Introduction. Bone tissue engineering approaches are an emerging strategy to treat bone defects, and commonly involve the delivery of osteogenic cells and/or drugs via a porous
Purpose. to evaluate the kinematics of a knee with a polyurethane meniscal
The therapeutic potential of hematopoietic stem cells for fracture healing has been demonstrated with mechanistic insight of vasculogenesis and osteogenesis enhancement. Lnk has recently been proved an essential inhibitory signaling molecule in SCF-c-Kit signaling pathway for stem cell self-renewal demonstrating enhanced hematopoietic and osteogenic reconstitution in Lnk-deficient mice. We investigated the hypothesis that down regulation of Lnk enhances regenerative response via vasculogenesis and osteogenesis in fracture healing. A reproducible model of femoral fracture was created in mice. Immediately after fracture creation, mice received local administration of the following materials with AteloGene, 10μM (1)Lnk siRNA, (2)control siRNA.Introduction
Methods
As arthroplasty demand grows worldwide, the need for a novel cost-effective treatment option for articular cartilage (AC) defects tailored to individual patients has never been greater. 3D bioprinting can deposit patient cells and other biomaterials in user-defined patterns to build tissue constructs from the “bottom-up,” potentially offering a new treatment for AC defects. Novel composite bioinks were created by mixing different ratios of methacrylated alginate (AlgMA) with methacrylated gelatin (GelMA) and collagen. Chondrocytes and mesenchymal stem cells (MSCs) were then encapsulated in the bioinks and 3D bioprinted using a custom-built extrusion bioprinter. UV and double-ionic (BaCl2 and CaCl2) crosslinking was deployed following bioprinting to strengthen bioink stability in culture. Chondrocyte and MSC spheroids were also bioprinted to accelerate cell growth and development of ECM in bioprinted constructs. Excellent viability of chondrocytes and MSCs was seen following bioprinting (>95%) and maintained in culture, with accelerated cell growth seen with inclusion of cell spheroids in bioinks (p<0.05). Bioprinted 10mm diameter constructs maintained shape in culture over 28 days, whilst construct degradation rates and mechanical properties were improved with addition of AlgMA (p<0.05). Composite bioinks were also injected into in vitro osteochondral defects and crosslinked in situ, with maintained cell viability and repair of osteochondral defects seen over a 14-day period. In conclusion, we developed novel composite bioinks that can be triple-crosslinked, facilitating successful chondrocyte and MSC growth in 3D bioprinted
Bone is the second most commonly transplanted tissue worldwide, with over four million operations using bone grafts or bone substitute materials annually to treat bone defects. However, significant limitations affect current treatment options and clinical demand for bone grafts continues to rise due to conditions such as trauma, cancer, infection and arthritis. The need for a novel, cost effective treatment option for osteochondral defects has therefore never been greater. As an emerging technology, three-dimensional (3D) bioprinting has the capacity to deposit cells, extracellular matrices and other biological materials in user-defined patterns to build complex tissue constructs from the “bottom up”. Through use of extrusion bioprinting and fused deposition modelling (FDM) 3D printing, porous 3D
Osteoinductive bone substitutes are in their developmental infancy and a paucity of effective grafts options persists despite clinical demand. Bone mineral substitutes such as hydroxyapatite cause minimal biological activity when compared to osteoinductive systems present biological growth factors in order to drive bone regeneration. We have previously demonstrated the in-vitro efficacy of a bioengineered system at presenting growth factors at ultra low-doses. This study aimed to translate this growth factor delivery system towards a clinically applicable implant. Osteoinductive surfaces were engineered using plasma polymerisation of poly(ethyl acrylate) onto base materials followed by adsorption of fibronectin protein and subsequently growth factor (BMP-2). Biological activity following ethylene oxide (EO) sterilisation was evaluated using ELISAs targeted against BMP-2, cell differentiation studies and atomic force microscopy. Scaffolds were 3D printed using polycaprolactone/hydroxyapatite composites and mechanically tested using a linear compression models to calculate stress/strain. In-vivo analysis was performed using a critical defect model in 23 mice over an 8 week period. Bone formation was assessed using microCT and histological analysis. Finally, a computer modelling process was developed to convert patient CT images into surface models, then formatted into 3D-printable
Engineered bone tissue to recreate the continuity of damaged skeletal segments is one of the field of interest of tissue engineering. Trabecular titanium has very good mechanical properties and high in vitro and in vivo biocompatibility: it can be used in biomedical applications to promote osteointegration demonstrating that it can be successfully used for regenerative medicine in orthopaedic surgery (1). Purpose of this investigation was to evaluate the behavior of adipose tissue derived stem cells (hASCs) cultured on
Introduction. The concept of “bone graft expanders” has been popularised to increase the volume and biological activity of the implanted Material. HYPOTHESIS. Orthoss® granules support exogenously seeded MSCs and attract neighbouring host MSCs. Methods. In 3-D cultures’ Orthoss® granules were seeded with 2×10. 5. bone marrow MSCs/granule and maintained in MSC expansion or differentiation media for 21 days. In homing experiments’ bone autografts were placed in close proximity to Orthoss®.
Reconstruction of 10mm segmental bone defects in rat by mesenchymal stem cell derived chondrogenic cells (MSC-DC). Background. Mesenchymal stem cell derived condrogenic cells (MSC-DC) have excellent potential for healing 5 mm bone defect in rat femur. Purpose. To evaluate the effectiveness of MSC-DC on bone healing in 10 mm segmental bone defects in rat femur. Methods. 10 millimeter bone defects were produced in rat femur and fixed with external fixator. We divided this model into four groups according to the kind of graft for bone defects. These bone defects were grafted by MSC-DC seeded on a poly (DL-lactic acid-co-glycolic acid) (PLGA)
Purpose. The purpose of this study was to evaluate the effects of implantation of mesenchymal stem cell derived condrogenic cells (MSC-DC) on bone healing in segmental defects in rat femur. Methods. Five-millimeter segmental bone defects were produced in the mid-shaft of the femur of Fisher 344 rats and stabilized with external fixator. The Treatment Group received MSC-DC, seeded on a PLGA
Introduction. The combined incubation of a composite
Musculoskeletal infection is a devastating complication in both trauma and elective orthopaedic surgeries that can result in significant morbidity. Aim of this study was to assess the effectiveness and complications of local antibiotic impregnated dissolvable synthetic calcium sulphate beads (Stimulan Rapid Cure) in the hands of different surgeons from multiple centres in surgically managed bone and joint infections. Between January 2019 and December 2022, 106 patients with bone and joint infections were treated by five surgeons in five hospitals. Surgical debridement and calcium sulphate bead insertion was performed for local elution of antibiotics in high concentration. In all, 100 patients were available for follow-up at regular intervals. Choice of antibiotic was tailor made for each patient in consultation with microbiologist based on the organism grown on culture and the sensitivity. In majority of our cases, we used a combination of vancomycin and culture sensitive heat stable antibiotic after a thorough debridement of the site. Primary wound closure was achieved in 99 patients and a split skin graft closure was done in one patient. Mean follow-up was 20 months (12 to 30).Aims
Methods
Aim. The present study was designed to evaluate the implantation of alginate beads containing human mature allogenic chondrocytes for the treatment of symptomatic cartilage defects in the knee. Methods. A biodegradable, alginate-based biocompatible
Osteocondritis dissecans (OCD) is a relatively common cause of knee pain. Ideal treatment is still controversial. Aim of this exhibit is to describe the outcomes of 5 different surgical techniques in a series of 63 patients. 63patients (age 22.5±7.4 years) affected by OCD of the femoral condyle (45 medial and 17 lateral) were treated by either osteochondral autologous transplantation, autologous chondrocyte implantation with bone graft, biomimetic nanostructured osteochondral
The purpose of this study was to: review the efficacy of the induced membrane technique (IMT), also known as the Masquelet technique; and investigate the relationship between patient factors and technique variations on the outcomes of the IMT. A systematic search was performed in CINAHL, The Cochrane Library, Embase, Ovid MEDLINE, and PubMed. We included articles from 1 January 1980 to 30 September 2019. Studies with a minimum sample size of five cases, where the IMT was performed primarily in adult patients (≥ 18 years old), in a long bone were included. Multivariate regression models were performed on patient-level data to determine variables associated with nonunion, postoperative infection, and the need for additional procedures.Aims
Methods
Introduction. Nonunion is a common and costly fracture outcome. Intricate reciprocity between angiogenesis and osteogenesis means vascular cell-based therapy offers a novel approach to stimulating bone regeneration. Hypothesis. The current study compared early and late outgrowth endothelial progenitor cell subtypes (EPCs vs OECs) for fracture healing potential in vitro and in vivo. Methods. Primary cell cultures were isolated and characterized by endothelial assays, immunosorbent assays, and multi-color flow cytometry. Co-cultures of EPC subtypes with/without primary osteoblasts (pObs) were analyzed for tube length and connectivity. In vivo, EPCs or OECs (1×10. 6. ) seeded on a gelfoam
Purpouse. We hypothesized that patients receiving a medial collagen meniscus implant (MCMI) would show better clinical, radiograpich and Magnetic Resonanace Imaging (MRI) outcomes than patients treated with partial medial meniscectomy (PMM) at minimum 10 year FU. Material and Methods. Thirty-three non-randomized patients (males, mean age 40 years) were enrolled in the study to receive a MCMI (17 patients) or as control treated with a PMM (16 patients). All of them were clinically evaluated at time zero, 5 and minimum 10 years after surgery (mean FU 133 months, range 120–145) by Lysholm, VAS for pain, objective IKDC knee form and Tegner activity level. SF-36 score was performed pre-operatively and at final FU. Bilateral weight-bearing XRays were executed at time zero and at final FU. Minimum 10 years FU MRI images were compared with collected pre-operative MRI images by means of Yulish score. Genovese score was also used to evalute MCMI MRI survivorship. Results. MCMI group showed significantly lower VAS for pain (p = 0.0091), higher objective IKDC (p = 0.0026), Teger index (p = 0.0259) and SF-36 (p = 0.0259 for PHI and p = 0.0036 for MHI) scores compared with PMM group at minimum 10 year FU. Radiographic evaluation showed a significantly lower medial joint line height (p = 0.0002) and side-to-side difference (p = 0.0003) narrowing in MCMI group respect to PMM group at final FU. Discussion. Improvements in pain relief, activity level, objective IKDC score and joint-line preservation are detectable with the use of MCMI at a minimum 10 year FU. On the authors knowledge this is the first long-term controlled trial regarding this device, and our findings confirmed the mid-term good results achieved by Rodkey et al (1). Conclusions. This data support the use of meniscal
Objective. To provide a best estimate of the average treatment effect when microfracture was chosen as the intervention of choice in patients with full-thickness cartilage defects of the knee. Design. We focussed on controlled studies which either referred to microfracture alone or in comparison with any other surgical treatment of articular cartilage of the knee. Papers including patients who had been treated by microfracture and concomitant adjuvant procedures like ACL reconstruction or meniscus repair were accepted too, whereas papers reporting on the microfracture technique combined with the implantation of a
INTRODUCTION. The purpose of this study is to report results from a prospective multicenter study of a bioresorbable type I collagen
INTRODUCTION. Autologous bone grafts are considered gold standard in the repair of bone defects. However they are limited in supply and are associated with donor site morbidity. This has led to the development of synthetic bone graft substitute (BGS) materials, many of which have been reported as being osteoinductive. The structure of the BGS is important and bone formation has been observed in