Advertisement for orthosearch.org.uk
Results 1 - 20 of 246
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 34 - 34
11 Apr 2023
Kale S Mehra S Mehra K Shetty S Langade D Gunjotikar A Singh S
Full Access

Higher uric acid levels or hyperuricemia is a product of more uric acid production, dysfunctional renal excretion, or a combination of both leading to deposition of urate crystals in the joints and kidneys and has been strongly linked with the development of gout, that is, acute inflammatory arthritis. Uric acid levels have been suggested to depend on multiple factors including lifestyle, diet, alcohol consumption, etc. As these are risk parameters for hyperuricemia and since lifestyle choices vary amongst different Indian communities, we sought to study the prevalence of hyperuricemia in these communities. Also, large-scale data (in terms of gender, age, lifestyle, community) on the prevalence of hyperuricemia in subjects amongst different community populations, Hindu, Muslim, Sikh, and Christian was generated. In a retrospective study conducted at Dr. D. Y. Patil School of Medicine & Research Centre, Navi Mumbai from April 2018 to May 2021, information was gathered from four major communities on a range of indicators including serum uric acid levels followed by a thorough multilevel logistic analysis. We evaluated uric acid levels in 10,378 patients of four different communities. Outcomes were assessed biochemically as well as clinically based on the levels of serum uric acid. The mean serum uric acid levels were highest in Sikhs (7.6 mg%, n=732) followed by Christians (7.3 mg%, n=892) and then by Hindus (5.9 mg%, n=6846) and Muslims (5.6 mg%, n=1908). About 83.7% of Christians consumed meat in a non-vegetarian diet followed by 45.7% Muslims. Percentage of Christians who binge drink were highest whereas percentage of Sikh people in the heavy drinkers’ category were 5.2%. Further, 9.5% Hindus were current smokers followed by 7.8% Sikhs who smoked at present. Overall, our study of 10,378 patients demonstrated that the serum uric acid levels varied from one Indian community to another due to varying external factors like diet, age, lifestyle, and addictions. Thus, lifestyle modification in communities with higher serum uric acid levels is highly advocated and this may reduce the healthcare burden of gouty arthritis in these communities


Bone & Joint Research
Vol. 9, Issue 3 | Pages 146 - 151
1 Mar 2020
Waldstein W Koller U Springer B Kolbitsch P Brodner W Windhager R Lass R

Aims. Second-generation metal-on-metal (MoM) articulations in total hip arthroplasty (THA) were introduced in order to reduce wear-related complications. The current study reports on the serum cobalt levels and the clinical outcome at a minimum of 20 years following THA with a MoM (Metasul) or a ceramic-on-polyethylene (CoP) bearing. Methods. The present study provides an update of a previously published prospective randomized controlled study, evaluating the serum cobalt levels of a consecutive cohort of 100 patients following THA with a MoM or a CoP articulation. A total of 31 patients were available for clinical and radiological follow-up examination. After exclusion of 11 patients because of other cobalt-containing implants, 20 patients (MoM (n = 11); CoP (n = 9)) with a mean age of 69 years (42 to 97) were analyzed. Serum cobalt levels were compared to serum cobalt levels five years out of surgery. Results. The median cobalt concentration in the MoM group was 1.04 μg/l (interquartile range (IQR) 0.64 to 1.70) at a mean of 21 years (20 to 24) postoperatively and these values were similar (p = 0.799) to cobalt levels at five years. In the CoP control group, the median cobalt levels were below the detection limit (< 0.3 μg/l; median 0.15 μg/l, IQR 0.15 to 0.75) at 20 years. The mean Harris Hip Score was 91.4 points (61 to 100) in the MoM group and 92.8 points (63 to 100) in the CoP group. Conclusion. This study represents the longest follow-up series evaluating the serum cobalt levels after 28 mm head MoM bearing THA and shows that serum cobalt concentrations remain at low levels at a mean of 21 years (20 to 24) after implantation. Cite this article:Bone Joint Res. 2020;9(3):145–150


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 30 - 30
4 Apr 2023
Neunaber C Long Y Noack S Krettek C Bundkirchen K
Full Access

Due to their immunomodulatory and regenerative capacity, human bone marrow-derived mesenchymal stromal cells (hBMSCs) are promising in the treatment of polytrauma patients. However, few studies evaluated the effects of sera from polytraumatized patients on hBMSCs. The aim of this study was to explore changes in hBMSCs exposed to serum from polytrauma patients from different time points after trauma. Sera from 84 patients on day 1 (D1), 5 (D5) and 10 (D10) after polytrauma (ISS ≥ 16) were pooled respectively to test the differential influence on hBMSC. As a control, sera from three healthy age- and gender-matched donors (HS) were collected. The pooled sera were analyzed by Multicytokine Array for pro-/anti-inflammatory cytokines. For the cell culture experiments, hBMSCs from four healthy donors were used. The influence of the different sera on hBMSC regarding cell proliferation, colony forming unit-fibroblast (CFU-F) assay, cell viability and toxicity, cell migration, as well as osteogenic and chondrogenic differentiation was analyzed. One-Way-ANOVA and LSD-test were used for the parametric, Kruskal-Wallis-test for non-parametric data. p≤0.05 was considered as statistically significant. The results showed that D5 serum reduced hBMSCs cell proliferation capacity by 41.26% (p=0.000) compared with HS and increased the proportion of dead cells by 3.19% (p=0.008) and 2.25% (p=0.020) compared with D1 and D10. The frequency of CFU-F was reduced by 49.08% (p=0.041) in D5 and 53.99% (p=0.027) in D10 compared with HS, whereas the other parameters were not influenced. The serological effect of polytrauma on hBMSCs was related to the time after trauma. It is disadvantageous to use BMSCs in polytraumatized patients five days after the incidence as obvious cytological changes could be found at that time point. However, it is promising to use hBMSCs to treat polytrauma after 10 days, combined with the concept of “Damage Control Orthopaedics” (DCO)


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 128 - 128
4 Apr 2023
Li M Wu G Liu Y
Full Access

Miniscrew implants (MSIs) are widely used to provide absolute anchorage for the orthodontic treatment. However, the application of MSIs is limited by the relatively high failure rate (22.86%). In this study, we wished to investigate the effects of amorphous and crystalline biomimetic calcium phosphate coating on the surfaces of MSIs with or without the incorporated BSA for the osteointegration process with an aim to facilitate the early loading of MSIs. Amorphous and crystalline coatings were prepared on titanium mini-pin implants. Characterizations of coatings were examined by Scanning electron microscopy (SEM), Confocal laser-scanning dual-channel-fluorescence microscopy (CLSM) and Fourier-transform infrared spectroscopy (FTIR). The loading and release kinetics of bovine serum albumin (BSA) were evaluated by Enzyme linked immunosorbent assay (ELISA). Activity of alkaline phosphate (ALP) was measured by using the primary osteoblasts. In vivo, a model of metaphyseal tibial implantation in rats was used (n=6 rats per group). We had 6 different groups: no coating no BSA, no coating but with surface adsorption of BSA and incorporation of BSA in the biomimetic coating in the amorphous and crystalline coatings. Time points were 3 days, 1, 2 and 4 weeks. Histological and histomorphometric analysis were performed and the bone to implant contact (BIC) of each group was compared. In vitro, the incorporation of BSA changed the crystalline coating from sharp plates into curly plates, and the crystalline coating showed slow-release profile. The incorporation of BSA in crystalline coating significantly decreased the activity of ALP in vitro. In vivo study, the earliest significant increase of BIC appeared in crystalline coating group at one week. The crystalline coating can serve as a carrier and slow release system for the bioactive agent and accelerate osteoconductivity at early stage in vivo. The presence of BSA is not favorable for the early establishment of osteointegration


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 78 - 78
1 May 2017
Pereira M Gohin S Lund N Hvid A Smitham P Oddy M Reichert I Chenu C
Full Access

The increased incidence of type 2 Diabetes Mellitus is associated with an impaired skeletal structure and a higher prevalence of bone fractures. Sclerostin is a negative regulator of bone formation produced by osteocytes and there is recent evidence that its expression in serum is elevated in diabetic patients compared to control subjects. In this study, we test whether hyperglycemia affects serum and bone sclerostin levels in a rat model of type 2 Diabetes as well as sclerostin production by osteoblasts in culture. We used Zucker diabetic fatty (ZDF) male rats (n=6) that spontaneously develop obesity and frank diabetes around 8–9 weeks of age and Zucker lean rats as controls (n=6) to examine sclerostin expression in serum at 9, 11 and 13 weeks using a specific ELISA. Sclerostin expression in bone tibiae was examined at 12 weeks using immunocytochemistry. Rat osteoblast-like cells UMR-106 were cultured in the presence of increasing concentrations of glucose (5, 11, 22 and 44 mM) during 48 hours and sclerostin mRNA expression and release in the supernatant determined by quantitative PCR and ELISA, respectively. Our results show that serum sclerostin levels are higher in the diabetic rats compared to lean rats at 9 weeks (+ 140%, p<0.01). Our preliminary results using immunocytochemistry for sclerostin did not show any major difference in sclerostin expression in tibiae of diabetic rats compared to lean ones, although we observed many osteocytic empty lacunae in cortical bone from diabetic rats. Glucose dose-dependent stimulated sclerostin mRNA and protein production in mature UMR106 cells while it had no effect on osteocalcin expression. Altogether, our data suggest that sclerostin production by mature osteoblasts is increased by hyperglycemia in vitro and enhanced in serum of diabetic rats. Furthers studies are required to determine whether sclerostin could contribute to the deleterious effect of Diabetes on bone


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 10 | Pages 1426 - 1433
1 Oct 2005
Kobayashi T Watanabe H Yanagawa T Tsutsumi S Kayakabe M Shinozaki T Higuchi H Takagishi K

Human bone-marrow mesenchymal stem cells have an important role in the repair of musculoskeletal tissues by migrating from the bone marrow into the injured site and undergoing differentiation. We investigated the use of autologous human serum as a substitute for fetal bovine serum in the ex vivo expansion medium to avoid the transmission of dangerous transfectants during clinical reconstruction procedures. Autologous human serum was as effective in stimulating growth of bone-marrow stem cells as fetal bovine serum. Furthermore, medium supplemented with autologous human serum was more effective in promoting motility than medium with fetal bovine serum in all cases. Addition of B-fibroblast growth factor to medium with human serum stimulated growth, but not motility. Our results suggest that autologous human serum may provide sufficient ex vivo expansion of human bone-marrow mesenchymal stem cells possessing multidifferentiation potential and may be better than fetal bovine serum in preserving high motility


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 84 - 84
1 Dec 2020
Gümüşoğlu E Öztuna FV Asfuroğlu ZM Demirbağ HO Aktaş S Kızıltuğ MT Erdal ME
Full Access

Fracture healing is an issue that has not yet been fully elucidated. It is generally accepted in the literature that head trauma accelerates fracture healing and causes higher volume callus tissue. Recent studies have examined the relationship between head trauma and fracture healing more molecularly. Based on this research; the aim of this study is to show the effect of head trauma on fracture healing radiologically and histologically and to investigate the relationship between serum β-Catenin level and fracture healing with the experiment we performed on rats. A total of 36 Wistar Albino female rats with a mean age of 24 weeks were included in the study with the permission of Mersin University Animal Experiments Local Ethics Committee. Six rats in the first group were not traumatized and their blood samples were collected on the day of the experiment started, end of the third week and end of the sixth week. In the second group, only head trauma was performed and blood samples were collected at the end of the third and sixth weeks. In the third group, only open femoral fracture model was applied, blood samples were collected at the third and sixth weeks and AP and Lateral radiographs of the fractured femurs were taken. After sacrification, femurs were dissected from the surrounding soft tissues and subjected to histological examination. In the fourth group, both head trauma and open femur fracture model were applied, blood samples were collected at the end of third and sixth weeks and AP and Lateral radiographs of the fractured femurs were taken. After sacrification, femurs were dissected from the surrounding soft tissues and subjected to histological examination. The expression level of β-Catenin was measured by PCR from all blood samples. Direct radiographs of the third and fourth groups at 3 and 6 weeks were evaluated by two orthopedists according to Rust and Lane & Sandhu scoring system. The histomorphometric examination was performed by evaluating the Huo scoring and the ratio of fracture callus components (cartilage callus, bone callus, fibrous callus) to areas. According to PCR analysis, the change of expression of β-Catenin by weeks was not statistically significant in the first and second groups. However, a statistically significant decrease was observed in the 0–6 week interval in the third and fourth groups (p = 0.002, p <0.0001, respectively). In the radiological examination, the union scores of the rats with head trauma + femoral fracture were higher than the isolated femoral fractures at 3 weeks and 6 weeks. In histomorphometric examination, no statistically significant difference was found between head trauma + femur fracture group and isolated femur fracture group. In addition, there was no correlation between the groups in the correlation studies between radiological findings, histomorphmetric findings and PCR findings. Considering that each molecule involved in fracture healing processes has a time interval and concentration; We concluded that the expression levels of β-catenin can be repeated in smaller time periods including the early stages of fracture healing


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 5 | Pages 912 - 917
1 Sep 1998
Granchi D Verri E Ciapetti G Stea S Savarino L Sudanese A Mieti M Rotini R Dallari D Zinghi G Montanaro L

Our aim was to determine if the serum levels of bone-resorbing cytokines (IL-1β, TNF-α, IL-6, GM-CSF) are altered in patients with aseptic loosening of a total hip prosthesis, and if such levels are influenced by the type of implant. We determined cytokine levels in sera from 35 patients before revision for failed total hip arthroplasty and compared them with those in 25 healthy donors. We also assessed the soluble receptor of interleukin-2 (sIL-2r) in serum as an indication of a specific immune reaction against the implant. Our findings showed that the sIL-2r and TNF-α serum level did not change. The IL-6 level was not significantly altered, but was higher in patients with TiAlV prostheses than in those with a CrCoMo implant and in patients with cemented prostheses. The IL-1β level was found to be higher in those with a TiAlV cemented prosthesis than in the control group (p = 0.0001) and other groups of patients (p = 0.003 v uncemented TiAlV, p = 0.01 v cemented CrCoMo, p = 0.001 v uncemented CrCoMo). The GM-CSF level significantly increased in patients compared with healthy subjects (p = 0.008), and it was higher in those with cemented than with uncemented implants (p = 0.01). Only patients with cementless CrCoMo prostheses had levels of GM-CSF similar to those of the control group. The highest GM-CSF concentrations were observed in patients treated with non-steroidal anti-inflammatory drugs (NSAIDs) in the last months before revision (p = 0.04). In addition, when massive osteolysis was observed, the level of GM-CSF tended to decrease to that of the control group


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 2 | Pages 316 - 321
1 Mar 1997
Brodner W Bitzan P Meisinger V Kaider A Gottsauner-Wolf F Kotz R

We determined serum cobalt levels in 55 patients by atomic absorption spectrophotometry before and after implantation of uncemented total hip arthroplasties. In a randomised, prospective trial 27 wrought Co-28Cr-6Mo-0.2C metal-on-metal articulations were compared with 28 ceramic-on-polyethylene hips which did not contain cobalt. Other sources of iatrogenic cobalt loading were excluded. The metal-on-metal group produced detectable serum cobalt levels (median 1.1 μg/l after one year) which were significantly different (p < 0.0001) from those of the ceramic-on-polyethylene control group (median below detection limit of 0.3 μg/l after one year). Our findings indicate that metal-on-metal bearings generate some systemic release of cobalt


Abstract. Cranial cruciate ligament (CrCL) disease/rupture is a highly prevalent orthopaedic disease in dogs and common cause of pain, lameness, and secondary joint osteoarthritis (OA). Previous experiments investigating the role of glutamate receptors (GluR) in arthritic degeneration and pain revealed that OA biomarkers assessing early bone turnover and inflammation, including osteoprotegerin (OPG) and the receptor activator of nuclear factor kappa-B ligand (RANKL) are more likely to be influenced by glutamate signalling. Moreover, interleukin-6 (IL-6) has a complex and potentially bi directional (beneficial and detrimental) effect, and it is a critical mediator of arthritic pain, OA progression and joint destruction. Objectives. 1) to recruit dogs undergoing CrCL disease/rupture surgery and obtain discarded synovial fluid (SF) and serum/plasma (ethics approval, RCVS:2017/14/Alves); 2) to quantify the biomarkers listed above in the SF and serum/plasma by enzyme linked immunosorbent assay (ELISA); 3) to assess radiographic OA at the time of surgery and correlate it with the biomarkers and clinical findings. Methods. Abnova, Abcam and AMSBIO ELISA kits were tested using a validation protocol relating the standard curve to a dilution series of SF and serum/plasma (1× to 1/50×), with and without SF hyaluronidase treatment to evaluate linearity, specificity and optimal dilutions. Validated ELISA kits were used to measure [IL-6], glutamate [glu], [RANKL] and [OPG] in SF and serum/plasma. For each dog, CrCL disease pre-operative lameness scores were graded as: (1) mild, (2) moderate (easily visible), (3) marked (encumbered), (4) non-weightbearing lameness. Blinded OA scoring was performed on radiographs [15–60, normal-severe OA]. Results. canine population (n=14) was of various breeds, aged between 2–10 years and weighing 17.1–45.5Kg; 42.86% male; 57.14% female; 83.33% males and 62.5% females were neutered. Lameness scores varied from 1 and 4 (average 2.07±1.12) and radiographic OA scores from 18 and 36 (average 27.86±5.11). Individual correlations in concentrations with respect to age, weight, lameness score (1–4) and OA scores (15–60) were tested. SF [glu] and lameness score were inversely correlated with higher levels of lameness corresponding to lower SF [glu] (P=0.0141). SF [RANKL] inversely correlated with weight (P=0.0045) and lameness score (P=0.0135), and serum [RANKL] inversely correlated with weight (P=0.0437). There was also a negative correlation between SF and serum [OPG] and weight (P=0.0165 and P=0.0208, respectively). No other significant correlations were detected. Overall, [glu] and [IL-6] are increased in SF compared to serum/plasma, by 12.84 and 1.28, respectively, whereas all the remaining biomarkers are higher (2–3 times) in the serum/plasma compared to SF. Principal component analysis (PCA) and Pearson correlation coefficient matrix [IL-6/glu/RANKL/OPG] (n=7) showed SF [IL-6] correlates with SF [glu] (rs=0.64) and strong positive correlations between SF/serum [RANKL] and SF/serum [OPG] (rs 0.68–0.96). Conclusions. Dogs with CrCL disease show an association between the bone remodelling markers RANKL and OPG, and the inflammatory cytokine IL-6, and to a lesser extent SF [glu]. Therapeutics targeting bone remodelling, IL-6 or GluR/[glu] may be of interest for the management of OA in dogs. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 18 - 18
17 Nov 2023
Gallagher H Naeem H Wood N Daou HN Pereira MG Giannoudis PV Roberts LD Howard A Bowen TS
Full Access

Abstract. Introduction. Skeletal muscle wasting is an important clinical issue following acute traumatic injury, and can delay recovery and cause permanent functional disability particularly in the elderly. However, the fundamental mechanisms involved in trauma-induced muscle wasting remain poorly defined and therapeutic interventions are limited. Objectives. To characterise local and systemic mediators of skeletal muscle wasting in elderly patients following acute trauma. Methods. Experiments were approved by a local NHS Research Ethics Committee and all participants provided written informed consent. Vastus lateralis biopsies and serum samples were taken from human male and female patients shortly after acute trauma injury in lower limbs (n=6; mean age 78.7±4.4 y) and compared to age-matched controls (n=6; mean age 72.6±6.3 y). Atrogenes and upstream regulators (MuRF1; MAFbx; IL6, TNFα, PGC-1α) mRNA expression was assessed in muscle samples via RT-qPCR. Serum profiling of inflammatory markers (e.g. IL6, TNFα, IL1β) was further performed via multiplex assays. To determine whether systemic factors induced by trauma directly affect muscle phenotype, differentiated primary human myotubes were treated in vitro with serum from controls or trauma patients (pooled; n=3 each) in the final 24 hours of differentiation. Cells were then fixed, stained for myogenin and imaged to determine minimum ferret diameter. Statistical significance was determined at P<0.05. Results. There was an increase in skeletal muscle mRNA expression for E3 ligase MAFbx and inflammatory cytokine IL-6 (4.6 and 21.5-fold respectively; P<0.05) in trauma patients compared to controls. Expression of myogenic determination factor MyoD and regulator of mitochondrial biogenesis PGC-1α was lower in muscle of trauma patients vs controls (0.5 and 0.39-fold respectively; P<0.05). In serum, trauma patients showed increased concentrations of circulating pro-inflammatory cytokines IL-6 (14.5 vs. 0.3 pg/ml; P<0.05) and IL-16 (182.7 vs. 85.2 pg/ml; P<0.05) compared to controls. Primary myotube experiments revealed serum from trauma patients induced atrophy (32% decrease in diameter) compared to control serum-treated cells (P<0.001). Conclusion. Skeletal muscle from patients following acute trauma injury showed greater expression of atrophy and inflammatory markers. Trauma patient serum exhibited higher circulating pro-inflammatory cytokine concentrations. Primary human myotubes treated with serum from trauma patients showed significant atrophy compared to healthy serum-treated controls. We speculate a mechanism(s) acting via circulating factors may contribute to skeletal muscle pathology following acute trauma. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 56 - 56
17 Nov 2023
Algarni M Amin A Hall A
Full Access

Abstract. Objectives. Osteoarthritis (OA) is a complex joint disorder characterised by the loss of extracellular matrix (ECM) leading to cartilage degeneration. Changes to cartilage cell (chondrocyte) behaviour occur including cell swelling, the development of fine cytoplasmic processes and cell clustering leading to changes in cell phenotype and development of focal areas of mechanically-weak fibrocartilaginous matrix. [1]. To study the sequence of events in more detail, we have investigated the changes to in situ chondrocytes within human cartilage which has been lightly scraped and then cultured with serum. Methods. Human femoral heads were obtained with Ethical permission and consent from four female patients (mean age 74 yrs) undergoing hip arthroplasty following femoral neck fracture. Osteochondral explants of macroscopically-normal cartilage were cultured as a non-scraped control, or scraped gently six times with a scalpel blade and both maintained in culture for up to 2wks in Dulbecco's Modified Eagle's Medium (DMEM) with 25% human serum (HS). Explants were then labelled with CMFDA (5-chloromethylfluorescein-diacetate) and PI (propidium iodide) (10μM each) to identify the morphology of living or dead chondrocytes respectively. Explants were imaged using confocal microscopy and in situ chondrocyte morphology, volume and clustering assessed quantitatively within standardised regions of interest (ROI) using Imaris. ®. imaging software. Results. Within 2wks of culture with HS, chondrocyte volume increased significantly from 412±9.3µm. 3. (unscraped) at day 0 to 724±16.6 µm. 3. (scraped) [N(n) = 4(380)] (P=0.0002). Chondrocyte clustering was a prominent feature of HS culture as the percentage of clusters in the cell population increased with scraping from 4.8±1.4% to 14.9±3.9% [N(n) = 4(999)] at week 2 (P=0.0116). In addition, the % of the chondrocyte population within clusters increased from approximately 38% to 60%, and the number of cells per cluster increased significantly from 3.2±0.08 to 4±0.22 (P=0.031). The development of abnormal ‘fibroblastic-like’ chondrocyte morphology demonstrating long (>5µm) cytoplasmic processes also occurred, however the time course of this was more variable. For some samples, clustering occurred before abnormal morphology, but for others the opposite occurred. Typically, by the second week, 17±2.64% of the cell population had processes and this increased to 22±4.02% [N(n) = 4(759)] with scraping. Conclusions. Scraping the cartilage will remove surface constituents including lubricants (e.g. lubricin, hyaluronic acid, phospholipids), extracellular matrix constituents (collagen, proteoglycans – potentially the ‘lamina splendens’) and cells (chondrocytes and mesenchymal stromal cells (MSCs)). Although we do not know which of these component(s) is important, the effect is to dramatically increase the permeation of serum factors into the cartilage matrix and signal the development of cytoplasmic processes, cell clustering and swelling. It is notable that these cellular changes are similar to those occurring in early OA. [1]. This raises the interesting possibility that scraped cartilage cultured with human serum recapitulates some of the changes to in situ chondrocytes during early stages of cartilage degeneration and as such, could be a useful model for following the deleterious changes to matrix metabolism. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 94 - 94
2 Jan 2024
Lin Y Lian W Chen Y Jahr H Wang F
Full Access

Obesity is correlated with the development of osteoporotic diseases. Gut microbiota-derived metabolite trimethylamine-n-oxide (TMAO) accelerates obesity-mediated tissue deterioration. This study was aimed to investigate what role TMAO may play in osteoporosis development during obesity. Mice were fed with high-fat diet (HFD; 60 kcal% fat) or chow diet (CD; 10 kcal% fat) or 0.2% TMAO in drinking water for 6 months. Body adiposis and bone microstructure were investigated using μCT imaging. Gut microbiome and serum metabolome were characterized using 16S rRNA sequencing and liquid chromatography-tandem mass spectrometry. Osteogenic differentiation of bone-marrow mesenchymal cells was quantified using RT-PCR and von Kossa staining. Cellular senescence was evaluated by key senescence markers p16, p21, p53, and senescence association β-galactosidase staining. HFD-fed mice developed hyperglycemia, body adiposis and osteoporosis signs, including low bone mineral density, sparse trabecular microarchitecture, and decreased biomechanical strength. HFD consumption induced gut microbiota dysbiosis, which revealed a high Firmicutes/Bacteroidetes ratio and decreased α-diversity and abundances of beneficial microorganisms Akkermansiaceae, Lactobacillaceae, and Bifidobacteriaceae. Serum metabolome uncovered increased serum L-carnitine and TMAO levels in HFD-fed mice. Of note, transplantation of fecal microbiota from CD-fed mice compromised HFD consumption-induced TMAO overproduction and attenuated loss in bone mass, trabecular microstructure, and bone formation rate. TMAO treatment inhibited trabecular and cortical bone mass and biomechanical characteristics; and repressed osteogenic differentiation capacity of bone-marrow mesenchymal cells. Mechanistically, TMAO accelerated mitochondrial dysfunction and senescence program, interrupted mineralized matrix production in osteoblasts. Gut microbial metabolite TMAO induced osteoblast dysfunction, accelerating the development of obesity-induced skeletal deterioration. This study, for the first time, conveys a productive insight into the catabolic role of gut microflora metabolite TMAO in regulating osteoblast activity and bone tissue integrity during obesity


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 6 - 6
11 Apr 2023
Kronenberg D Everding J Wendler L Brand M Timmen M Stange R
Full Access

Integrin α2β1 is one of the major transmembrane receptors for fibrillary collagen. In native bone we could show that the absence of this protein led to a protective effect against age-related osteoporosis. The objective of this study was to elucidate the effects of integrin α2β1 deficiency on fracture repair and its underlying mechanisms. Standardised femoral fractures were stabilised by an intramedullary nail in 12 week old female C57Bl/6J mice (wild type and integrin α2. -/-. ). After 7, 14 and 28 days mice were sacrificed. Dissected femura were subjected to µCT and histological analyses. To evaluate the biomechanical properties, 28-day-healed femura were tested in a torsional testing device. Masson goldner staining, Alizarin blue, IHC and IF staining were performed on paraffin slices. Blood serum of the animals were measured by ELISA for BMP-2. Primary osteoblasts were analysed by in/on-cell western technology and qRT-PCR. Integrin α2β1 deficient animals showed earlier transition from cartilaginous callus to mineralized callus during fracture repair. The shift from chondrocytes over hypertrophic chondrocytes to bone-forming osteoblasts was accelerated. Collagen production was increased in mutant fracture callus. Serum levels of BMP-2 were increased in healing KO mice. Isolated integrin deficient osteoblast presented an earlier expression and production of active BMP-2 during the differentiation, which led to earlier mineralisation. Biomechanical testing showed no differences between wild-type and mutant bones. Knockout of integrin α2β1 leads to a beneficial outcome for fracture repair. Callus maturation is accelerated, leading to faster recovery, accompanied by an increased generation of extra-cellular matrix material. Biomechanical properties are not diminished by this accelerated healing. The underlying mechanism is driven by an earlier availability of BMP-2, one main effectors for bone development. Local inhibition of integrin α2β1 is therefore a promising target to accelerate fracture repair, especially in patients with retarded healing


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 77 - 77
4 Apr 2023
Sharrock M Fermor H Redmond A Brockett C
Full Access

This study aims to assess the changes in mechanical behaviour over time in ‘haemarthritic’ articular cartilage compared to ‘healthy’ articular cartilage. Pin-on-plate and indentation tests were used to determine the coefficient of friction (COF) and deformation of ‘healthy’ and ‘haemarthritic articular cartilage. Osteochondral pins (8 mm) were extracted from porcine tali and immersed in exposure fluid for two hours prior to test. Pins were articulated against a larger bovine femoral plate for 3600 seconds under a load of 50 N. Osteochondral pins (8 mm) were loaded during indentation testing for 3600 seconds under a load of 0.25 N. To mimic the effect of a joint bleed in vitro; serum, whole blood and 50% v/v were used as exposure and lubricant fluids. COF and deformation were expressed as mean (n=3) and statistically analysed using a one-way ANOVA and post-hoc Tukey test (p>0.05). The serum condition yielded a COF of 0.0428 ± 0.02 with 0.08mm ± 0.04 deformation. The 50% v/v condition produced a higher COF of 0.0485 ± 0.02 and 0.21mm ± 0.04 deformation. The lowest COF and deformation were produced by the whole blood condition (0.0292 ± 0.02 and 0.06mm ± 0.006 respectively). Statistical analysis indicated no significant difference across the friction test conditions but a significant difference across all indentation test conditions (ANOVA, p>0.05). Combination of creep deformation and wear was observed on the articular surface up to 24 hours post-test in 50% v/v and whole blood conditions. The average haemophilia patient can experience multiple joint bleeds per year of which this study demonstrates the effect of just one joint bleed. This study has provided evidence of potential reversible and irreversible mechanical changes to articular cartilage surface during a joint bleed


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 3 - 3
2 Jan 2024
Sohn R Assar T Braun S Brenneis M Kaufhold I Zaucke F Pongratz G Jenei-Lanzl Z
Full Access

Osteoarthritis (OA) is the most common degenerative joint disorder. Its multifactorial etiology includes age, sex, joint overloading, genetic or nervous influences. In particular, the autonomic nervous system is increasingly gaining in importance. Its two branches, the sympathetic (SNS) and parasympathetic nervous system, are well-balanced under healthy conditions. OA patients seem to be prone to an autonomic imbalance and therefore, we analyzed their autonomic status. More than 200 participants including patients with early and late stage knee OA (before and 1 year after knee replacement surgery) and healthy probands (age-matched) were analyzed. Heart rate variability was measured via electrocardiogram to assess long-term sympathetic (low-frequency=LF) and parasympathetic (high-frequency=HF, pRR50) activities or general variability (RMSSD, SDRR). Serum cortisol concentrations were measured by ELISA. Perceived chronic stress (PSQ) was assessed via questionnaire. Multivariant regression was performed for data analysis. LF/HF value of early OA was slightly increased compared to healthy controls but significantly higher compared to late OA patients before (p>0.05) and after TKR (p>0.01). HF in late OA patients before TKR was significantly decreased compared to patients after TKR (p>0.001) or healthy controls (p>0.05). Healthy probands exhibited the highest SDRR values, early OA patients had slightly lower levels and late OA patients before TKR displayed significantly reduced SDRR (p>0.001). The same differences were observed in pRR50 and RMSSD. Serum cortisol concentrations and PSQ scores increased in late OA patients before TKR. At the time point of TKR, women with beta blocker medication had significantly higher age (71 ± 9 years) than those without (63 ± 12 years)(p>0.01). An autonomic dysfunction with sympathetic dominance occurs in OA patients. The fact that beta blocker medication in women delayed the need of TKR indicates that SNS inhibition might counteract OA. Future therapeutic interventions for OA should consider a systemic approach with special regard on the ANS


Senescent chondrocyte and subchondral osteoclast overburden aggravate inflammatory cytokine and pro-catabolic proteinase overproduction, accelerating extracellular matrix degradation and pain during osteoarthritis (OA). Fibronectin type III domain containing 5 (FNDC5) is found to promote tissue homeostasis and alleviate inflammation. This study aimed to characterize what role Fndc5 may play in chondrocyte aging and OA development. Serum and macroscopically healthy and osteoarthritic cartilage were biopsied from patients with knee OA who received total knee replacement. Murine chondrocytes were transfected with Fndc5 RNAi or cDNA. Mice overexpressing Fndc5 (Fndc5Tg) were operated to have destabilized medial meniscus mediated (DMM) joint injury as an experimental OA model. Cellular senescence was characterized using RT-PCR analysis of p16INK4A, p21CIP1, and p53 expression together with ß-galactosidase activity staining. Articular cartilage damage and synovitis were graded using OARSI scores. Osteophyte formation and mechanical allodynia were quantified using microCT imaging and von Frey filament, respectively. Osteoclast formation was examined using tartrate-resistant acid phosphatase staining. Senescent chondrocyte and subchondral osteoclast overburden together with decreased serum FNDC5 levels were present in human osteoarthritic cartilage. Fndc5 knockdown upregulated senescence program together with increased IL-6, MMP9 and Adamts5 expression, whereas Alcian blue-stained glycosaminoglycan production were inhibited. Forced Fndc5 expression repressed senescence, apoptosis and IL-6 expression, reversing proliferation and extracellular matrix production in inflamed chondrocytes. Fndc5Tg mice showed few OA signs, including articular cartilage erosion, synovitis, osteophyte formation, subchondral plate sclerosis and mechanical allodynia together with decreased IL-6 production and few senescent chondrocytes and subchondral osteoclast formation during DMM-induced joint injury. Mechanistically, Fndc5 reversed histone H3K27me3-mediated IL-6 transcription repression to reduce reactive oxygen species production. Fndc5 loss correlated with OA development. It was indispensable in chondrocyte growth and anabolism. This study sheds light onto the anti-ageing and anti-inflammatory actions of Fndc5 to chondrocytes; and highlights the chondroprotective function of Fndc5 to compromise OA


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 95 - 95
2 Jan 2024
Yasuda T Hara S Yamashita S Mitsuzawa S Tsukamoto Y Takeuchi H Ota S Onishi E
Full Access

The interleukin-6/gp130-associated Janus Kinases/STAT3 axis is known to play an important role in mediating inflammatory signals, resulting in production of matrix metalloproteinase-3 (MMP-3). The hip joints with rapidly destructive coxopathy (RDC) demonstrate rapid chondrolysis, probably by increased production of MMP-3 observed in the early stage of RDC. In the recent study, no apparent activation of STAT3 has been shown in the synovial tissues obtained from the osteoarthritic joint at operation. However, no data are currently available on STAT3 activation in the synovial tissues in the early stage of RDC. This study aimed to elucidate STAT3 activation in the synovial tissues in the early stage of RDC. Synovial tissues within 7 months from the disease onset were obtained from four RDC patients with femoral head destruction and high serum levels of MMP-3. RDC synovial tissues showed the synovial lining hyperplasia with an increase of CD68-positive macrophages and CD3-positive T lymphocytes. STAT3 phosphorylation was found in the synovial tissues by immunohistochemistry using anti-phospho-STAT3 antibody. The majority of phospho-STAT3-positive cells were the synovial lining cells and exhibited negative expression of macrophage or T cell marker. Treatment with tofacitinib, a Janus Kinase inhibitor, resulted in a decrease in phospho-STAT3-positive cells, especially with high intensity, indicating effective suppression of STAT3 activation in RDC synovial tissues. Inhibitory effect of tofacitinib could act through the Janus Kinase/STAT3 axis in the synovial tissues in the early stage of RDC. Therefore, STAT3 may be a potential therapeutic target for prevention of joint structural damage in RDC. Acknowledgements: This study was supported by Katakami Foundation for Clinical Research


Abstract. Objectives. Modular dual-mobility (MDM) constructs are used to reduce dislocation rates after total hip replacement (THR). They combine the advantages of dual mobility with the option of supplementary acetabular screw fixation in complex revision surgery. However, there are concerns about adverse reaction to metal debris (ARMD) as a result of fretting corrosion between the metal liner and shell. Methods. The aim of this systematic review was to find and review all relevant studies to establish the outcomes and risks associated with MDM hip replacement. All articles on MDM THRs in the Medline, EMBASE, CINAHL, Cochrane Library, and Prospero databases were searched. A total of 14 articles were included. A random intercept logistic regression model was used for meta-analysis, giving estimated mean values. Results. There were 6 cases of ARMD out of 1312 total. Estimated median incidence of ARMD from meta-analysis was 0.3% (95% CI 0.1 – 1.4%). Mean postoperative serum Cobalt was 0.81 μg/L (95% CI 0.33 – 1.29 μg/L), and Chromium was 0.77 μg/L (95% 0.35 – 1.19 μg/L), from 279 cases in 7 studies. Estimated median incidence of a serum cobalt or chromium ion measurement ≥1 μg/L was 7.9% (95% CI 3.5 – 16.8%), and ≥7 μg/L was 1.8% (95% CI 0.7 – 4.2%). Conclusions. ARMD is a rare but significant complication following total hip replacement using a MDM construct. Its incidence appears higher than that reported in non-metal-on-metal (MoM) hip replacements but lower than that of MoM hip replacements. MDM hip replacements are associated with raised serum metal ion levels postoperatively, but there was no correlation with worse clinical hip function within studies. Studies were poor quality and at high risk of confounding. Pending further work, MDM constructs should be used with caution, reserved for select cases at particularly high risk of dislocation. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 94 - 94
1 Nov 2021
Chen Y Lian W Wang F
Full Access

Introduction and Objective. Senescent bone cell overburden accelerates osteoporosis. Epigenetic alteration, including microRNA signalling and DND methylation, is one of prominent features of cellular senescence. This study aimed to investigate what role microRNA-29a signalling may play in the development of senile osteoporosis. Materials and Methods. Bone biopsy and serum were harvested from 13 young patients and 15 senior patients who required spine surgery. Bone mass, microstructure, and biomechanics of miR-29a knockout mice (miR-29aKO) and miR-29a transgenic mice (miR-29aTg) were probed using mCT imaging and three-point bending material test. Senescent cells were probed using senescence-associated b-galactosidase (SA-b-gal) staining. Transcriptomic landscapes of osteoblasts were characterized using whole genome microarray and KEGG bioinformatics. miR-29a and senescence markers p16. INK4a. , p21. Waf/cipl. and inflammatory cytokines were quantified using RT-PCR. DNA methylome was probed using methylation-specific PCR and 5-methylcytosine immunoblotting. Results. Senescent osteoblast overburden, DNA hypermethylation and oxidative damage together with significant decreases in serum miR-29a levels were present in bone specimens of aged patients. miR-29aKO mice showed a phenotype of skeletal underdevelopment, low bone mineral density and weak biomechanics. miR-29a knockout worsened age-induced bone mass and microstructure deterioration. Of note, aged miR-29aTg mice showed less bone loss and fatty marrow than aged wild-type mice. Transgenic overexpression of miR-29s compromised age-dysregulated osteogenic differentiation capacity of bone-marrow mesenchymal cells. In vitro, miR-29a promoted transcriptomic landscapes of antioxidant proteins in osteoblasts. The microRNA interrupted DNA methyltransferase (Dnmt3b)-mediated DNA methylation, inhibiting reactive oxygen radicals burst, IL-6 and RANKL production, and a plethora of senescent activity, including increased p16. INK4a. , p21. Waf/cipl. signalling and SA-b-gal activity. Conclusions. miR-29a loss is correlated with human age-mediated osteoporosis. miR-29a signalling is indispensable in bone mase homeostasis and microstructure integrity. Gain of miR-29a function is advantageous to delay age-induced bone loss through promoting antioxidant proteins to inhibit DNA hypermethylation-mediated osteoblast senescence. Collective investigations shine light onto the anabolic effects miR-29a signalling to bone integrity and highlight a new epigenetic protection strategy through controlling microRNA signalling to delay osteoblast senescence and senile osteoporosis development