Advertisement for orthosearch.org.uk
Results 1 - 14 of 14
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 78 - 78
1 May 2016
Kang S Chang C Woo J Woo M Choi I Kim S
Full Access

Introduction

Even a number of studies have reported clinical outcomes after revision total knee arthroplasty (revision TKA), little information is still available on whether outcomes of patients undergoing a revision TKA as a second stage procedure because of infected TKA are poorer than those of the patients undergoing a single-stage revision TKA because of non-infectious causes. In addition, use of various revision prostheses in most previous studies may limit solid interpretation of the outcomes after revision TKA. This study sought to determine whether outcomes in patients undergoing revision TKA due to infected TKA would be different from those in patients undergoing revision TKA due to non-infectious causes.

Materials and Methods

We assessed 71 cases undergoing revision TKAs with use of a same revision system (Scorpio TS®, Stryker, Mahwah, NJ) from October 1999 to February 2012. All patients followed more than two years and mean follow-up period was 67 months (range: 24 – 168 months). Of them, thirty five patients underwent revisions due to infected TKA (group for infected TKA) while 36 patients due to non-infectious causes including loosening, wear, and/or instability (group for non-infected TKA). All patients in the group for infected TKA underwent two-stage revision surgeries while all patients in the group for non-infected TKA single stage revision surgeries. Comparative variables between two groups were preoperative range of motion (ROM) and American knee society (AKS) scores, postoperative ROM and AKS scores assessed at latest follow-up, amount of bone loss and requirement of stem assessed during the surgeries, and survival rate.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 74 - 74
1 Feb 2020
DeVito P Damodar D Berglund D Vakharia R Moeller E Giveans M Horn B Malarkey A Levy J
Full Access

Background. The purpose of this study was to determine if thresholds regarding the percentage of maximal improvement in the Simple Shoulder Test (SST) and American Shoulder and Elbow Surgery (ASES) score exist that predict “excellent” patient s­atisfaction (PS) following reverse total shoulder arthroplasty (RSA). Methods. Patients undergoing RSA using a single implant system were evaluated pre-operatively and at a minimum 2-year follow-up. Receiver-operating-characteristic (ROC) curve analysis determined thresholds to predict “excellent” PS by evaluating the percentage of maximal improvement for SST and ASES. Pre-operative factors were analyzed as independent predictors for achieving SST and ASES thresholds. Results. 198 (SST) and 196 (ASES) patients met inclusion criteria. For SST and ASES, ROC analysis identified 61.3% (p<.001) and 68.2% (p<.001) maximal improvement as the threshold for maximal predictability of “excellent” satisfaction respectively. Significant positive correlation between the percentage of maximum score achieved and “excellent” PS for both groups were found (r=.440, p<.001 for SST score; r=0.417, p<.001 for ASES score). Surgery on the dominant hand, greater baseline VAS Pain, and cuff arthropathy were independent predictors for achieving the SST and ASES threshold. Conclusion. Achievement of 61.3% of maximal SST score improvement and 68.3% of maximal ASES score improvement represent thresholds for the achievement of “excellent” satisfaction following RSA. Independent predictors of achieving these thresholds were dominant sided surgery and higher baseline pain VAS scores for SST, and rotator cuff arthropathy for ASES. Keywords. Percentage of maximal improvement; Predictors; American Shoulder and Elbow Surgery Score; Simply Shoulder Test; Reverse shoulder Arthroplasty; Satisfaction. Level of Evidence. Level III


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 49 - 49
1 Jul 2020
Gascoyne T Parashin S Teeter M Bohm E Laende E Dunbar MJ Turgeon T
Full Access

The purpose of this study was to examine the influence of weight-bearing on the measurement of in vivo wear of total knee replacements using model-based RSA at 1 and 2 years following surgery. Model-based RSA radiographs were collected for 106 patients who underwent primary TKR at a single institution. Supine RSA radiographs were obtained post-operatively and at 6-, 12-, and 24-months. Standing (weight-bearing) RSA radiographs were obtained at 12-months (n=45) and 24-months (n=48). All patients received the same knee design with a fixed, conventional PE insert of either a cruciate retaining or posterior stabilized design. Ethics approval for this study was obtained. In order to assess in vivo wear, a highly accurate 3-dimensional virtual model of each in vivo TKA was developed. Coordinate data from RSA radiographs (mbRSA v3.41, RSACore) were applied to digital implant models to reconstruct each patient's replaced knee joint in a virtual environment (Geomagic Studio, 3D Systems). Wear was assessed volumetrically (digital model overlap) on medial and lateral condyles separately, across each follow-up. Annual rate of wear was calculated for each patient as the slope of the linear best fit between wear and time-point. The influence of weight-bearing was assessed as the difference in annual wear rate between standing and supine exams. Age, BMI, and Oxford-12 knee improvement were measured against wear rates to determine correlations. Weight bearing wear measurement was most consistent and prevalent in the medial condyle with 35% negative wear rates for the lateral condyle. For the medial condyle, standing exams revealed higher mean wear rates at 1 and 2 years, supine, 16.3 mm3/yr (SD: 27.8) and 11.2 mm3/yr (SD: 18.5) versus standing, 51.3 mm3/yr (SD: 55.9) and 32.7 mm3/yr (SD: 31.7). The addition of weight-bearing increased the measured volume of wear for 78% of patients at 1 year (Avg: 32.4 mm3/yr) and 71% of patients at 2 years (Avg: 48.9 mm3/yr). There were no significant (95% CI) correlations between patient demographics and wear rates. Volumetric, weight-bearing wear measurement of TKR using model-based RSA determined an average of 33 mm3/yr at 2 years post-surgery for a modern, non-cross-linked polyethylene bearing. This value is comparable to wear rates obtained from retrieved TKRs. Weight-bearing exams produced better wear data with fewer negative wear rates and reduced variance. Limitations of this study include: supine patient imaging performed at post-op, no knee flexion performed, unknown patient activity level, and inability to distinguish wear from plastic creep or deformation under load. Strengths of this study include: large sample size of a single TKR system, linear regression of wear measurements and no requirement for implanted RSA beads with this method. Based on these results, in vivo volumetric wear of total knee replacement polyethylene can be reliably measured using model-based RSA and weight-bearing examinations in the short- to mid–term. Further work is needed to validate the accuracy of the measurements in vivo


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 73 - 73
1 Feb 2020
Gascoyne T Parashin S Teeter M Bohm E Laende E Dunbar M Turgeon T
Full Access

Purpose. The purpose of this study was to examine the influence of weight-bearing on the measurement of in vivo wear of total knee replacements using model-based RSA at 1 and 2 years following surgery. Methods. Model-based RSA radiographs were collected for 106 patients who underwent primary TKR at a single institution. Supine RSA radiographs were obtained post-operatively and at 6-, 12-, and 24-months. Standing (weight-bearing) RSA radiographs were obtained at 12-months (n=45) and 24-months (n=48). All patients received the same knee design with a fixed, conventional PE insert of either a cruciate retaining or posterior stabilized design. Ethics approval for this study was obtained. In order to assess in vivo wear, a highly accurate 3-dimensional virtual model of each in vivoTKA was developed. Coordinate data from RSA radiographs (mbRSA v3.41, RSACore) were applied to digital implant models to reconstruct each patient's replaced knee joint in a virtual environment (Geomagic Studio, 3D Systems). Wear was assessed volumetrically (digital model overlap) on medial and lateral condyles separately, across each follow-up. Annual rate of wear was calculated for each patient as the slope of the linear best fit between wear and time-point. The influence of weight-bearing was assessed as the difference in annual wear rate between standing and supine exams. Age, BMI, and Oxford-12 knee improvement were measured against wear rates to determine correlations. Results. Weight bearing wear measurement was most consistent and prevalent in the medial condyle with 0–4% of calculated wear rates being negative compared to 29–39% negative wear rates for the lateral condyle. For the medial condyle, standing exams revealed higher mean wear rates at 1 and 2 years; supine, 16.3 mm. 3. /yr (SD: 27.8) and 11.2 mm. 3. /yr (SD: 18.5) versus standing, 51.3 mm. 3. /yr (SD: 55.9) and 32.7 mm. 3. /yr (SD: 31.7). The addition of weight-bearing increased the measured volume of wear for 78% of patients at 1 year (Avg: 32.4 mm. 3. /yr) and 71% of patients at 2 years (Avg: 48.9 mm. 3. /yr). There were no significant (95% CI) correlations between patient demographics and wear rates. Discussion and Conclusion. This study demonstrated TKA wear to occur at a rate of approximately 10 mm. 3. /year and 39 mm. 3. /year in patients imaged supine versus standing, respectively, averaged over 2 years of clinical follow-up. In an effort to eliminate the effect of PE creep and deformation, wear was also calculated between 12 and 24 months as 9.3 mm. 3. (standing examinations), This value is comparable to wear rates obtained from retrieved TKRs. Weight-bearing exams produced better wear data with fewer negative wear rates and reduced variance. Limitations of this study include: supine patient imaging performed at post-op, no knee flexion performed, and unknown patient activity level. Strengths of this study include: large sample size of a single TKR system, linear regression of wear measurements and no requirement for implanted RSA beads with this method. Based on these results, in vivo volumetric wear of total knee replacement polyethylene can be reliably measured using model-based RSA and weight-bearing examinations in the short- to mid–term. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 9 - 9
1 Jan 2016
Goyal N Stulberg SD
Full Access

Introduction. Patient specific instrumentation (PSI) generates customized guides from an MRI- or CT-based preoperative plan for use in total knee arthroplasty (TKA). PSI software executes the preoperative planning process. Several manufacturers have developed proprietary PSI software for preoperative planning. It is possible that each proprietary software has a unique preoperative planning process, which may lead to variation in preoperative plans among manufactures and thus variation in the overall PSI technology. The purpose of this study was to determine whether different PSI software generate similar preoperative plans when applied to a single implant system and given identical MR images. Methods. In this prospective comparative study, we evaluated PSI preoperative plans generated by Materialise software and Zimmer Patient Specific Instruments software for 37 consecutive knees. All plans utilized the Zimmer Persona™ CR implant system and were approved by a single experienced surgeon blinded to the other software-generated preoperative plan. For each knee, the MRI reconstructions for both software programs were evaluated to qualitatively determine differences in bony landmark identification. The software-generated preoperative plans were assessed to determine differences in preoperative alignment, component sizes, and resection depth. PSI planned bone resection was compared to actual bone resection to assess the accuracy of intraoperative execution. Results. Materialise and Zimmer PSI software displayed differences in identification of bony landmarks in the femur and tibia. Zimmer software determined preoperative alignment to be 0.5° more varus (p=0.008) compared to Materialise software. Discordance in femoral component size prediction occurred in 37.8% of cases (p<0.001) with 11 cases differing by one size and 3 cases differing by two sizes. Tibial component size prediction was 32.4% discordant (p<0.001) with 12 cases differing by 1 size. In cases in which both software planned identical femoral component sizes, Zimmer software planned significantly more bone resection compared to Materialise in the medial posterior femur (1.5 mm, p<0.001) and lateral posterior femur (1.4 mm, p<0.001). Discussion. The present study suggests that there is notable variation in the PSI preoperative planning process of generating a preoperative plan from MR images. We found clinically significant differences with regard to bony landmark identification, component size selection, and predicted bone resection in the posterior femur between preoperative plans generated by two PSI software programs using identical MR images and a single implant system. Surgeons should be prepared to intraoperatively deviate from PSI selected size by 1 size. They should be aware that the inherent magnitude of error for PSI bone resection with regard to both planning and execution is within 2–3 mm. Users of PSI should acknowledge the variation in the preoperative planning process when using PSI software from different manufacturers. Manufacturers should continue to improve three-dimensional MRI reconstruction, bony landmark identification, preoperative alignment assessment, component size selection, and algorithms for bone resection in order to improve PSI preoperative planning process


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_14 | Pages 31 - 31
1 Mar 2013
Porteous A Murray J Robinson J Hassaballa M
Full Access

Aim. To assess the process of using patient matched cutting blocks in Primary TKA with respect to: radiology, the proposed engineering plans, the process in theatre and cost effectiveness. Background: Patient matched cutting blocks (PMCB) are the subject of much interest in primary TKA. Our unit has experience of over 100 cases with a single system. Method. We have analysed our initial experience with PMCB. We have compared the sizes of implants used in theatres versus the sizes predicted on the image-generated plans. We have assessed the potential time saving in theatre, during each case and in the turn-around time between cases. We have also looked at the number of trays of instruments used in PMCB versus non-PMCB cases. Results. In 5 cases repeat imaging was required, in 3 cases patient movement artefact meant that scans were of insufficient quality and in 2 cases with complex deformity, additional imaging was required to better define the deformity. The tibial size was change intra-operatively in comparison with the plan in 6 cases and on the femoral side, in 2 cases. In each case the change in size could have been predicted by more detailed analysis of the plan pre-operatively. Using PMCB did reduce procedure time but only by approximately 10 minutes. The effect on turn-around time was greater with approximately 20 minutes saved. This was mainly as a result of the standard 7 trays of instruments being reduced to 2 trays. The greatest saving was in the reduction of sterilisation cost which more that covered the cost of the radiology and the cutting block. Conclusion. PMCB technology does allow accurate prediction of implant sizes, but careful checking of the pre-operative plan allows improved accuracy. Theatre efficiency can be improved to potentially allow an extra case per day and the technology does pay for itself in increased efficiency and reduced sterilisation costs. MULTIPLE DISCLOSURES


Bone & Joint Open
Vol. 2, Issue 6 | Pages 405 - 410
18 Jun 2021
Yedulla NR Montgomery ZA Koolmees DS Battista EB Day CS

Aims

The purpose of our study was to determine which groups of orthopaedic providers favour virtual care, and analyze overall orthopaedic provider perceptions of virtual care. We hypothesize that providers with less clinical experience will favour virtual care, and that orthopaedic providers overall will show increased preference for virtual care during the COVID-19 pandemic and decreased preference during non-pandemic circumstances.

Methods

An orthopaedic research consortium at an academic medical system developed a survey examining provider perspectives regarding orthopaedic virtual care. Survey items were scored on a 1 to 5 Likert scale (1 = “strongly disagree”, 5 = “strongly agree”) and compared using nonparametric Mann-Whitney U test.


Introduction. The mobile-bearings were introduced in total knee arthroplasty (TKA) to improve the knee performance by simulating more closely ‘normal’ knee kinematics, and to increase the longevity of TKA by reducing the polyethylene wear and periprosthetic osteolysis. However, the superiority between posterior-stabilized mobile-bearing and fixed-bearing designs still remains controversial. The objective of the present study was to compare the mid-term results of Scorpio + Single Axis system (Stryker Howmedica Osteonics, Allendale, New Jersey) for the mobile-bearing knees and Duracon system (Stryker Howmedica Osteonics, Allendale, New Jersey) for the fixed bearing design with regard to clinical and roentgenographic outcome with special reference to any complications and survivorship. Methods. Prospective, randomized, double-blinded controlled study was carried out on 56 patients undergoing primary, unilateral total knee arthroplasty for osteoarthritis, who were divided into two groups. Group I received mobile-bearing knee prosthesis (29 patients) and Group 2 received fixed-bearing prosthesis (27 patients). The patients were assessed by a physical examination and knee scoring systems preoperatively, at a follow-up of three months, six months, and one year after surgery by independent researcher who was not part of the operating team, and was blinded as to the type of implant inserted. We used the Oxford knee score (OKS) and Knee society score (KSS), with Knee Society Knee Score (KSKS) and Knee Society Functional Score (KSFS) being the subsets. The questionnaire for OKS was printed in our national language, and handed over to the patient at each visit. Results. The Knee Society knee scores, pain scores, functional scores and Oxford knee scores were not statistically different (P > 0.05) between the two groups. Mean postoperative range-of-motion of mobile-bearing knees was significantly greater than that of fixed-bearing knees (127º versus 111º, P = 0.011). 72% of patients could sit cross legged, 48% could sit on the floor, and 17% could squat. Kaplan–Meier survival rate was 100%. No spin-out of mobile bearing was observed. The radiological analysis showed no osteolysis or implant loosening. Conclusion. Mobile-bearing, and fixed-bearing knees demonstrated no statistically significant difference in the Oxford knee score, Knee society score, and radiological outcome with 100% survivorship, at 4 to 6.5 years (mean: 5.5 years) follow up. However, the post-operative range-of-motion of mobile-bearing knees was significantly higher than the fixed-bearing designs (mean, 127° versus 111°; range, 95° to 145° versus 80° to 125°)


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 54 - 54
1 Mar 2017
Nguyen T Amundsen S Choi D Koch C Wright T Padgett D
Full Access

Introduction. Contemporary total knee systems accommodate for differential sizing between femoral and tibial components to allow surgeons to control soft tissue balancing and optimize rotation. One method some manufacturers use to allow differential sizing involves maintaining coronal articular congruency with a single radius of curvature throughout sizes while clipping the medial-lateral width, called a single coronal geometry system. Registry data show a 20% higher revision rate when the tibial component is smaller than the femur (downsizing) in the DePuy PFC system, a single coronal system, possibly from increased stresses from edge loading or varying articular congruency. We examined a different single coronal geometry knee system, Smith & Nephew Genesis II, to determine if edge loading is present in downsized tibial components by measuring area and location of deviation of the polyethylene articular surface damage. Methods. 45 Genesis II posterior-stabilized polyethylene inserts (12 matched and 33 downsized tibial components) were CT scanned. 3D reconstructions were registered to corresponding pristine component reconstructions, and 3D deviation maps of the retrieved articular surfaces relative to the pristine surfaces were created. Each map was exported as a point cloud to a custom MATLAB code to calculate the area and weighted center of deviation of the articular surfaces. An iterative k-means clustering algorithm was used to isolate regions of deviation, and a shrink-wrap algorithm was applied to calculate their areas. The area of deviation was calculated as the sum of all regions of deviation and was normalized to the area of the articular surface. The location of deviation was described using the weighted center of deviation and the location of maximum deviation on the articular surfaces relative to the center of the post (Fig. 1). Pearson product moment correlations were conducted to examine the correlation between length of implantation (LOI) and the medial and lateral areas of deviation for all specimens, matched components, and downsized components. Results. The mean LOIs for downsized and matched tibial components were not different (36±28 months vs 46±26 months, p=0.24). Areas of deviation for the medial and lateral sides for both downsized and matched components increased with LOI (p<0.001). Medial and lateral sides of matched retrievals were not different in location of maximum deviation, maximum deviation, and weighted center of deviation (p>0.4). The matched and downsized retrievals did not have different centers of deviation in the medial-lateral direction, maximum deviations, or locations of maximum deviations (p>0.1). Discussion. Our results suggest that downsizing the tibial component in the Genesis II system, a single coronal geometry system, did not affect the area or location of deviation on the articular surface. Overall, the weighted center of deviation remained close to the dwell point and did not change as a function of tibial downsizing. However, we saw deviation patterns biased peripherally for inserts with low LOI in both matched and downsized cohorts. With increasing LOI, the deviation expanded to cover the majority of the available articular surface. Our results suggest the need to further examine this and other systems determine the effects of differential sizing. For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 119 - 119
1 Feb 2017
Fitzwater F Shalhoub S Clary C Akhbari B Maletsky L
Full Access

Introduction. During primary total knee arthroplasty (TKA), surgeons occasionally encounter compromised bone and fixation cannot be achieved using a primary femoral component. Revision knee replacement components incorporate additional features to improve fixation, such as modular connection to sleeves or stems, and feature additional varus-valgus constraint in the post-cam mechanism to compensate for soft tissue laxity. The revision femoral component can be used in place of the primary femur to address fixation challenges; however, it is unclear if additional features of the revision femoral components adversely affect knee kinematics when compared to primary TKA components. The objective of this study was to compare weight-bearing tibiofemoral and patellofemoral kinematics between primary and revision femoral component with the primary tibial insert for a single knee replacement system. The hypothesis of the study was that kinematics for revision femoral components will be similar to kinematics of the primary femoral components. Methods. Eight cadaveric knees (age: 59±10 years, BMI 23.3±3.5) were implanted with a primary TKA system (ATTUNE™ Posterior Stabilized Total Knee Replacement System). Each knee was mounted and aligned in the Kansas Knee Simulator (Fig. 1) [1]. A deep knee bend was performed which flexed the knee from full extension to 110° flexion, while the medial-lateral translation, internal-external, and varus-valgus rotations at the ankle were unconstrained. The femoral component was then replaced with a revision femoral component of the same TKA system, articulating on the same primary insert component, and the deep knee bend was repeated. The translations of the lowest points (LP) of the medial and lateral femoral condyles along the superior-inferior axis of the tibia were calculated. In addition, tibiofemoral and patellofemoral kinematics were calculated for each cycle based on the Grood-Suntay coordinate system [2] [1]. The change in LP and patellofemoral kinematics from the primary to revision femurs were calculated. Student t-tests were performed at 5° increments of knee flexion to identify significant differences between the two implant types. Results. No significant differences were observed between primary and revision femur for both LP and patellofemoral kinematics (Fig 2,3). The revision femoral anterior-posterior lowest point translations were similar to that of the primary femur. Deviations in patellofemoral spin, tilt, and flexion were less than one degree throughout the range of flexion. Patellofemoral translations were less than .5 mm during mid-flexion and greatest deviations were observed during early flexion. Less than .5° deviation was observed in tibiofemoral VV and IE rotations. Discussion. Typical knee revision systems have compromised knee mechanics to improve femoral fixation, yielding poorer functional outcomes and high rates of reoperation [3, 4]. The primary and revision femoral components in this knee system have identical condylar articular geometry which explains the similarity in patellofemoral and tibiofemoral kinematics. Small difference in tibiofemoral kinematics could be a result of implant fixations using bone cement which slightly alters implant alignments between primary and revision surgeries. The revision femur resulted in similar kinematics and can be used during primary TKA when a stem is need for additional implant fixation without affecting the knee contact mechanics. For figures, please contact authors directly


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 54 - 54
1 May 2016
Goyal N Stulberg S
Full Access

Introduction. Given the association of osteoarthritis with obesity, the typical patient requiring total knee arthroplasty (TKA) is often obese. Obesity has been shown to negatively influence outcomes following TKA, as it is associated with increased perioperative complications and poorer clinical and functional outcomes. Achieving proper limb alignment can be more difficult in the obese patient, potentially requiring a longer operation compared to non-obese patients. Patient specific instrumentation (PSI), a technique that utilizes MR- or CT-based customized guides for intraoperative cutting block placement, may offer a more efficient alternative to manual instruments for the obese patient. We hypothesize that the additional information provided by a preoperative MRI or CT may allow surgeons to achieve better alignment in less time compared to manual instrumentation. The purpose of this study was to assess whether PSI offers an improved operation length or limb alignment compared to manual instruments for nonmorbidly and morbidly obese patients. Methods. In this retrospective cohort study, we evaluated 77 PSI TKA and 25 manual TKA performed in obese patients (BMI≥30) between February 2013 and May 2015. During this period, all patients underwent PSI TKA unless unable to undergo MR scanning. All cases were performed by a single experienced surgeon and utilized a single implant system (Zimmer Persona™). PSI cases were performed using the MR-based Zimmer Patient Specific Instrumentation system. Tourniquet times were recorded to determine length of operation. Long-standing radiographs were obtained preoperatively and 4-weeks postoperatively to evaluate limb alignment. Cases were subdivided by nonmorbid obesity (30≤BMI<40) and morbid obesity (BMI≥40) to assess the effect of increasing obesity on outcomes. Results. PSI and manual cohorts were similar with regards to age, gender, and preoperative alignment. Tourniquet time was significantly shorter in the PSI group for nonmorbidly obese patients (PSI 49.8 minutes vs manual 58.3 minutes; p=0.005) (Figure 1). Postoperative mechanical axis was similar between groups for both nonmorbidly obese (PSI 1.8° vs manual 2.9°; p=0.338) and morbidly obese patients (PSI 4.0° vs manual 3.6°; p=0.922). Mechanical axis outliers (greater than 3° neutral), though nonsignificant, were fewer in the PSI group for nonmorbidly obese (PSI 21.8% vs manual 35.3%; p=0.318) and morbidly obese patients (PSI 46.1% vs manual 75.0%; p=0.362). Discussion. We found that PSI significantly shortened operation length for nonmorbidly obese patients compared to manual instruments. Obesity is strongly associated with increased perioperative infection rates, as is prolonged operation length. The decreased operation length achieved with PSI in the nonmorbidly obese patient may as a consequence decrease infection rates, though further study is necessary. Though not statistically significant, PSI showed a trend toward decreasing overall mechanical axis outliers for both nonmorbidly obese and morbidly obese patients. The use of patient specific instrumentation compared to manual instruments has been controversial in the literature. However, patient specific instrumentation may be favorable in the obese patient, offering a shorter operation length and possibly improved alignment


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_9 | Pages 2 - 2
1 Feb 2013
McCann P Sarangi P Baker R Blom A Amirfeyz R
Full Access

Total Shoulder Resurfacing (TSR) provides a reliable solution for the treatment of glenohumeral arthritis. It confers a number of advantages over traditional joint replacement with stemmed humeral components, in terms of bone preservation and improved joint kinematics. This study aimed to determine if humeral reaming instruments produce a thermal insult to subchondral bone during TSR. This was tested in vivo on 13 patients (8 with rheumatoid arthritis and 5 with osteoarthritis) with a single reaming system and in vitro with three different humeral reaming systems on saw bone models. Real-time infrared thermal video imaging was used to assess the temperatures generated. Synthes Epoca instruments generated average temperatures of 40.7°. C. (SD 0.9°. C. ) in the rheumatoid group and 56.5°. C. (SD 0.87°. C. ) in the osteoarthritis group (p = 0.001). Irrigation with room temperature saline cooled the humeral head to 30°. C. (SD 1.2°. C. ). Saw bone analysis generated temperatures of 58.2°. C. (SD 0.79°. C. ) in the Synthes (Epoca) 59.9°. C. (SD 0.81°. C. ) in Biomet (Copeland) and 58.4°. C. (SD 0.88°. C. ) in the Depuy (CAP) reamers (p=0.12). Humeral reaming with power driven instruments generates considerable temperatures both in vivo and in vitro. This paper demonstrates that a significant thermal effect beyond the 47°. C. threshold needed to induce osteonecrosis is observed with humeral reamers, with little variation seen between manufacturers. Irrigation with room temperature saline cools the reamed bone to physiological levels, and should be performed regularly during this step in TSR


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 171 - 171
1 Mar 2013
Bonutti P Essner A Herrera L Longaray J Kester M
Full Access

It is difficult for surgeons to make the decision on which design or material to use given multiple available options for total knee arthroplasty. Due to the complex interaction of soft tissue, implant position, patient anatomy, and kinematic demands of the patient, the prosthetic design of a knee device has traditionally been more important than materials. The purpose of this study was to examine the overall influence of both implant design and materials on volumetric wear rates in an in vitro knee simulator study for two knee designs. Two different designs (single radius and J-curve) with two highly crosslinked materials (Sequentially crosslinked and annealed PE (X3®, Stryker Orthopaedics, Mahwah, NJ) (7.5 kGy moderately crosslinked UHMWPE (XLPE, Smith and Nephew, Memphis, TN)) were evaluated. The two designs tested were the Triathlon® CR knee system (single radius design)(Stryker Orthopaedics, Mahwah, NJ) and the Legion™ Oxinium® CR knee system (J-curve design) (Verilast™, Smith and Nephew, Memphis, TN). Three inserts per condition were tested in this study. This comparison incorporates the effects of both materials and designs: different femoral component materials, different tibial bearing materials, and implant geometry (J-curve vs. single radius saggital profile). All devices were tested under ISO 14243-3 normal walking using an MTS knee simulator for a total of 5 million cycles. Standard test protocols were used for cleaning, weighing and assessing the wear loss of the tibial inserts (ASTM F2025). Soak control specimens were used to correct for fluid absorption with weight loss data converted to volumetric data (by material density). Statistical analysis was performed using the Student's t-test. Total volume loss results are shown in Figure 1. Test results show a 36% reduction (p<0.05) in volume loss and a 30% reduction (p<0.05) in wear rate for the single radius design compared to the J-curve design, respectively. All comparisons are statistically significant by the t-test method (p<0.05). Visual examination of all worn inserts revealed typical wear scars and features on the condylar surfaces, including burnishing. Results indicate superior wear resistance for the single radius system. This finding indicates that a combination of implant design and prosthesis material plays a significant role in knee wear rates. The in vitro low volumetric wear observed in the single-radius prosthesis could theoretically influence long term survivorship in vivo, and supports the potential for improved durability and long term wear performance for this design when compared to a J-curved femoral component. Longer term clinical evidence such as published studies or outcomes reported in the available joint registries will be needed to establish whether any material or design can achieve a 30-year or longer outcome


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 54 - 54
1 Dec 2013
Szubski C Farias-Kovac M Hebeish M Klika A Mishra K Barsoum W
Full Access

Introduction:. The prevalence of total hip (THA) and knee arthroplasty (TKA) is growing dramatically, with more than 1 million procedures performed annually in the United States. As the cost of and demand for the newest orthopaedic implants continue to rise, the price paid to medical device companies for implants is a growing concern. Some high-volume healthcare institutions have adopted price capitation strategies to control costs, in which a flat purchase price is negotiated for all implant line items regardless of technology and material. The purpose of this study was to evaluate whether the implementation of price capitation in a large health system affected trends in THA and TKA premium implant selection by surgeons. A secondary objective was to compare selection trends between surgeons with an academic center affiliation and community practice surgeons, within a single health system. Methods:. All consecutive primary THA and TKA cases six months before (1/1/2011–6/30/2011) and after (8/1/2011–1/31/2012) implementation of a capitated pricing strategy (7/1/2011) were identified. Surgeon education regarding the new pricing policy was conducted for 1-month following implementation, and data during this time were omitted from the study. After exclusions (Figure 1), a total of 481 THA and 674 TKA from the large hospital, and 253 THA and 315 TKA from the two community hospitals comprised the final study cohort. A retrospective review of patient demographics and implant characteristics for each case was performed. Premium THA implants were defined by the existence of one of the following bearing surfaces: second (2G) or third generation (3G) highly cross-linked polyethylene liner with a ceramic or oxidized-zirconium femoral head, ceramic liner with a ceramic femoral head, or mobile-bearing system. Premium TKA implants were defined by the existence of at least one of the following criterion: mobile-bearing design, high-flexion design, oxidized-zirconium femoral component, and/or highly cross-linked polyethylene bearing surface. Pearson's chi-square analyses and Fisher's exact test were used to compare implant usage between pre- and post-capitated pricing time periods. Results:. Surgeons with an academic center affiliation increased premium THA implant usage from 65.77% to 70.27% (p = 0.29), while surgeons at the community hospitals selected fewer premium implants (36.36%) and did not change their practice (p = 0.80) (Figure 2). TKA implant usage with one or more premium criteria increased from 73.37% to 89.54% (p < 0.001) for surgeons with an academic affiliation (Figure 3). Premium TKA implants (particularly mobile-bearing) were used at greater rates by our community hospital surgeons before and after price capitation, with all TKA implants having at least one premium criteria. While there was a significant increase in the use of high-flexion knee systems by community hospital surgeons (p = 0.03) following price capitation, there was an unexpected decrease in use of highly cross-linked polyethylene (p = 0.03). Conclusions:. These results highlight the effect of price capitation on implant selection by academically affiliated and community practice surgeons. There was a clear trend towards premium implant usage in TKA with price capitation, particularly for surgeons with an academic practice. No differences were detected in premium THA implant selection for either group of surgeons