Posterior soft tissue repair is often performed in Total Hip Arthroplasty (THA). Many reports have shown the advantage of posterior soft tissue repair in reducing their prosthetic hip dislocation rates. We describe an easy and inexpensive way of passing sutures through small drill holes in the Greater Trocanter to re-attach muscle, tendon and capsule in a posterior soft tissue repair. By using a reversed monofilament suture on a straight needle held in artery forceps and passing this in a retrograde direction through a drill hole, a suture capturing device is produced. By capturing the long ends of sutures tied in the
Introduction. Even in localized collapse due to osteonecrosis of the femoral head, a femoral head can be preserved by rotational osteotomy. In addition to anterior rotation, originally described by Sugioka, much more correction can be obtained by posterior rotation. But, transtrochanteric rotational osteotomy needs rather extensive soft tissue release, such as complete capsulotomy and resection of
Introduction. Curved varus intertrochanteric osteotomy of the femur is an excellent and minimally invasive method for the treatment of osteonecrosis of the femoral head or osteoarthritis of the hip for joint preservation. However, the early postoperative complications of this procedure may be due to separation at the osteotomy site and an increase in varus angle due to early partial weight bearing. Methods. We modified the curved varus intertrochanteric osteotomy of the femur by performing an additional rotation. Regarding the surgical technique, curved varus osteotomy is performed at an angle of 30 degrees to the femoral shaft and an additional rotational osteotomy is also performed at an angle of 15 or 20 degrees to the osteotomy plane. Partial weight bearing with one-third body weight is permitted 3 weeks after surgery. Results. Curved varus intertrochanteric osteotomy of the femur was designed for developmental dysplastic hip by Nishio in 1969 and reported to have good outcomes in 1971. An important feature of this method is that the incidence of high riding of the greater trochanter or shortening of leg length is less than that in varus intertrochanteric osteotomy. Moreover, good contact at the osteotomy site and less lateral shift of the femoral shaft is observed. However, we have experienced a case of separation at the osteotomy site and increase of the varus angle in our hospital. Previous reports recommended that partial weight bearing with one-third body weight should be initiated after 5 weeks and full weight bearing after 6 months because the contact area is decreased at the osteotomy site by varus osteotomy. The post-operative recovery of the patients with total hip arthroplasty is rapid, therefore, we must consider important issues such as initiating the rehabilitation program early and reducing the duration of hospitalization. As per our experience, we think that partial weight bearing with one-third body weight should be initiated at 3 weeks. At the osteotomy site, we rotated the nearest bone segment to move it such that it intersects the proximal and distal bone cortex. Therefore, the osteotomy site will be stabilized and will have the ability to endure load. Another feature of this technique is that the partial removal of the necrotic area leads to an increase in the healthy load-bearing area. A limitation of this method is that an angle of an additional rotation is up to 30 degrees, because the joint capsule cannot be incised circumferentially and the
We dissected 20 cadaver hips in order to investigate the anatomy and excursion of the trochanteric muscles in relation to the posterior approach for total hip replacement. String models of each muscle were created and their excursion measured while the femur was moved between its anatomical position and the dislocated position. The position of the hip was determined by computer navigation. In contrast to previous studies which showed a separate insertion of piriformis and obturator internus, our findings indicated that piriformis inserted onto the superior and anterior margins of the greater trochanter through a conjoint tendon with obturator internus, and had connections to gluteus medius posteriorly. Division of these connections allowed lateral mobilisation of gluteus medius with minimal retraction. Analysis of the excursion of these muscles revealed that positioning the thigh for preparation of the femur through this approach elongated piriformis to a maximum of 182%, obturator internus to 185% and obturator externus to 220% of their resting lengths, which are above the thresholds for rupture of these muscles. Our findings suggested that gluteus medius may be protected from overstretching by release of its connection with the conjoint tendon. In addition, failure to detach piriformis or the obturators during a posterior approach for total hip replacement could potentially produce damage to these muscles because of over-stretching, obturator externus being the most vulnerable.
In order to determine the potential for an internervous safe zone, 20 hips from human cadavers were dissected to map out the precise pattern of innervation of the hip capsule. The results were illustrated in the form of a clock face. The reference point for measurement was the inferior acetabular notch, representing six o’clock. Capsular branches from between five and seven nerves contributed to each hip joint, and were found to innervate the capsule in a relatively constant pattern. An internervous safe zone was identified anterosuperiorly in an arc of 45° between the positions of one o’clock and half past two. Our study shows that there is an internervous zone that could be safely used in a capsule-retaining anterior, anterolateral or lateral approach to the hip, or during portal placement in hip arthroscopy.