Cranio-cervical connection is a well-established biomechanical concept. However, literature of this connection and its impact on cervical alignment is scarce. Chin incidence (CI) is defined as a complementary to the angle between chin tilt (CHT) and C2 slope (C2S) axes. This study aims to investigate the relationship between cervical
Cervical spine facet tropism (CFT) defined as the facets’ joints angles difference between right and left sides of more than 7 degrees. This study aims to investigate the relationship between cervical
Background. Oblique implantable total disc replacements (TDR) have been developed in an attempt to partially resect the anterior longitudinal ligament (ALL), together with additional partial resection of lateral annulus fibres. To date, the literature has not addressed the impact of the TDR oblique implantation on the lumbar spine
Background. Using flexible tethering techniques, porcine models of scoliosis have been previously described. These scoliotic curves showed vertebral wedging but very limited axial rotation. In some of these techniques, a persistent scoliotic deformity was found after tether release. The possibility to create severe progressive true scoliosis in a big animal model would be very useful for research purposes, including corrective therapies. Methods. The experimental ethics committee of the main institution provide the approval to conduct the study. Experimental study using a growing porcine model. Unilateral spinal bent rigid tether anchored to two ipsilateral pedicle screws was used to induce scoliosis on eight pigs. Five spinal segments were left between the instrumented pedicles. The spinal tether was removed after 8 weeks. Ten weeks later the animals were sacrificed. Conventional radiographs and 3D CT-scans of the specimens were taken to evaluate changes in the coronal and
Background. Total Knee Replacement (TKR) is an effective treatment for knee arthritis. One long held principle of TKRs is positioning the components in alignment with the mechanical axis to restore the overall limb alignment to 180 ± 3 degrees. However, this view has been challenged recently. Given the high number of replacements performed, clarity on this integral aspect is necessary. Our objective was to investigate the association between malalignment and outcome (both PROMs and revision) following primary TKR. Metod. A systematic review of MEDLINE, CINHAL, and EMBASE was carried out to identify studies published from 2000 onwards. The study protocol including search strategy can be found on the PROSPERO database for systematic reviews. Results. From a total of 2107 citations, 18 studies, comprising of 2,214 patients, investigated the relationship between malalignment and PROMs. Overall 41 comparisons were made between a malalignment parameter and a PROM. Eleven comparisons (27%) demonstrated an association between malalignment and worse PROMs, with 30 comparisons (73%) demonstrating no association. Eight studies investigated the relationship between malalignment and revision. Four studies found an association between a measure of coronal alignment and revision rate, with four not demonstrating an association. Only one study examined axial and
It is known that excessive varus alignment of the femoral stem in total hip replacement (THR) creates a sub-optimal biomechanical environment which is associated with increased rates of revision surgery and component wear. Little is known regarding the effect of femoral stem alignment on patient functional outcome. Methods. Retrospective study of primary THR patients at the RNOH. Alignment of the femoral stem component in-situ was measured subjectively by a consultant musculoskeletal radiologist in both coronal and sagittal planes using post-operative anterior-posterior and lateral pelvic radiographs. Each THR was grouped into valgus, minor-valgus, neutral, minor-varus or varus coronal plane alignment and posterior, minor-posterior, neutral, minor-anterior or anterior
Assessment of coronal knee laxity via manual stress testing is commonly performed during joint examination. While it is generally accepted that the knee should be flexed slightly to assess its collateral restraints, the importance of the exact degree of flexion at time of testing has not been documented. The aim of this study therefore was to assess the effect of differing degrees of knee flexion on the magnitude of coronal deflection observed during collateral stress testing. Using non-invasive infrared technology, the real-time coronal and sagittal mechanical femorotibial (MFT) angles of three asymptomatic volunteers were measured. A single examiner, blinded to the real-time display of coronal but not
Summary Statement. We present a simple and useful geometrical equation system to carry out the pre-operative planning and intra-operative assessments for total knee arthroplasty. These methods are extremely helpful in severely deformed lower limbs. Introduction. Total knee arthroplasty is a highly successful surgery for most of the patients with knee osteoarthritis. With commercial instruments and jigs, most surgeons can correct the deformity and provided satisfactory results. However, in cases with severe extra-articular deformity, the instruments may mislead surgeons in making judgment of the true mechanical axis. We developed a geometrical equation system for pre-operative planning and intra-operative measurement to perform correct bony cuts and achieve good post-operative axis. Patients & Methods. From 2008 to 2012, twenty-four patients with severe extra-articular deformities of low limbs underwent total knee arthroplasties for osteoarthritis. The deformities included malunion of femoral or tibial shafts with angulation, non-union of femoral supracondylar fractures, failed high tibia osteotomies, severe bowing of femurs, and other post-traumatic sequelae. The intra-medullary or extra-medullary guide devices were not possible to provide correct axis in these cases. For pre-operative planning, we analyzed the deformities on triple-film scanography and standing anterior-posterior and lateral X-ray films. The angles needed to be corrected in coronal and sagittal planes were measured. A geometrical equation system was applied to calculate the thickness of the proximal tibia cut and distal femoral cut. If the flexion contracture was presented, the degree of necessary elevation of joint line was also calculated. Intra-operatively, the degree of rotation of anterior and posterior femoral cuts was assessed after proximal tibial and distal femoral cuts. The sizes of prosthesis were judged according to the balance between flexion and extension gaps. A 3-in-1 jig was used for chamfering of the femur. After fine-tuning of bony cuts and balancing of soft tissue, the prostheses were cemented. The conventional intra-medullary and extra-medullary guiding devices were not used during the whole procedure. Results. All of the patients achieved satisfactory results in the aspect of pain relief and functional outcomes. All patients had good post-operative axis in coronal plane (varus or valgus deformity < 3 degrees). Twenty-two patients (92%) achieved good
Summary. Computer assisted surgery (CAS) during total knee arthroplasty (TKA) is known to improve prosthetic alignment in coronal and sagittal plane. In this systematic review, no evidence is found that CAS also improves axial component orientation when used during TKA. Introduction. Primary total knee arthroplasty (TKA) is a safe and cost-effective treatment for end-stage knee osteoarthritis. Correct prosthesis alignment is essential, since malpositioning of the prosthesis leads to worse functional outcome and increased wear, which compromises survival of the prosthesis. Computer assisted surgery (CAS) has been developed to enhance prosthesis alignment during TKA. CAS significantly improves postoperative coronal and
Summary Statement. A prospective randomised evaluation of primary TKA utilizing patient specific instruments demonstrated great accuracy of bone resection, improved
Unicompartmental knee arthroplasty (UKA) is a demanding procedure, with tibial component subsidence or pain from high tibial strain being potential causes of revision. The optimal position in terms of load transfer has not been documented for lateral UKA. Our aim was to determine the effect of tibial component position on proximal tibial strain. A total of 16 composite tibias were implanted with an Oxford Domed Lateral Partial Knee implant using cutting guides to define tibial slope and resection depth. Four implant positions were assessed: standard (5° posterior slope); 10° posterior slope; 5° reverse tibial slope; and 4 mm increased tibial resection. Using an electrodynamic axial-torsional materials testing machine (Instron 5565), a compressive load of 1.5 kN was applied at 60 N/s on a meniscal bearing via a matching femoral component. Tibial strain beneath the implant was measured using a calibrated Digital Image Correlation system.Objectives
Methods