Computer assisted surgery (CAS) is used in trauma surgery to reduce radiation and improve accuracy but it is time consuming. Some trials for navigation in small bone fractures were made, but they are still experimental. One major problem is the fixation of the dynamic reference base for navigation. We evaluated the benefit of a new image based guidance-system (Surgix®, Tel Aviv, Israel) for fracture treatment in
The internal fixation of scaphoid bone fractures remains technically difficult due to the size of the bone and its three- dimensional shape. Early rigid fixation, e.g with a screw, has been shown to support good functional outcome. In terms of stability of the fracture, biomechanical studies have shown a superior result with central screw placement in the scaphoid in comparison with an eccentric position, which can lead to delayed or non-union. Image-based navigation could be helpful for these cases. The main limitation of reference-based navigation systems is their dependence on fixed markers like used in modern navigation systems. Therefore it is limited in treatment of small bone fractures. In former experimental studies 20 artificial hand specimens were randomised into two groups and blinded with polyurethane foam: 10 were treated conventionally and 10 were image guided. For trajectory guidance a reduction of duration of surgery, radiation exposure and perforation rate compared to the conventional technique could be found. Accuracy was not improved by the new technique. The purpose of this study was to identify the possible advantages of the new guidance technique in a clinical setting. In this prospective, non-randomised case series we tested the feasibility of the system into the accommodated surgical workflow. There was no control group. Three cases of scaphoid fractures were included. All of the patients were treated with a cannulated screw following K-wire placement via the percutaneous volar approach described. In addition, length measurements and screw sizes were determined using special features of the system. The performing surgeon and two attending assistant doctors (one assisting the surgical procedure, one handling the guidance system) had to rate the system following each procedure via a user questionnaire. They had to rate the system's integration in the workflow and its contribution to the success of the surgical procedure in percentages (0 %: totally unsuccessful; 100 %: perfect integration and excellent contribution). All of the clinical procedures were performed by the same surgeon. The surgeons rated the system's contribution and integration as very good (91 and 94 % of 100 %). No adverse event occurred. An average of 1.3 trials ± 0.6 (1; 2) was required to place the K-wire in the fractured
Scaphoid non-union results the typical humpback deformity, pronation of the distal fragment, and a bone defect in the non-union site with shortening. Bone grafting, whether open or arthroscopic, relies on fluoroscopic and direct visual assessment of reduction. However, because of the bone defect and irregular geometry, it is difficult to determine the precise width of the bone gap and restore the original bone length, and to correct interfragmentary rotation. Correction of alignment can be performed by computer-assisted planning and intraoperative guidance. The use of computer navigation in guiding reduction in scaphoid non-unions and displaced fractures has not been reported. Objective. We propose a method of anatomical reconstruction in scaphoid non-union by computer-assisted preoperative planning combined with intraoperative computer navigation. This could be done in conjunction with a minimally invasive, arthroscopic bone grafting technique. Methods. A model consisting of a
Using inaccurate quotations can propagate misleading
information, which might affect the management of patients. The
aim of this study was to determine the predictors of quotation inaccuracy
in the peer-reviewed orthopaedic literature related to the scaphoid.
We randomly selected 100 papers from ten orthopaedic journals. All references
were retrieved in full text when available or otherwise excluded.
Two observers independently rated all quotations from the selected
papers by comparing the claims made by the authors with the data
and expressed opinions of the reference source. A statistical analysis
determined which article-related factors were predictors of quotation
inaccuracy. The mean total inaccuracy rate of the 3840 verified
quotes was 7.6%. There was no correlation between the rate of inaccuracy
and the impact factor of the journal. Multivariable analysis identified
the journal and the type of study (clinical, biomechanical, methodological,
case report or review) as important predictors of the total quotation
inaccuracy rate. We concluded that inaccurate quotations in the peer-reviewed
orthopaedic literature related to the scaphoid were common and slightly
more so for certain journals and certain study types. Authors, reviewers
and editorial staff play an important role in reducing this inaccuracy.