Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Trauma

AN INJECTABLE SCAFFOLD FOR BONE TISSUE ENGINEERING

International Society for Fracture Repair (ISFR)



Abstract

Introduction

Bone tissue engineering approaches are an emerging strategy to treat bone defects, and commonly involve the delivery of osteogenic cells and/or drugs via a porous scaffold. We have been exploring an alternative injectable approach for drug delivery that would obviate the need for invasive surgery.

Hypothesis

Sucrose Acetate Isobutyrate (SAIB) is a sucrose-based ester that is a highly viscous semi-solid. Diluting SAIB with 10–20% ethanol markedly reduces its viscosity, with ethanol diffusing rapidly after in vivo injection. This phase transitioning property makes SAIB an ideal candidate for bone tissue engineering.

Materials and methods

The capacity of SAIB to act as a delivery system for recombinant human BMP-2 (rhBMP-2) was tested in a mouse ectopic bone formation model. In this model SAIB was used to deliver 0 to 10μg rhBMP-2. Next, SAIB was compared with porous collagen scaffold used clinically to delivery rhBMP-2 in a head-to-head trial. Commercial SAIB and SAIB produced in-house were also compared. Bone volumes were quantified by μCT.

Discussion

Bone was found to form with as little as 2μg rhBMP-2 when delivered with SAIB. Injected SAIB also showed minimal inflammatory response and rapid breakdown, with bone formation occurring between one and two weeks.

Conclusion

SAIB was found to be an effective delivery system for rhBMP-2 with translational utility. Future work will be required to examine the upscaling of this delivery system.