and in the implant. RSA x-rays were taken at baseline 1–4 days post-surgery, at 6 weeks, 6 months, 12 months, 2 years, and 5 years. RSA was completed by an experienced, independent assessor. We reported the 2-year results on 46 hips (ANZJS 91 (3) March 2021 p398) and now present the 5-year results on 27 hips. From the 2-year cohort 5 patients had died, 8 patients were uncontactable, 1 patient was too unwell to attend, 5 patients had relocated too far away and declined. At 5 years the mean axial subsidence of the stem was 0.66mm (0.05 to 2.96); the mean rotation into retroversion was 0.49˚ (−0.78˚ to 2.09˚), rotation of the stem into valgus was −0.23˚ (−0.627˚ to 1.56˚). There was no detectable increase in subsidence or rotation between 6 weeks and 5 years. We compared our data to that published for the Corail cementless stem and a similar pattern of migration was noted, however greater rotational stability was achieved with the Paragon stem over a comparable follow-up period. The RSA results confirm that any minor motion of the Paragon cementless stem occurs in the first 6 weeks after which there is sustained stability for the next 5 years. The combination of a bi-planar wedge and transverse rectangular geometry provide excellent implant stability that is comparable to or better than other leading cementless stems


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 85 - 85
23 Feb 2023
Flynn S Lemoine M Boland F O'Brien F O'Byrne J
Full Access

Restoration a joint's articular surface following degenerative or traumatic pathology to the osteochondral unit pose a significant challenge. Recent advances have shown the utility of collagen-based scaffolds in the regeneration of osteochondral tissue. To provide these collagen scaffolds with the appropriate superstructure novel techniques in 3D printing have been investigated. This study investigates the use of polyɛ-caprolactone (PCL) collagen scaffolds in a porcine cadaveric model to establish the stability of the biomaterial once implanted. This study was performed in a porcine cadaveric knee model. 8mm defects were created in the medial femoral trochlea and repaired with a PCL collagen scaffold. Scaffolds were secured by one of three designs; Press Fit (PF), Press Fit with Rings (PFR), Press Fit with Fibrin Glue (PFFG). Mobilisation was simulated by mounting the pig legs on a continuous passive motion (CPM) machine for either 50 or 500 cycles. Biomechanical tensile testing was performed to examine the force required to displace the scaffold. 18 legs were used (6 PF, 6 PFR, 6 PFFG). Fixation remained intact in 17 of the cohort (94%). None of the PF or PFFG scaffolds displaced after CPM cycling. Mean peak forces required to displace the scaffold were highest in the PFFG group (3.173 Newtons, Standard deviation = 1.392N). The lowest peak forces were observed in the PFR group (0.871N, SD = 0.412N), while mean peak force observed in the PF group was 2.436N (SD = 0.768). There was a significant difference between PFFG and PFR (p = 0.005). There was no statistical significance in the relationship between the other groups. PCL reinforcement of collagen scaffolds provide an innovative solution for improving stiffness of the construct, allowing easier handling for the surgeon. Increasing the stiffness of the scaffold also allows press fit solutions for reliable fixation. Press fit PCL collagen scaffolds with and without fibrin glue provide dependable stability. Tensile testing provides an objective analysis of scaffold fixation. Further investigation of PCL collagen scaffolds in a live animal model to establish quality of osteochondral tissue regeneration are required


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 13 - 13
1 Dec 2022
Reeves J Spangenberg G Elwell J Stewart B Vanasse T Roche C Faber KJ Langohr GD
Full Access

Shoulder arthroplasty humeral stem design has evolved to accommodate patient anatomy characteristics. As a result, stems are available in numerous shapes, coatings, lengths, sizes, and vary by fixation method. This abundance of stem options creates a surgical paradox of choice. Metrics describing stem stability, including a stem's resistance to subsidence and micromotion, are important factors that should influence stem selection, but have yet to be assessed in response to the diametral (i.e., thickness) sizing of short stem humeral implants. Eight paired cadaveric humeri (age = 75±15 years) were reconstructed with surgeon selected ‘standard’ sized short-stemmed humeral implants, as well as 2mm ‘oversized’ implants. Stem sizing conditions were randomized to left and right humeral pairs. Following implantation, an anteroposterior radiograph was taken of each stem and the metaphyseal and diaphyseal fill ratios were quantified. Each humerus was then potted in polymethyl methacrylate bone cement and subjected to 2000 cycles of 90º forward flexion loading. At regular intervals during loading, stem subsidence and micromotion were assessed using a validated system of two optical markers attached to the stem and humeral pot (accuracy of <15µm). The metaphyseal fill ratio did not differ significantly between the oversized and standard stems (0.50±0.06 vs 0.50±0.10; P = 0.997, Power = 0.05); however, the diaphyseal fill ratio did (0.52±0.06 vs 0.45±0.07; P < 0.001, Power = 1.0). Neither fill ratio correlated significantly with stem subsidence or micromotion. Stem subsidence and micromotion were found to plateau following 400 cycles of loading. Oversizing stem thickness prevented implant head-back contact in all but one specimen with the least dense metaphyseal bone, while standard sizing only yielded incomplete head-back contact in the two subjects with the densest bone. Oversized stems subsided significantly less than their standard counterparts (standard: 1.4±0.6mm, oversized: 0.5±0.5mm; P = 0.018, Power = 0.748;), and resulted in slightly more micromotion (standard: 169±59µm, oversized: 187±52µm, P = 0.506, Power = 0.094,). Short stem diametral sizing (i.e., thickness) has an impact on stem subsidence and micromotion following humeral arthroplasty. In both cases, the resulting three-dimensional stem micromotion exceeded, the 150µm limit suggested for bone ingrowth, although that limit was derived from a uniaxial assessment. Though not statistically significant, the increased stem micromotion associated with stem oversizing may in-part be attributed to over-compacting the cancellous bed during broaching, which creates a denser, potentially smoother, interface, though this influence requires further assessment. The findings of the present investigation highlight the importance of proper short stem diametral sizing, as even a relatively small, 2mm, increase can negatively impact the subsidence and micromotion of the stem-bone construct. Future work should focus on developing tools and methods to support surgeons in what is currently a subjective process of stem selection


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 112 - 112
10 Feb 2023
Ross M Vince K Hoskins W
Full Access

Constrained implants with intra-medullary fixation are expedient for complex TKA. Constraint is associated with loosening, but can correction of deformity mitigate risk of loosening?. Primary TKA's with a non-linked constrained prosthesis from 2010-2018 were identified. Indications were ligamentous instability or intra-medullary fixation to bypass stress risers. All included fully cemented 30mm stem extensions on tibia and femur. If soft tissue stability was achieved, a posterior stabilized (PS) tibial insert was selected. Pre and post TKA full length radiographs showed. i. hip-knee-ankle angles (HKAA). ii. Kennedy Zone (KZ) where hip to ankle vector crosses knee joint. 77 TKA's in 68 patients, average age 69.3 years (41-89.5) with OA (65%) post-trauma (24.5%) and inflammatory arthropathy (10.5%). Pre-op radiographs (62 knees) showed varus in 37.0%. (HKAA: 4. o. -29. o. ), valgus in 59.6% (HKAA range 8. o. -41. o. ) and 2 knees in neutral. 13 cases deceased within 2 years were excluded. Six with 2 year follow up pending have not been revised. Mean follow-up is 6.1 yrs (2.4-11.9yrs). Long post-op radiographs showed 34 (57.6%) in central KZ (HKKA 180. o. +/- 2. o. ). . Thirteen (22.0%) were in mechanical varus (HKAA 3. o. -15. o. ) and 12 (20.3%) in mechanical valgus: HKAA (171. o. -178. o. ). Three failed with infection; 2 after ORIF and one with BMI>50. The greatest post op varus suffered peri-prosthetic fracture. There was no aseptic loosening or instability. Only full-length radiographs accurately measure alignment and very few similar studies exist. No cases failed by loosening or instability, but PPF followed persistent malalignment. Infection complicated prior ORIF and elevated BMI. This does not endorse indiscriminate use of mechanically constrained knee prostheses. Lower demand patients with complex arthropathy, especially severe deformity, benefit from fully cemented, non-linked constrained prostheses, with intra-medullary fixation. Hinges are not necessarily indicated, and rotational constraint does not lead to loosening


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 42 - 42
1 Feb 2020
Innocenti B Bori E Paszicsnyek T
Full Access

INTRODUCTION. Applying the proper amount of tension to knees collateral ligaments during surgery is a prerequisite to achieve optimal performance after TKA. It must be taken into account that lower values of ligament tension could lead to an instable joint while higher values could induce over-tensioning thus leading to problems at later follow-up: a “functional stability” must then be defined and achieved to guarantee the best results. In this study, an experimental cadaveric activity was performed to measure the minimum tension required to achieve functional stability in the knee joint. METHODS. Ten cadaveric knee specimens were investigated; each femur and tibia was fixed with polyurethane foam in specific designed 3D-printed fixtures and clamped to a loading frame. A constant displacement rate of 0.05 mm/s was applied to the femoral clamp in order to achieve joint stability and the relative force was measured by the machine: the lowest force guaranteeing joint stability was then determined to be the one corresponding to the slope change in the force/displacement curve, representing the activation of the elastic region of both collateral ligaments. The force span between the slack region and the found point was considered to be the tension required to reach the functional stability of the joint. This methodology was applied on intact knee, after ACL-resection and after further PCL-resection in order to simulate the knee behavior in CR and PS implants. The test was performed at 0, 30, 60 and 90° of flexion using a specifically designed device. Each configuration was analyzed three times for the sake of repeatability. RESULTS. Results demonstrated that an overall tension of 40–50N is sufficient to reach stability in native knee with intact cruciate ligaments. Similar values appear to be sufficient in an ACL-resected knee, while higher tension is required (up to 60N) for stability after ACL and PCL resection. Moreover, the tension required for stabilization was slightly higher at 60° of flexion compared to the one required at the other angles, reflecting thus the mid-flection instability behavior. DISCUSSION AND CONCLUSIONS. The results are in agreement to other experimental studies. 1,2. and show that the tensions necessary to stabilize a knee joint in different ligament conditions are way lower than the ones usually applied via tensioners nowadays. To reach functional stability, surgeons should consider such results intraoperatively to avoid laxity, mid-flexion instability or ligament over-tension


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 17 - 17
1 Jul 2020
Badre A Axford D Banayan S Johnson J King GJ
Full Access

The role of anconeus in elbow stability has been a long-standing debate. Anatomical and electromyographic studies have suggested a potential role as a stabilizer. However, to our knowledge, no clinical or biomechanical studies have investigated its role in improving the stability of a lateral collateral ligament (LCL) deficient elbow. Seven cadaveric upper extremities were mounted in an elbow motion simulator in the varus position. An LCL injured model was created by sectioning of the common extensor origin, and the LCL. The anconeus tendon and its aponeurosis were sutured in a Krackow fashion and tensioned to 10N and 20N through a transosseous tunnel at its origin. Varus-valgus angles and ulnohumeral rotations were recorded using an electromagnetic tracking system during simulated active elbow flexion with the forearm pronated and supinated. During active motion, the injured model resulted in a significant increase in varus angulation (5.3°±2.9°, P=.0001 pronation, 3.5°±3.4°, P=.001 supination) and external rotation (ER) (8.6°±5.8°, P=.001 pronation, 7.1°±6.1°, P=.003 supination) of the ulnohumeral articulation compared to the control state (varus angle −2.8°±3.4° pronation, −3.3°±3.2° supination, ER angle 2.1°±5.6° pronation, 1.6°±5.8° supination). Tensioning of the anconeus significantly decreased the varus angulation (−1.2°±4.5°, P=.006 for 10N in pronation, −3.9°±4°, P=.0001 for 20N in pronation, −4.3°±4°, P=.0001 for 10N in supination, −5.3°±4.2°, P=.0001 for 20N in supination) and ER angle (2.6°±4.5°, P=.008 for 10N in pronation, 0.3°±5°, P=.0001 for 20N in pronation, 0.1°±5.3°, P=.0001 for 10N in supination, −0.8°±5.3°, P=.0001 for 20N in supination) of the injured elbow. Comparing anconeus tensioning to the control state, there was no significant difference in varus-valgus angulation except with anconeus tensioning to 20N with the forearm in supination which resulted in less varus angulation (P=1 for 10N in pronation, P=.267 for 20N in pronation, P=.604 for 10N in supination, P=.030 for 20N in supination). Although there were statistically significant differences in ulnohumeral rotation between anconeus tensioning and the control state (except with anconeus tensioning to 10N with the forearm in pronation which was not significantly different), anconeus tensioning resulted in decreased external rotation angle compared to the control state (P=1 for 10N in pronation, P=.020 for 20N in pronation, P=.033 for 10N in supination, P=.001 for 20N in supination). In the highly unstable varus elbow orientation, anconeus tensioning restores the in vitro stability of an LCL deficient elbow during simulated active motion with the forearm in both pronation and supination. Interestingly, there was a significant difference in varus-valgus angulation between 20N anconeus tensioning with the forearm supinated and the control state, with less varus angulation for the anconeus tensioning which suggests that loads less than 20N is sufficient to restore varus stability during active motion with the forearm supinated. Similarly, the significant difference observed in ulnohumeral rotation between anconeus tensioning and the control state suggests that lesser degrees of anconeus tensioning would be sufficient to restore the posterolateral instability of an LCL deficient elbow. These results may have several clinical implications such as a potential role for anconeus strengthening in managing symptomatic lateral elbow instability


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 50 - 50
1 Feb 2021
Sanchez E Schilling C Grupp T Giurea A Verdonschot N Janssen D
Full Access

Introduction. Cementless total knee arthroplasty (TKA) implants use an interference fit to achieve fixation, which depends on the difference between the inner dimensions of the implant and outer dimensions of the bone. However, the most optimal interference fit is still unclear. A higher interference fit could lead to a superior fixation, but it could also cause bone abrasion and permanent deformation during implantation. Therefore, this study aims to investigate the effect of increasing the interference fit from 350 µm to 700 µm on the primary stability of cementless tibial implants by measuring micromotions and gaps at the bone-implant interface when subjected to two loading conditions. Methods. Two cementless e.motion® tibial components (Total Knee System, B. Braun) with different interference fit and surface coating were implanted in six pairs of relatively young human cadaver tibias (47–60 years). The Orthoload peak loads of gait (1960N) and squat (1935N) were applied to the specimens with a custom made load applicator (Figure 1A). The micromotions (shear displacement) and opening/closing gaps (normal displacement) were measured with Digital Image Correlation (DIC) in 6 different regions of interest (ROIs - Figure 1B). Two General Linear Mixed Models (GLMMs) were created with micromotions and interfacial gaps as dependent variables, bone quality, loading conditions, ROIs, and interference fit implants as independent variables, and the cadaver specimens as subject variables. Results. No significant difference was found for the micromotions between the two interference fit implants (gait p=0.755, squat p=0.232), nor for interfacial gaps (gait p=0.474, squat p=0.269). In contrast, significant differences were found for the ROIs in the two dependent variables (p < 0.001). The micromotions in the anterior ROIs (AM and AL) showed fewer micromotions for the low interference fit implant (Figure 2). More closing gaps (negative values) were seen for all ROIs (Figure 3), except in AM ROI during squat, which showed opening gaps (positive values). The posterior ROIs (PM and PL) showed more closing than seen in the anterior ROIs (AM and AL) for both loading configurations. Discussion. The results presented here demonstrate that increasing the interference fit from 350 µm to 700 µm does not affect the micromotions at the implant-bone interface of tibial TKA. While micromotions values were all below the threshold for bone ingrowth (40 µm), closing gaps were quite substantial (∼−150 µm). Since cementless e.motion® TKA components with an interference fit of 350 µm had shown a survival rate of 96.2% after 8.3 years postoperatively, interfacial gaps can be expected to be within a threshold value that can guarantee good primary stability. Moreover, increasing the interference fit to 700 µm can be considered a good range for an interference fit. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 65 - 65
1 Apr 2019
DesJardins J Stokes M Pietrykowski L Gambon T Greene B Bales C
Full Access

Introduction. There are over ½ million total knee replacement (TKR) procedures performed each year in the United States and is projected to increase to over 3.48 million by 2030. Concurrent with the increase in TKR procedures is a trend of younger patients receiving knee implants (under the age of 65). These younger patients are known to have a 5% lower implant survival rate at 8 years post-op compared to older patients (65+ years), and they are also known to live more active lifestyles that place higher demands on the durability and functional performance of the TKR device. Conventional TKR designs increase articular conformity to increase stability, but these articular constraints decrease patient range of knee motion, often limiting key measures of femoral rollback, A/P motion, and deep knee flexion. Without this articular constraint however, many patients report TKR “instability” during activities such as walking and stair descent, which can significantly impede confidence of movement. Therefore, there is a need for a TKR system that can offer enhanced stability while also maintaining active ranges of motion. Materials and Methods. A novel knee arthroplasty system has been designed that uses synthetic ligament systems that can be surgically replaced, to provide ligamentous stability and natural motion to increase the functional performance of the implant. A computational anatomical model (AnyBody) was developed that incorporated ligaments into an existing Journey II TKR. Ligaments were modeled and given biomechanical properties from literature. Simulated A/P drawer tests and knee flexion were analyzed for 2,916 possible cruciate ligament location and length combinations to determine the effects on the A/P stability of the TKR. A physical model was then constructed, and the design was verified by performing 110 N A/P drawer tests under 710 N of simulated body weight. Results and Discussion. As ACL insertion location moved posteriorly on the femur, it was found to decrease ACL ligament strain, enabling a higher range of flexion. In general, as ACL and PCL length increased, the A/P laxity of the TKR system increased linearly. Range of motion was found to be more dependent on ligament attachment location, and laxity was more dependent on ligament length. In this work, TKR stability was clearly affected by changes in synthetic ligament length and location. When comparing the laxity between a TKR with and without ligaments, the TKR with synthetic ligaments experienced significantly less displacement than a TKR without synthetic ligaments. Conclusions. The stability of a TKR can be increased while maintaining range of motion by incorporating synthetic ligaments into its design. The effectiveness of the ligaments was clearly dependent on two factors: length and location. It is imperative to the success of the implant to obtain the correct lengths and locations because improper placement or length can impact the outcome significantly. These results emphasize the need for a knee replacement that incorporates synthetic ligaments, with calibrated location and lengths, to significantly influence stability and possible kinematic performance of the TKR system, and potentially influencing long-term functional outcomes


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 79 - 79
1 Feb 2020
Schierjott R Hettich G Ringkamp A Baxmann M Grupp T
Full Access

Introduction. Primary stability is an important factor for long-term implant survival in total hip arthroplasty. In revision surgery, implant fixation becomes especially challenging due the acetabular bone defects, which are often present. Previous studies on primary stability of revision components often applied simplified geometrical defect shapes in a variety of sizes and locations. The objectives of this study were to (1) develop a realistic defect model in terms of defect volume and shape based on a clinically existing acetabular bone defect, (2) develop a surrogate acetabular test model, and (3) exemplarily apply the developed approach by testing the primary stability of a pressfit-cup with and without bone graft substitute (BGS). Materials & Methods. Based on clinical computed tomography data and a method previously published [1], volume and shape information of a representative defect, chosen in consultation with four senior hip revision surgeons, was derived. Volume and shape of the representative defect was approximated by nine reaming procedures with hemispherical acetabular reamers, resulting in a simplified defect with comparable volume (18.9 ml original vs. 18.8 ml simplified) and shape. From this simplified defect (Defect D), three additional defect models (Defect A, B, C) were derived by excluding certain reaming procedures, resulting in four defect models to step-wise test different acetabular revision components. A surrogate acetabular model made of 20 PCF polyurethane foam with the main support structures was developed [2]. For the exemplary test, three series for Defect A were defined: Native (acetabulum without defect), Empty (defect acetabulum without filling), Filled (defect acetabulum with BGS filling). All series were treated with a pressfit-cup and subjected to dynamic axial load in direction of maximum resultant force during level walking. Minimum load was 300 N and maximum load was increased step-wise from 600 N to 3000 N. Total relative motion between cup and foam, consisting of inducible displacement and migration, was assessed with the optical measurement system gom Aramis (gom GmbH, Braunschweig, DE). Results. Total relative motion increased with increasing load, with a maximum of 0.63 mm for Native, 0.86 mm for Filled, and 1.9 mm for Empty. At load stage 1800 N, total relative motion in Empty was 11.0-fold increased in comparison to Native, but could be reduced to a 3.3-fold increase in Filled. Discussion. The objective of this study was to develop a simplified, yet realistic and modular defect model which could be used to step-wise test different treatment strategies. Applicability of the developed test setup was shown by assessing primary stability of a pressfit-cup in a native, empty, and filled situation. The presented method could potentially be used as a modular test setup to compare different acetabular revision components in a standardized way. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 65 - 65
1 Apr 2018
DesJardins J Stokes M Pietrykowski L Gambon T Greene B Bales C
Full Access

Introduction. There are over one-half million total knee replacement (TKR) procedures performed each year in the United States and is projected to increase to over 3.48 million by 2030. Concurrent with the increase in TKR procedures is a trend of younger patients receiving knee implants (under the age of 65). These younger patients are known to have a 5% lower implant survival rate at 8 years post-op compared to older patients (65+ years), and they are also known to live more active lifestyles that place higher demands on the durability and functional performance of the TKR device. Conventional TKR designs increase articular conformity to increase stability, but these articular constraints decrease patient range of knee motion, often limiting key measures of femoral rollback, A/P motion, and deep knee flexion. Without this articular constraint however, many patients report TKR “instability” during activities such as walking and stair descent, which can significantly impede confidence of movement. Therefore there is a need for a TKR system that can offer enhanced stability while also maintaining active ranges of motion. Materials and Methods. A novel knee arthroplasty system was designed that uses synthetic ligament systems that can be surgically replaced, to provide ligamentous stability and natural motion to increase the functional performance of the implant. Using an anatomical knee model from the AnyBody software, a computational model that incorporated ligaments into an existing Journey II TKR was developed. Using the software ligaments were modeled and given biomechanical properties developed from equations from literature. Simulated A/P drawer tests and knee flexion test were analyzed for 2,916 possible cruciate ligament location and length combinations to determine the effects on the A/P stability of the TKR. A physical model was constructed, and the design was verified by performing 110 N A/P drawer tests under 710 N of simulated body weight. Results and Discussion. As ACL insertion location moved posteriorly on the femur, it was found to decrease ACL ligament strain, enabling a higher range of flexion. In general, as ACL and PCL length increased, the A/P laxity of the TKR system increased linearly. Range of motion was found to be more dependent on ligament attachment location, and laxity was more dependent on ligament length. In this work, TKR stability was clearly affected by changes in synthetic ligament length and location. When comparing the laxity between a TKR with and without ligaments, the TKR with synthetic ligaments experienced significantly less displacement than a TKR without synthetic ligaments as seen in Figure 1. Conclusions. This study shows that the stability of a TKR can be increased while maintaining range of motion by incorporating synthetic ligaments into this design. The effectiveness of the ligaments was clearly dependent on two factors: length and location, with incorrect lengths and locations significantly impairing ranges of motion. These results verify that a knee replacement can incorporate synthetic ligaments, and that with calibrated location and lengths, they can significantly influence stability and possible kinematic performance of the TKR system, and potentially influencing long-term functional outcomes. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 67 - 67
1 Feb 2020
Yoshida K Fukushima K Sakai R Uchiyama K Takahira N Ujihira M
Full Access

Introduction. Primary stability is achieved by the press fit technique, where an oversized component is inserted into an undersized reamed cavity. The major geometric design of an acetabular shell is hemispherical type. On the other one, there are the hemielliptical type acetabular shells for enhanced peripheral contact. In the case of developmental dysplasia of the hip (DDH), the aseptic loosening may be induced by instability due to decreased in the contact area between the acetabular shell and host bone. The aim of this study was to assess the effect of reaming size on the primary stability of two different outer geometry shells in DDH models. Materials and methods. The authors evaluated hemispherical (Continuum Acetabular Shell, Zimmer Biomet G.K.) and hemielliptical (Trabecular Metal Modular Acetabular Shell, Zimmer Biomet G.K.) acetabular shells. Both shells had a 50 mm outer diameter and same tantalum 3D highly porous surface. An acetabular bone model was prepared using a solid rigid polyurethane foam block with 20 pcf density (Sawbones, Pacific Research Laboratories Inc.) as a synthetic bone substrate. Press fit conditions were every 1 mm from 4 mm under reaming to 2 mm over reaming. To simulate the acetabular dysplasia the synthetic bone substrate was cut diagonally at 40°. Where, the acetabular inclination and cup-CE angle were assumed to 40° and 10°, respectively. Acetabular components were installed with 5 kN by a uniaxial universal testing machine (Autograph AGS-X, Shimadzu Corporation). Primary stability was evaluated by lever-out test. The lever-out test was performed in 4 mm undersized to 2 mm oversized reaming conditions. Lever out moment was calculated from the multiplication of the maximum load and the moment arm for primary stability of the shell. The sample size was 6 for each shell type. Results. The hemisphererical acetabular shell had the maximum lever out moment in 3 mm under reaming condition (7.4 ± 0.4 N·m). The hemielliptical acetabular shell had the maximum lever out moment in 1 mm under reaming condition (8.7 ± 0.8 N·m). Furthermore, the lever out moment of the hemielliptical acetabular shell was significantly 1.2 times greater by the t-test than the hemispherical acetabular shell under the maximum primary fixation conditions. Discussion. The risk parameter of the acetabular loosening is indicated the lack of lateral bony support. The hemielliptical shell was not adversely effected more than the hemispherical shell. Furthermore, the reaming condition of the most primary fixation on the hemielliptical shell was 1 mm under reaming, and was a more general operating procedure than the hemispherical shell (3 mm under reaming). From this study, it was suggested that the hemielliptical shell might be expected excellent clinical outcomes in severe acetabular dysplasia hips. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 3 - 3
1 Apr 2018
Joyal G Davignon R Schmidig G Gopalakrishnan A Rajaravivarma R Raja L Abitante P
Full Access

Introduction. A majority of the acetabular shells used today are designed to be press-fit into the acetabulum. Adequate initial stability of the press-fit implant is required to achieve biologic fixation, which provides long-term stability for the implant. Amongst other clinical factors, shell seating and initial stability are driven by the interaction between the implant's outer geometry and the prepared bone cavity. The goal of this study was to compare the seating and initial stability of commercially available hemispherical and rim-loading designs. Materials and Methods. The hemispherical test group (n=6) consisted of 66mm Trident Hemispherical shells (Stryker, Mahwah NJ) and the rim-loading test group (n=6) consisted of 66mm Trident PSL shells (Stryker, Mahwah NJ). The Trident PSL shell outer geometry is hemispherical at the dome and has a series of normalizations near the rim. The Trident Hemispherical shell outer geometry is completely hemispherical. Both shells are clinically successful and feature identical arc-deposited roughened CpTi with HA coatings on their outer geometry. Hemispherical cavities were machined in 20pcf polyurethane foam blocks (Pacific Research Laboratories, WA) to replicate the press-fit prescribed in each shell's surgical protocol. The cavity for the hemispherical design was machined to 65mm (1mm-under ream) and the cavity for the rim-loading design was machined to 67mm (1mm- over ream). Note that the rim-loading design features ∼2mm build-up of material at the rim when compared to the hemispherical design. The shells were seated into the foam blocks using a drop tower (Instron Dynatup 9250G, Instron Corporation, Norwood, MA) by applying 7 impacts of 6.58J/ea,. The number and energy of impacts are clinically relevant value obtained from surgeon data collection through a validated measurement technique. Seating height was measured from the shell rim to the cavity hemispherical equator (top surface foam block) using a height gage, thus, a low value indicates a deeply seated shell. A straight torque out bar was assembled to the threads at the shell dome hole and a linear load was applied with a MTS Mechanical Test Frame (MTS Corporation, Eden Prairie, MN) to create an angular displacement rate of 0.1 degrees/second about the shell center. Yield moment of the shell-cavity interface, representing failure of fixation, was calculated from the output of force, linear, displacement, and time. Two sample T-tests were conducted to determine statistical significance. Results. Seating height for the rim-loading design was 0.041 ± 0.005in (1.0 ± 0.1mm) compared to 0.049 ± 0.008in (1.2 ± 0.2mm) for the hemispherical design. Initial stability for the rim-loading design was 33.5 ± 2.9Nm compared to 29.9 ± 4.1Nm for the hemispherical design. Discussion. This study evaluated the seating height and initial stability of two different acetabular shell designs. Results indicate that there is no evidence for a difference in seating height (p > 0.05) and initial stability (p > 0.05) between rim-loading and hemispherical designs


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 118 - 118
1 Apr 2019
McKenna R Jacobs H Jones C Redgment A Talbot S Walter W Brighton R
Full Access

Introduction. In total knee arthroplasty, the aim is to relieve pain and provide a stable, functional knee. Sagittal stability is crucial in enabling a patient to return to functional activities. Knee implants with a medial pivot (MP) design are thought to more accurately reproduce the mechanics of the native joint, and potentially confer greater antero-posterior stability through the range of flexion than some other implant designs. Aim. This study aims to compare the sagittal stability of four different total knee arthroplasty implant designs. Method. Comparison was made between four different implant designs: medial pivot (MP), two different types of cruciate retaining (CR1 and CR 2) and deep dish (DD). A cohort of 30 Medial Pivot (MP) knees were compared with matched patients from each of the other designs, 10 in each group. Patients were matched for age, body mass index and time to follow up. Clinical examination was carried out by an orthopaedic surgeon blinded to implant type, and sagittal stability was tested using a KT1000 knee arthrometer, applying 67N of force at 30˚ and 90˚. Results. The MP knee was more stable than the CR1 knee at both 30º (mean movement: 1.37mm vs 2.48mm, p=0.037) and 90º (1.68mm vs 2.37mm, p=0.030). The MP knee was more stable than the CR2 knee at 30º (0.98mm vs1.33mm, p=0.013). The MP knee also demonstrated less movement at 90 º (0.98mm vs 1.33mm), but this was not statistically significant (p=0.156). The MP knee was more stable than the DD knee at 30 º (0.48mm vs 1.33mm, p=0.03) and 90 º (0.67mm vs 1.15mm, p=0.048). Overall the medial pivot design was more stable than all non-medial pivot designs at 30 º (0.8mm vs1.66mm, p=0.003) and 90 º (1.1mm vs 1.61mm, p= 0.008). Conclusion. Overall, the medial pivot design demonstrated significantly greater antero-posterior stability than all other design types included in this study. Correlation with patient reported outcome scales will allow insight into whether these statistically significant differences are also clinically significant


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 41 - 41
1 Apr 2018
Kamimura M Muratsu H Kanda Y Oshima T Koga T Matsumoto T Maruo A Miya H Kuroda R
Full Access

Introduction. Both measured resection technique and gap balancing technique have been important surgical concepts in total knee arthroplasty (TKA). Modified gap technique has been reported to be beneficial for the intra-operative soft tissue balancing in posterior-stabilizing (PS) -TKA. On the other hand, we have found joint distraction force changed soft tissue balance measurement and medial knee instability would be more likely with aiming at perfect ligament balance at extension in modified gap technique. The medial knee stability after TKA was reported to essential for post-operative clinical result. We have developed a new surgical concept named as “medial preserving gap technique” for varus type osteoarthritic (OA) knees to preserve medial knee stability and provide quantitative surgical technique using tensor device. The purpose of this study was to compare post-operative knee stability between medial preserving gap technique (MPGT) and measured resection technique (MRT) in PS-TKA. Material & Method. The subjects were 140 patients underwent primary unilateral PS-TKA for varus type OA knees. The surgical technique was MPGT in 70 patients and MRT in 70 patients. There were no significant differences between two groups in the pre-operative clinical features including age, sex, ROM and deformity. Originally developed off-set type tensor device was used to evaluate both center gap and varus angle with 40 lbs. of joint distraction force. The extension gap preparation was identical in both group. In MPGT group, femoral component size and external rotation angle were adjusted depending on the differences of center gaps and varus angles between extension and flexion before posterior femoral condylar osteotomy. The knee stabilities at extension and flexion were assessed by stress radiographies; varus-valgus stress test with extension and stress epicondylar view with flexion, at one-month and one-year after TKA. We measured joint opening distance (mm) at medial and lateral compartment at both knee extension and flexion. Joint opening distances were compared between two groups using unpaired t-test, and the difference between medial and lateral compartment in each group was compared using paired t- test (p<0.05). Results. Joint opening distances at medial compartments with both extension and flexion were significantly smaller than lateral in both groups. There were no significant differences in join opening distance between two groups at medial compartment, but those at lateral were significantly smaller in MPGT than MRT with both knee extension and flexion. Discussion. In the present study, we found MPGT resulted in equal postoperative medial knee stability as in MRT, and superior to MRT as for the lateral knee stability. This finding would be the result of different femoral external rotation angle and femoral component size selection between two groups. We used the difference of varus angle and center gap between flexion and extension for the femoral component size selection and external rotation angle in MPGT. Quantitative surgical concept; MPGT, was found to be safer and feasible gap technique in PS-TKA to preserving medial knee stability and control lateral laxity in varus type OA knee. MPGT would be an advantageous gap technique to enhance clinical outcome


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 127 - 127
1 Feb 2020
Paszicsnyek T Innocenti B Bori E Stiegler C
Full Access

Introduction. Functional stability is a new concept stating that lower tensions than expected are enough to achieve joint stability leading to proper function after TKA. To check this rationale clinically, a new electronic device (DLB bicon sensorplate) was used intraoperatively to measure ligament tension and allow the surgeon to proper balance the knee after TKA insertion. In this study a controlled clinical analysis at 1 YR follow-up is reported. Methods. A cohort of 25 patients was treated in a single centre, single surgeon study to quantify the influence of the use of this electronic device in the short- and midterm results (DLB Group). A control cohort of 25 patients were treated without the device (Control Group). All patients were monitored by the use of OKS, AKSS and FJS; beside that, the muscle function before and after the surgery was tested and a load distribution analysis was performed. The FU examinations were done after 6 weeks, 3 months, 6 months and 1 yr. All the patients finished the study and could be included. Results. DLB group showed an improvement of 10% in the OKS compared to the Control Group, even if the preoperative measurements were lower (OKS DLB Group improve from 18 to 44, Control group from 26 to 40). Also the AKSS shows an improvement around 10% in the DLB Group (38 to 97) compared to the Control Group (53 to 93); the knee score improved also in the same matter (DLB Group 32 to 91, Control Group 40 to 91). Similar improvement in the FJS was also found in the DLB Group and in the Control Group. The muscles function testing showed a faster recovery of the muscle status and restore of the original functionality in the DLB Group. DLB Group patients recovered approx. 1/3 of the time faster than Control Group ones. The load distribution analysis shows a better load distribution with a more normal gait in the DLB Group. Summary. In all PROMs the group treated by the support of the device showed a significant improvement and better clinical outcome, also the subjective patient satisfaction was higher in the DLB Group, where the proper ligament tension (aimed to functional stability) was achieved. Conclusion. The use of sensory devices to secure proper balancing is justified by several studies. This study proves the efficacy of using a sensory device intraoperatively to measure the necessary ligament tension to achieve functional stability in a controlled single centre study


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 2 - 2
1 Feb 2021
Pizzamiglio C Fattori A Rovere F Poon P Pressacco M
Full Access

Background. Stemless prostheses are recognized to be an effective solution for anatomic total shoulder arthroplasty (TSA) while providing bone preservation and shortest operating time. Reverse shoulder arthroplasty (RSA) with stemless has not showed the same effectiveness, as clinical and biomechanical performances strongly depend on the design. The main concern is related to stability and bone response due to the changed biomechanical conditions; few studies have analyzed these effects in anatomic designs through Finite Element Analysis (FEA), however there is currently no study analyzing the reverse configuration. Additionally, most of the studies do not consider the effect of changing the neck-shaft angle (NSA) resection of the humerus nor the proper assignment of spatial bone properties to the bone models used in the simulations. The aim of this FEA study is to analyze bone response and primary stability of the SMR Stemless prosthesis in reverse with two different NSA cuts and two different reverse angled liners, in bone models with properties assigned using a quantitative computed tomography (QCT) methodology. Methods. Sixteen fresh-frozen cadaveric humeri were modelled using the QCT-based finite element methodology. The humeri were CT-scanned with a hydroxyapatite phantom to allow spatial bone properties assignment [Fig. 1]. Two implanted SMR stemless reverse configurations were considered for each humerus: a 150°-NSA cut with a 0° liner and a 135°-NSA cut with a 7° sloped liner [Fig. 2]. A 105° abduction loading condition was simulated on both the implanted reverse models and the intact (anatomic) humerus; load components were derived from previous dynamic biomechanical simulations on RSA implants for the implanted stemless models and from the OrthoLoad database for the intact humeri. The postoperative bone volume expected to resorb or remodel [Fig. 3a] in the implanted humeri were compared with their intact models in sixteen metaphyseal regions of interest (four 5-mm thick layers parallel to the resection and four anatomical quadrants) by means of a three-way repeated measures ANOVA followed by post hoc tests with Bonferroni correction. In order to evaluate primary stability, micromotions at the bone-Trabecular Titanium interface [Fig. 3b] were compared between the two configurations using a Wilcoxon matched-pairs signed-rank test. The significance level α was set to 0.05. Results. With the exception of the most proximal layer (0.0 – 5.0 mm), the 150°-NSA configuration showed overall a statistically significant lower bone volume expected to resorb (p = 0.011). In terms of bone remodelling, the 150°-NSA configuration had again a better response, but fewer statistically significant differences were found. Regarding micromotions, there was a median decrease (Mdn = 3.2 μm) for the 135°-NSA configuration (Mdn = 40.3 μm) with respect to the 150°-NSA configuration (Mdn = 43.5 μm) but this difference was non-significant (p = 0.464). Conclusions. For the analyzed SMR Stemless configurations, these results suggest a reduction in the risk of bone resorption when a 0° liner is implanted with the humerus cut at 150°. The used QCT-based methodology will allow further investigation, as this study was limited to one single design and load case. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 7 - 7
1 Oct 2012
Van den Broeck J Wirix-Speetjens R Sloten JV
Full Access

In recent years 3D preoperative planning has become increasingly popular with orthopaedic surgeons. One technique that has shown to be successful in transferring this preoperative plan to the operating room is based on surgical templates that guide various surgical instruments. Such a patient-specific template is designed using both the 3D reconstructed anatomy and the preoperative plan and is then typically produced via additive manufacturing technology. The combination of a preoperative plan and a surgical template has the potential to result in a more accurate procedure than an unguided one, when the following three criteria are met: the template needs to achieve a stable fit on the surgical field, it needs to fit in a unique position, and the surgeon needs to be able to determine the correct, planned position during the surgery. When the template fails one of these conditions, it can be used incorrectly. Consequently the process could result in an inaccurate outcome. This research focuses on modelling the stability of a surgical template on bone. The relationship between the contact surface of the template and the resulting stability is investigated with a focus on methods to quantify the template stability. The model calculates a quality score on the designed contact surface, which reflects the likelihood of positioning the template on the bone in a stable position. The model used in this study has been experimentally validated to verify its ability to provide a reliable indication of the template stability. This was analysed using finite element analysis where multiple templates and support models with different contact surface shapes were created. The application of forces and moments in varying directions was simulated. Stability is then defined as the ability of a template to resist an applied force or moment. The displacements of the templates were computed and analysed. The results show a minimal displacement of less than 0.01 mm and a maximal displacement larger than 10 mm. The former is considered to be a very stable template design; the latter to be very unstable and hence, would result in an insecure contact. The geometry of the contact surface had a clear influence on the template stability. Overall, the coverage of curvature variations improved the stability of the template. The displacements of the different finite element simulations were used as criterion for ranking the tested template designs according to their stability on their corresponding model surface. This ranking is then compared to that resulting from the quality score of the stability model. Both rankings showed a similar trend. This evaluation phase thus indicates that the developed stability model can be used to predict the stability of a surgical template during the preoperative design process


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 111 - 111
1 Mar 2017
Reynolds R Walker P Buza J Borukhov I
Full Access

INTRODUCTION. Understanding the biomechanics of the anatomical knee is vital to innovations in implant design and surgical procedures. The anterior – posterior (AP) laxity is of particular importance in terms of functional outcomes. Most of the data on stability has been obtained on the unloaded knee, which does not relate to functional knee behavior. However, some studies have shown that AP laxity decreases under compression (1) (2). This implies that while the ligaments are the primary stabilizers under low loads, other mechanisms come into play in the loaded knee. It is hypothesized this decreased laxity with compressive loads is due to the following: the meniscus, which will restrain the femur in all directions; the cartilage, which will require energy as the femur displaces across the tibial surface in a plowing fashion; and the upwards slope of the anterior medial tibial plateau, which stabilizes the knee by a gravity mechanism. It is also hypothesized that the ACL will be the primary restraint for anterior tibial translation. METHODS. A test rig was designed where shear and compressive forces could be applied and the AP and vertical displacements measured (Figure 1). The AP motion was controlled by the air bearings and motor, allowing for the accurate application of the shear force. Position and force data were measured using load cells, potentiometers, and a linear variable differential transducer. Five knee specimens less than 60 years old and without osteoarthritis (OA), were evaluated at compressive loads of 0, 250, 500, 750 N, with the knee at 15° flexion. Three cycles of shear force at ±100 N constituted a test. The intact knee was tested, followed by testing after each of the following resections: LCL, MCL, PCL, ACL, medial meniscus, and lateral meniscus. RESULTS. The average displacement of the tibia without load was 6.17 mm anterior and −4.92 mm posterior. Under load the posterior translation of the tibia was reduced essentially to zero. After ACL resection, the anterior tibial displacement increased substantially, with a further increase after medial meniscus resection. Cartilage deformation had a minimal effect. DISCUSSION. The hypotheses that the ACL and the upwards tibial slope would provide stability under load were validated. The ACL was essential under all load conditions because the posterior tibial surface was flat (figure 2). The medial meniscus provided vertical stability, as a space buffer (figure 3), and in two specimens under load it provided the same restraint as the ACL (figure 2). The experiment was limited by lack of muscle action, the number of specimens, and a single flexion angle. SIGNIFICANCE. The test rig and methodology had capabilities exceeding those of previous work in determining the mechanisms of AP knee stability under load due to its frictionless air bearings. The results have application ranging from sports medicine to total knee design. The stabilizing effect of the tibial slope seen here validates tibial osteotomies for improved stability. The importance of reproducing ACL function in total knee design is emphasized. For figures/tables, please contact authors directly.